LONG TIME DYNAMICS OF ELECTROCONVECTION IN BOUNDED DOMAINS

ABSTRACT. We discuss nonlinear nonlocal equations with fractional diffusion describing electroconvection
phenomena in incompressible viscous fluids. We prove the global well-posedness, global regularity and long
time dynamics of the model in bounded smooth domains with Dirichlet boundary conditions. We prove the
existence and uniqueness of exponentially decaying in time solutions for H*' initial data regardless of the
fractional dissipative regularity. In the presence of time independent body forces in the fluid, we prove the
existence of a compact finite dimensional global attractor. In the case of periodic boundary conditions, we
prove that the unique smooth solution is globally analytic in time, and belongs to a Gevrey class of functions
that depends on the dissipative regularity of the model.

1. INTRODUCTION

Electroconvection is a term associated to the nonlinear dynamics created by the interaction of fluid
flow, ionic transport and electrostatic forces. In certain controlled experimental situations the dynamics are
chaotic, similar to classical hydrodynamic transition to turbulence. The analogy to Rayleigh-Bénard con-
vection [20, [37]], is motivated not only by qualitative observations, but also by the fact that in both systems
the fluid is driven by body forces which are the product of a transported scalar and a vector field. In thermal
convection the scalar is the temperature and the vector is the gravitational field, while in electroconvection,
the scalar is the charge density and the vector is the electric field. Numerical simulations and physical ex-
periments have been used to study electroconvection in thin liquid crystals [2, 20} 45]]. Electroconvection is
of broad interest in electrochemistry, material science and applied physics (see for instance [46l 36} 42]), but
our motivation and focus is on mathematical challenges of long time behavior, in the important case when
physical boundaries are present.

In [6]], the authors considered an electroconvection model describing the nonlinear time evolution of a
surface charge density ¢ in an incompressible viscous fluid, confined to a two dimensional bounded domain
Q, with velocity u and pressure p. The model is described by the system

Oq+u-Vg+Aqg=Ad, (1)
Ou+u-Vu—Au+Vp=—-qRq-qVP + f, 2)
V-u=0, 3)

qloa = ulsa =0, 4)

u(z,0) = uo(z),q(,0) = qo(z), ®)

where A is the square root of the Dirichlet Laplacian, R := VA™! is the Riesz transform, f is a time
independent body force in the fluid, and @ is a time independent potential resulting from a boundary applied
voltage.

The global regularity of a unique solution to the initial boundary value problem (I)—(3) was obtained in
[6] for Sobolev H? initial data based on a two-tier Galerkin approximation. On the torus T? with periodic
boundary conditions, we showed in [I]] that the system (I)—(3) has a unique strong solution provided that
the initial charge density belongs to the Lebesgue space L* and the initial velocity belongs to the Sobolev
space H'. Moreover, we obtained the existence of a finite dimensional global attractor which reduces to a
single point in the absence of body forces in the fluid.
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In this paper, we are interested in the important problem of long time dynamics of (I)—(3)) in bounded
domains with smooth boundaries. We fix « € (0, 1] and consider the generalized electroconvection model
in €2 described by the system

Og+u-Vg+A%q=Ad, (6)
Oru+u-Vu—Au+Vp=—-qRq-qVd+ f, @)
V-u=0, ®)

qloa = uloa =0, )

u(z,0) = uo(x),q(x,0) = go(x), (10)

with a fractional diffusion driven by the operator A“. We address the following three main problems:

(i) Global existence and uniqueness of solutions for Sobolev H! initial data;

(i) Long time dynamics in the absence and in the presence of body forces and of voltage applied at the
boundary;

(i1) Global Gevrey regularity of solutions in the case of periodic boundary conditions.

