Associate Professor
Department of Mathematics
Temple University
1805 North Broad Street
Philadelphia, PA 19122-6094
email: ignatova at temple dot edu
Publications and Preprints
- 37. P. Constantin, M. Ignatova, Q.H. Nguyen, Global regularity for critical SQG in bounded domains, accepted at CPAM (2024). arXiv:2312.12265 [math.AP].pdf
- 36. M. Ignatova, 2D Voigt Boussinesq Equations, J. Math. Fluid Mech. 26, 15 (2024).pdf
- 35. E. Abdo, M. Ignatova, Long time dynamics of electroconvection in bounded domains, submitted (2024).pdf
- 34. E. Abdo, M. Ignatova, Long Time Dynamics of Nernst-Planck-Navier-Stokes Systems, Journal of Differential Equations 379, 3, 794–828 (2024).pdf
- 33. E. Abdo, N. Glatt-Holtz, M. Ignatova, Unique Ergodicity in Stochastic Electroconvection, Nonlinear Differential Equations and Applications NoDEA 31 (4) pp 67. (2024).pdf
- 32. E. Abdo, M. Ignatova, Long Time Behavior of Solutions of an Electroconvection Model in R2, J. Evol. Equ. 24, 13 (2024). arXiv:2207.06510 [math.AP].pdf
- 31. P. Constantin, M. Ignatova, F.-N. Lee, Existence and Stability of Nonequilibrium Steady States of Nernst-Planck-Navier-Stokes Systems, Physica D: Nonlinear Phenomena, 422 (2022). arXiv:2205.11553 [math.AP]. publication
- 30. M. Ignatova, J. Shu, Global Smooth Solutions of the Nernst-Planck-Darcy System, J. Math. Fluid Mech. 24, 1, (2022) pp 21. arXiv:2107.13655 [math.AP]. publication
- 29. E. Abdo, M. Ignatova, On Electroconvection in Porous Media, to appear in Indiana Univ. Math. J. (2023).
- 28. E. Abdo, M. Ignatova, On the Space Analyticity of the Nernst-Planck-Navier-Stokes system, J. Math. Fluid Mech. 24, 2 (2022). publication
- 27. M. Ignatova, J. Shu, Global Solutions of the Nernst-Planck-Euler Equations, SIAM J. Math. Anal., 53(5), (2021) 5507–5547. arXiv:2101.03199 [math.AP]. publication
- 26. P. Constantin, M. Ignatova, F.-N. Lee, Interior Electroneutrality in Nernst-Planck-Navier-Stokes Systems, Arch Rational Mech Anal 242 (2021), 1091–1118 (2021). arXiv:2011.15057 [math.AP]. publication
- 25. E. Abdo, M. Ignatova, Long Time Finite Dimensionality in Charged Fluids, Nonlinearity 34 (2021) no. 9, 6173–6209. publication
- 24. P. Constantin, M. Ignatova, F.-N. Lee, Nernst-Planck-Navier-Stokes systems far from equilibrium, Arch Rational Mech Anal 240, 1147–1168 (2021). arXiv:2008.10462 [math.AP]. publication
- 23. P. Constantin, M. Ignatova, F.-N. Lee, Nernst-Planck-Navier-Stokes systems near equilibrium, Pure and Applied Functional Analysis, 7,1 (2022). arXiv:2008.10440 [math.AP]. publication
- 22. E. Abdo, M. Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374 (2021), 5849–5875. publication
- 21. P. Constantin, M. Ignatova, Estimates near the boundary for critical SQG, Ann. PDE, 6 (1) (2020). publication
- 20. M. Ignatova, Construction of solutions of the critical SQG equation in bounded domains, Advances in Mathematics, 351 (2019), 1000–1023. publication
- 19. P. Constantin, M. Ignatova, On the Nernst-Planck-Navier-Stokes system, Archive for Rational Mechanics and Analysis, 232 (2019) no. 3, 1379–1428. publication
- 18. P. Constantin, M. Ignatova, H.Q. Nguyen, Inviscid limit for SQG in bounded domains, SIAM J. Math. Anal. 50 (2018), no. 6, 6196–6207. publication
- 17. P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, On some electroconvection models, Journal of Nonlinear Science 27 (2017), no. 1, 197–211. publication
- 16. P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields, SIAM J. Math. Anal. 49 (2017) no. 3, 1932–1946. publication
- 15. P. Constantin and M. Ignatova, Critical SQG in bounded domains, Ann. PDE, 2 (2016), no 8. publication
- 14. M. Ignatova and I. Kukavica, On the local existence of the free-surface Euler equation with surface tension, Asymptotic Analysis, 100 (2016), no. 1-2, pp. 63–86. publication
- 13. P. Constantin and M. Ignatova, Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications, Int Math Res Notices 2017 (2017), no. 6, 1653–1673. publication
- 12. M. Ignatova, I. Kukavica, I. Lasiecka, and A. Tuffaha, Small data global existence for a fluid-structure model, Nonlinearity 30 (2017), no. 2, 848–898. publication
- 11. M. Ignatova and V. Vicol, Almost global existence for the Prandtl boundary layer equations, Archive for Rational Mechanics and Analysis 220 (2016), no. 2, 809–848. publication
- 10. M. Ignatova, G. Iyer, J. Kelliher, R. Pego, and A. Zarnescu, Global well-posedness results for two extended Navier-Stokes systems, Commun. Math. Sci. 13 (2015), no. 1, 249–267. publication
- 9. M. Ignatova, On the continuity of solutions to advection-diffusion equations with slightly supercritical divergence-free drifts, Advances in Nonlinear Analysis 3 (2014), no. 2, 81–86. publication
- 8. M. Ignatova, I. Kukavica, I. Lasiecka, and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), no. 3, 467–499. publication
- 7. M. Ignatova, I. Kukavica, and L. Ryzhik, The Harnack inequality for second-order parabolic equations with divergence-free drifts of low regularity, Comm. PDEs 41 (2016), no. 2, 208–226. publication
- 6. M. Ignatova, I. Kukavica, and L. Ryzhik, The Harnack inequality for second-order elliptic equations with divergence-free drifts, Commun. Math. Sci. (2014) 12, no. 4, 681–694. publication
- 5. M. Ignatova, I. Kukavica, I. Lasiecka, and A. Tuffaha, On the well-posedness for a free boundary fluid-structure model, J. Math. Phys. 53 (2012), no. 11, 115624, 13pp. publication
- 4. M. Ignatova, I. Kukavica, and M. Ziane, Local existence of solutions to the free boundary value problem for the primitive equations of the ocean, J. Math. Phys. 53 (2012), no. 10, 103101, 17pp. publication
- 3. M. Ignatova and I. Kukavica, Strong unique continuation for the Navier-Stokes equation with non-analytic forcing, J. Dynam. and Differential Equations 25 (2013), no. 1, 1–15. publication
- 2. M. Ignatova and I. Kukavica, Strong unique continuation for higher order elliptic equations with Gevrey coefficients, J. Differential Equations 252, (2012), no. 4, 2983–3000. publication
- 1. M. Ignatova and I. Kukavica, Unique continuation and complexity of solutions to parabolic partial differential equations with Gevrey coefficients, Adv. Differential Equations 15 (2010), no. 9, 953–975. publication