The system (6)—(I0) is reminiscent of the dissipative surface quasi-geostrophic (SQG) equation, proposed
in [[10] as a model of hydrodynamic creation of small scales. In SQG the fluid velocity « depends on the

scalar ¢ via the relation u = VL(—A)_%q. In [17], the existence and uniqueness of global smooth solutions
were obtained in the subcritical (o > 1) case, whereas the existence of global decaying weak solutions
was obtained in the supercritical (o < 1) and critical (v = 1) cases. Global regularity of solutions to the
critical SQG equation on R? was established in [35] based on modulus of continuity techniques, in [3]
based on De Giorgi techniques, and in [[16] based on nonlinear maximum principles. In [15], the authors
addressed the long time dynamics of the forced critical SQG in the spatially periodic case and proved
the existence of a finite dimensional global attractor. The global well-posedness of the supercritical SQG
equation on R? was obtained in [31]] for small initial data in Besov spaces, and the supercritical regularity
was studied in [18]] where the authors proved that Hélder continuous solutions of subcritical type are actually
C* classical solutions of the equation. In [19], it was shown that the solution of the supercritical equation
with periodic boundary conditions does not blow up in finite time for all fractional powers v > v, where
~1 is a constant depending on the size of the initial data. The critical SQG equation in bounded smooth
domains was addressed in [8]], [[9], and [32] where global interior Lipschitz solutions were constructed, and
in [41] where global Holder regularity up to the boundary was obtained. Global regularity for large data was
obtained very recently in [14]. In [[13], the local well-posedness for the inviscid case and the global existence
of strong solutions for small initial data in the supercritical and critical cases are established in bounded
smooth domains. The global regularity and time asymptotic behavior of solutions to the supercritical SQG
equation on bounded domains are open problems.

The system (6)—(I0) has a different smoothness balance than the supercritical SQG equation due to the
coupling to the Navier-Stokes equations which results in a higher spatial regularity for the fluid velocity.
However, many challenges arise from the nonlocality and the nonlinearity of the electric forces driving the
fluid velocity, and mainly from the presence of boundaries.

The existence and uniqueness of solutions of (6)—(10) relies on control of the spatial LP norms of the
charge density ¢, which evolve via regular nonlinear advection u- Vq. The need for cancellation of advective
terms in LP is crucial, and a direct Galerkin approximation procedure does not work. We consider instead
a spectral regularization of (—A)’%, denoted by (A™!)., that depends on a small positive parameter ¢ > 0,
and we define the corresponding truncated Riesz transform R. = V(A™!).. Then we take a regularized
version of (6)—(10) in which the nonlinear nonlocal electric forces ¢ Rq are replaced by ¢° R.q¢, and we use
Galerkin approximations and compactness arguments to prove that each e-approximate system has global in
time regular up to the boundary solutions that may depend badly on €. By making use of convex damping
inequalities (Proposition [3), we manage to derive L” bounds for the family of viscous charge densities
{¢‘} »(» uniform in e. This allows us to obtain good control of ¢ R.¢®, uniform in ¢, due to the boundedness
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of the Dirichlet Riesz transform on LP spaces, generating consequently a spatial Sobolev H' regularity,
global in time, for both the charge density and velocity solving (6)—(T0).

The long time dynamics of the forced electroconvection system (I)—(3)) in periodic domains was ad-
dressed in [1]] on the basis of Fourier series techniques employed in the study of commutators

[A%,u-V]g:=A(u-Vq) —u-VA®q

for positive and negative powers s, and of interpolation inequalities for fractional powers of the Laplacian.
The facts that the fractional Laplacians have explicit representation formulas and that the periodic operators
A®, defined as Fourier multipliers, commute with differential operators were essentially used in that work.
These properties and techniques break down on bounded domains where the nonlocal operators A® are
defined via eigenfunction expansions, in terms of the eigenfunctions of the homogeneous Dirichlet Laplace
operator, are not translation invariant, and don’t have integral representations with explicit kernels. This
gives rise to many technical mathematical challenges and the need for new ideas.

At each positive time ¢, the forced initial boundary value problem (6)—(I0) has a well defined solution
map S(t) on

V= {(q,u) € H}(Q) x (HH(Q))*: V-u =0},

which is the largest space in which the model (6)—(I0) has unique solutions. We prove the existence of an
absorbing ball

B={(qu)eV: |Vl +[AulL: < R}

with a radius R depending only on the forcing terms f and ®, whose image under S(t) is a subset of B itself
starting at a time 7" := T'( R) depending only on R (Proposition . This requires uniform control of ¢ in H'!
and u in H? starting with Sobolev H! initial data. The proof requires uniform L{° and L? boundedness of
the velocity in H'*€ and H?*¢ respectively. Due to the presence of electric forces ¢Rq driven by the charge
density, fractional product inequalities for small powers of the Stokes operator A are needed to estimate
A°(P(gRq)). These are established in Proposition[9] Further, the proof requires L;* boundedness of the L?
norms of the velocity gradients. These are obtained via a mild formulation of the Navier-Stokes equations
and use of Stokes semi-group estimates. Finally the proof proceeds by establishing L;° uniform control of
the density gradient in L2. For this purpose, we track the time evolution of [Vq| 2 via energy estimates
and handle the nonlinearity by making use of velocity gradient bounds in LP and fractional interpolation
inequalities in bounded domains. Consequently we obtain the desired property S(¢)B c B for large enough
times. The compactness of the ball B in the weaker topology of

H = {(q,u) e L*(Q) x (LA(Q))*: V-u = 0,qloa = ulgn = O},

together with the continuity and injectivity properties of S(t), yield the existence of a global attractor,
compact in the norm of H.

The regularity of the attractor for small v > 0 is limited, because the dissipation in the ¢ equation (6) is
supercritical (meaning less than the order of the nonlinearity). The situation improves considerably when
we consider the critical case, & = 1. In this case, the stronger dissipative structure is exploited to prove
complete smoothness of the global attractor. In this latter situation, we control the nonlinearity of (I)) by
establishing pointwise commutator estimates that are inversely proportional to powers of the distance to the
boundary function

d(x) :=d(z,00),
and we control the weighted vector field u(x)/d(x) and scalar function ¢(x)/d(x) in L via use of Hardy
inequalities. This yields good control of the fractional energy norms |AZg| 2 for any integer s > 1, and
upgrade of the attractor’s regularity via bootstrapping arguments.

Posed on the two dimensional torus T? with periodic boundary conditions, the system (6)—-(T0) has a
unique Gevrey regular solution. In spite of the fractional diffusion governing the system, we show that
the time evolution of the Gevrey norm depends on the dissipative structure at hand using Fourier series
techniques, Gevrey commutator estimates, and Gevrey cancellation laws. We obtain a local in time control
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of the Gevrey norm by the Sobolev regularity of the solution and, consequently a global extension in the
spirit of the global in time boundedness of solutions in fractional Sobolev spaces.

2. MAIN RESULTS

2.1. Functional Setting. Let Q2 c R? be a bounded domain with smooth boundary. For 1 < p < oo, we
denote by LP(€2) the Lebesgue spaces of measurable functions f from 2 to R (or R?) such that

1 = ([ 1s1a) < oo (i

ifpe[l,00)and
| £l = esssupg|f| < oo (12)
if p = co. The L? inner product is denoted by (-,-) 2.

For k € N, we denote by H*(Q) the Sobolev spaces of measurable functions f from € to R (or R?) with
weak derivatives of order k such that

[ £ = 25 1D FIzz < o0, (13)
la|<k
and by HJ (2) the closure of C¢°(92) in H!(Q).
For a Banach space (X, |-||x) and p € [1, oo], we consider the Lebesgue spaces LP(0,T’; X ) of functions
f from X to R (or R?) satisfying

T
17t < oo (14)

with the usual convention when p = oo.

Fractional Powers of the Laplacian. We denote by A the Laplacian operator with homogeneous
Dirichlet boundary conditions. We note that —A is defined on D(-A) = H?(Q) n H}(2), and is posi-
tive and self-adjoint in L(Q2). We consider an orthonormal basis of L?(£2) consisting of eigenfunctions
{wj};zl c H} () of —A satisfying

- ij = )\jw]’ (15)
where the eigenvalues \; obey 0 < A\; < ... < Aj < ... » oo. For s € R, we define the fractional Laplacian
operator of order s, denoted by A®, by

A f =3 X2 (fowg) 2w, (16)
j=1
with domain
D(A%) = {f € LX(Q) : [A*f[72 3= 20 AS(f,wi)7e < 00}- (17)
jeN
For s € [0, 1], we identify the domains D(A®) with the usual Sobolev spaces as follows,
H(Q) it sef0,1)
1 1
D(A®) ={ H3)(Q) = {f e HZ(Q): fl\/d(z) e L2(Q)} if s =1 (18)
HE(Q) if se(5,1]

where H§(€2) is the Hilbert subspace of H*({2) with vanishing boundary trace elements.
Stokes Operator. We recall some basic notions of the Stokes operator [7]. We denote by H and V' the
spaces

H={ve(L*(Q))*:V -v=0,0n|spn =0} (19)
where n is the outward unit normal to 952, and

V={ve(Hy(R)*:V-v=0}. (20)



Let P: (L%(Q))? — H be the Leray Hodge projection. We define the Stokes operator, denoted by A, as
A:=-PA 2D

with domain D(A) = Vn(H?(Q))?. Ais positive, self-adjoint, and injective, and its inverse A~! is compact.
We denote the eigenvalues of A by uj;,j = 1,2, ..., and the corresponding eigenfunctions by ¢;,j = 1,2...,
and we note that 0 < 1 < ... < pj < ... — oo. We define the fractional powers of the Stokes operator, denoted
by A%, as

A= 15(v, 65) 1265 (22)
j=1
with domain
D(A%) = {v e H:|A|7,:= 3 13 (v,85)72 < 00}- (23)
jeN

Periodic Gevrey classes. Let T? = [0, 27]% be the two dimensional torus.
For s € R, the periodic fractional Laplacian A® applied to a mean zero function f is a Fourier multiplier
with symbol |k|%, that is, for f given by

f= X e’ 24)
keZ2\{0}
and obeying
> R < oo, (25)
keZ2~{0}
we have '
Nf= 3 |k fre™®. (26)
keZ2~{0}
For 7 > 0, s > 0, we define 4
e‘rA‘ f _ Z €T|k|‘ fkezk‘z 7)
kez2~\{0}
on
D(e™) = {f e L*(T?): > 2R o < oo}. (28)
keZ2~{0}

2.2. Results. We prove first the existence and uniqueness of exponentially decaying in time Sobolev H!
solutions to the unforced model (6)—(10) where f = ® = 0:

Theorem 1. Suppose f = ® = 0. Let ug € D(A%) and qo € D(A). Then the system (6)—(10) has a unique
solution (q,u) on [0, co) with regularity
g€ L(0,00; D(A)) N L2(0,00; D(A*2)) (29)
and )
we (L2(0,00,D(A2)) 1 L*(0,00;D(A))) . (30)
Moreover, there exists a positive constant v < 1 depending on the size of §) and the power «, such that the
following bounds

[Aq(D)]32 < [Ago|32e“0, G1)
|AZu(t)|2s < Coe ™, (32)

t (e}
[ 1A E G () [Fads < JAal (1 + Coe) (33)

and .
[ 1Au(o)l3eds < G (34)
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hold for all t > 0, where

2 O(Juol?,+Claol,)’
Co = (Juolls + laolls + 1)° Ul CI0lia) (gug 3, + Claaolhalaol3s). @39
The solutions of the unforced system (6)—(10) are smooth and their higher order derivatives decay expo-
nentially in time to O in all Sobolev norms:
Theorem 2. Let f = ® = 0. Fix an integer k > 2. Suppose that qo € D(AF) and ug € D(Ag). Then the
unique solution (q,u) to (6)—(10) obey
g€ L (0,00, D(A")) n L*(0, 003 D(A™'2)) (36)
and

we (L(0,00:D(A%)) 0 L2(0,00:D(45))) . (37)

k
Moreover, there is a positive constant vy, depending only on k, o, |A*qq| 2 and |A2ug| 12 and a positive
constant c depending only on the diameter of ) and « such that the estimates

k
|AR ()72 + |AZu(t)] 72 < yee™ (38)
and
¢ kil 2 k+2 2
(1A% a3 + 145 E g(s)]2) ds < (39)
hold for any t > 0.

Now we address the long time dynamics of the forced system (6)—(10) in the presence of body forces in
the fluid and a boundary applied voltage.
We consider the function spaces

H=D(A%) @ D(A°) (40)
and )
V=D(A)®D(A2). (41)
The boundary value problem (6)—(I0) gives rise to a solution map
St): VeV (42)
defined by
S()(g0,u0) = (a(t), u(?)), (43)

where (g(t),u(t)) is the unique solution of (6)—(10) with initial datum (qg, uo) at time ¢. For initial datum
wo = (qo,up), we denote by w(t) the solution (g, u) at time ¢ corresponding to wy.
The system (6)—(10) has a finite dimensional attractor for any « € (0, 1]:

Theorem 3. Let v € (0, 1]. There exist a time T > 0 and a radius R>0 depending only on the body forces
f, potential ®, and the power «, such that the ball

B={(q,u) eV:|Vqlr: +[Aulr: < R} (44)
obeys S(t)B c B for all t > T. Moreover, the set
X =SB (45)
t>0

satisfies the following properties:
(a) X is compactin H.
(b) S(t)X = X forallt>0.
(c) If Z is bounded in V in the norm of of V, and S(t)Z = Z for all t > 0, then Z c X.
(d) Forevery wg eV, tlim disty (S (t)wp, X) = 0.

(e) X is connected.
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() X has a finite fractal dimension in H, that is there exists a finite real number M > 0 depending on
the body forces f, potential ®, and power « such that
log V.
lim sup 08 uAT) 7—[1(7“)
r—0 log (;)

where Ny (1) is the minimal number of balls in H of radii r needed to cover X.

<M

The existence of the global attractor X is based on the compactness of the ball B in the norm of H
(Proposition , the instant Lipschitz continuity in # of the map S(¢) (Proposition , and the time analyt-
icity of S(t) (Proposition . The finite fractal dimensionality follows from the decay of volume elements
transported by the flow map (Proposition [12)).

When o = 1, the attractor is compact in V and is smooth:

Theorem 4. Let o = 1. There exist a time T > 0 and a radius R > 0 depending only on the body forces f
and potential ® such that the ball

B={(q.u) eV: A" 3q|2 + | Aul ;2 < R (46)
obeys S(t)B c Bforallt > T. Moreover; the set
X = S(t)B. (47)
t>0

satisfies the following properties:
(@) X is compact in V.
(b) S(t)X = X forallt>0.
(¢) If Z is bounded in V in the norm of of V, and S(t)Z = Z for all t > 0, then Z c X.
(d) Forevery wg eV, tliglo disty(S(t)wp, X) = 0.

(e) )g' is connected. ~
() X has a finite fractal dimension in V), that is there exists a finite real number M > 0 depending on
the body forces [ and potential ® such that

log IV; ~
limsupOg—V(r) <M

T og (1)
where Ny (1) is the minimal number of balls in V of radii r needed to cover X.
(g) X is smooth, that is for every integer k > 0, there exists a radius py, depending on the body forces f
and potential ® and a ball B, c H* such that the attractor X c B,,.

In the case of periodic boundary conditions, the system (6)—(8) has unique global Gevrey regular solutions
for any fractional dissipative regularity:

Theorem 5. Suppose f = ® = 0. Let m > 2. Suppose that ug € Hz "' (T?) and qo € H'z (T?). Then there
exists a time Ty depending only on the size of the initial data, such that the system described by (6)—(8) and
equipped with periodic boundary conditions has a unique solution (q(t),u(t)) on (0,Ty) with the property
that

tr e WA (AT g AT ) (48)
is analytic on (0,Tp), where

7(t) = min{i,

Moreover, (q,u) is analytic on (Ty, 00) with values in D(e”** A2 ) x D(e”* A2 *1) for some o > 0.

1, TO} . (49)

The body forces f and potential ® are taken to be zero in Theorem [3] for simplicity. The presence of
forcing does not affect the existence, regularity, or analyticity of solutions.



3. PRELIMINARIES

3.1. Properties of the Fractional Powers of the Laplacian. We recall the identity

AS = e fomt‘1‘§(1 — et (50)
that holds for s € (0,2) and
1=csf°°t‘1‘%(1—e‘t)dt, 1)
from which we obtain the integral representati(;)n
(AN @) =co [ 1) - e fa) Rt (52)
for f € D(A®) and s € (0,2), where the heat operator e** is defined as
(2N @) = [ Ho(wy.0f(0)dy (53)
with kernel Hp(z,y,t) given by
Hp(z,y,t) = ie_t)‘fwj(x)wj(y). (54)
=

In 2D, the heat kernel Hp(z,y,t) obeys

Jae—yl?

|Hp(z,y,t)| < Ct e " (53)
—|z—y[?
IV, Hp(z,y.t)| < Ct e~ ", (56)
and
T
Vo Hp (2,y, )| < Ct 26w o7
for all (z,y) € Q x Q and ¢ > 0. Moreover, the following estimates
[0 t7'72 fQ | = y|"|(Va + Vy)Hp(, y,t)|dydt < Cd(z) >, (58)
[0 t7172 fQ & = y||Va(Va + Vy) Hp(2,y, t)|dydt < Cd(x) 2", (59)
and -
fo £ fQ & =919y (Vo + V) Hp (2, y, 1) dydt < Cel(ar) > (60)

hold for any ¢ > 0, s € (0,2) and = € Q2. We refer the reader to [8, [12] for detailed proofs of analogous
estimates.

Proposition 1. The following identities hold:
(i) Let a, 8,5 € R. For f e D(A®) n D(A*®) and g e D(A?*%) n D(A?), we have

(A“f Ag) 2 = (N f, A7 g) o, (61)
(i) Let o, B € R. For f € D(A**') and g e D(AP*Y), we have
(A f AT g) e = (VA £, VA g) o (62)
(iii) Let s € (0,1). For 1y € D(A®), we have
18013 = [ [ @) -6 @)* Koo )dady + [ (@) Boda (©3)

where the kernels K¢ and Bg are given by

Ko(2,1) = 2005 fo T H(x,y, t)t (64)



forall x # y, and
B, () = 4eay fo [1-e21(2)] 1t (65)
forall x € ().

Proof.

(i) The proof of (i) follows from the definition (16)).
(ii) The proof of (ii) follows from the definition (T6)) and the identity

A if 1=k
(ij7vwk)L2 = _(/wjaAwk)LQ = (wijkwk)LQ = {OJ ;-i +k . (66)

(iii) The proof of (iii) is based on [4]. Indeed, we have

1 1
- C—IIAS@DH%Q = (A%, p) 1o
2s Cos
= Awﬁt—l—s |;/(; H(x,y,t)lb(x)q/;(y)dx_w(y)Z] dydt
B ./0 fg fn 1 H (2, y, ) (0 () - 0 (y) ¢ (y) dadydt
* fo fQIf‘l‘sw(y)2 [ 1(y) - 1] dydt 67
in view of the integral representation (52)), and

_éHAsd’%z =—f0°°/Q/Qt-l-sg(m,y,t)(w(x)_¢(y))¢(x)dxdydt
+Am[)t—1—sw(y)2 [etAl(y)—l] dydt (68)

by interchanging the variables = and y in the first integral in (67)) and using the symmetry of the heat
kernel Hp(x,y,t). Adding and (68)), we deduce that

L S|, = = -1-s 9
s it == [7 [ [ 0 (0@ - v() *dedyi

) f fQ 10 (y)2 [1 - e21(y)] dyat. (69)
0
Multiplying both sides of (69) by —2c2, and applying Fubini’s theorem, we obtain (63).

Remark 1. The kernels K, and Bs obey

Cs
0< Ks(z,y) < Ty (70)

forall x #y, and
By(z) 20 (71)

for all x € Q. The estimate follows from (53), whereas the nonnegativity of By follows from the
maximum principle.

Proposition 2. For any odd integer m > 1, we have
D(A™) n H™ = D(A™). (72)

Proof. The inclusion D(A™*') c D(A™) n H™*! obviously holds. If p € D(A™) n H™*!, then A¥p
vanishes on the boundary for all even integers k < m — 1 and consequently, p e D(A™*1).
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3.2. Nonlinear Poincaré inequality. We recall the following pointwise inequality in bounded domains [8]]:

Proposition 3. Let 0 < s < 2. There exists a constant ¢ > 0 depending only on the domain ) and on s, such
that, for any ®, a C? convex function satisfying ®(0) = 0, and any function f € C§°(X2), the inequality

(fINf - A (2(f)) 2 (f2'(f) - 2(f)) (73)

d( )

holds pointwise in ().

For an even integer p > 2, we let ®(z) = %:rp, and we apply Propositionto infer that

AN s g (1) (74)
d( P\ p
for any f e C5°(2). Integrating over €2, we have

-1As 1 s _l p
Jorriwesasst [ (%) + Co 1 p)flle (75)

for some positive constant C, 5 depending only on the size of {2 and s. In view of the integral representation
formula (52)), the maximum principle, and the positivity of f?, we deduce that

fﬂ AS(fP)dz > 0. (76)

This yields the LP nonlinear Poincaré inequality

fﬂ fPINS fda > Co (1 - ]%) 1715 (17

3.3. Fractional interpolation inequalities. We define the fractional spaces W*P(Q) as

W&p(m:{vemm):||v||Ws,p=(||v||ip+ JRc: U(y)|pdacdy)p<oo}. (78)

|$ y|2+sp

Let 1 < p,p1,p2 < oo with pg # 1. Let s, s1, s2 be nonnegative real numbers such that s; < s9. Let 6 € (0,1)

such that s = 0s1 + (1 - 0)s2 and % = pil + 1}'%29. Then there exists a positive universal constant C' such that

the following interpolation inequality

[ lwes < CLf s 1 1720 (79)
holds for any f € W51:P1(Q2) n WW52P2((2). We refer the reader to [3] for a detailed proof.

3.4. Hardy’s inequality. We denote by VVO1 P(Q) the closure of the space of smooth compactly supported
functions C§° () under the norm of W17, For 1 <p < co and f € I/VO1 P(Q), the following inequality holds:

|f (@)l
Q d(z)pP d

<C fﬂ IV £ (z)Pda. (80)
(see [23] and references therein).

3.5. Notation. Throughout the paper, we denote by C' a positive constant that depends on the domain €2
and universal constants. The distance from a point = € € to the boundary 02 is denoted by d(x). The
notation [ A, B] is used to denote the commutator AB — BA.
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4. EXISTENCE AND UNIQUENESS OF SOLUTIONS: PROOF OF THEOREM(I]

For « € (0,1], we consider the system of equations

Ohqg+u-Vg+A4q=0, (81)
Ou+u-Vu+Vp—Au=—-qRgq, (82)
V-u=0, (83)

on 2 x [0, co), with homogeneous Dirichlet boundary conditions

qloa = ulaq = 0, (84)

and with initial data qg and wy.
In this section, we address the existence, uniqueness, and long time behavior of solutions to the system
described by the equations (8 I)—(84). For this objective, we consider the e-approximate system

Ogt +u - Vg + A —eAqg° =0, (85)
Oput +ut - vut + vpt - Au = —q€V(A_1)€qE, (86)
V-out=0 87
where
(A ep= [t Ee B pt, (88)

with homegeneous Dirichlet boundary conditions
qloa = ulon = 0, (89)

and with initial data ¢°(0) = go and u(0) = ug. For each fixed € € (0,1), we prove that the approximate
system (B3))—(89) has unique global smooth solutions. We need first the following lemma:

Lemma 1. Let € > 0 be fixed. Let f € D(A*™Y). Then there exist a positive universal constant C, indepen-
dent of €, and a positive constant C's depending only on s and universal constants, such that the inequalities

[A* (AT e fl2 < CIA*T ] 2 (90)

and
[AS(A™)efllr2 < Cse** | £ 12 ©1)
hold for any s > 0.

Proof. The proof of (91) can be found in [32]. We prove the inequality (90). We consider the expansion of
f

f= i(f,wg‘)mwj (92)
j=
in terms of the eigenfunctions w; of the Laplace operator —A. We write the expansion of (A™1)f as follows,
(Ah)ef = 2%% 93)
j=
where the coefficients v); are given by the integral representation

s = / T Ee N (f,w)) padt. (94)

€

By making the change of variable t\; = s, we have

1

5] < ( i Ws-%e-Sds) el s ([ s detas) ) el < O )il 99)

Aj
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for all j > 1. Therefore, we have

[AS(A™) 72 = Z Xy < C Z NN (fowg) i = CIAST 7, (96)

J= Jj=1

completing the proof of the Lemmal ]

Proposition 4. Fix an € € (0,1) and an arbitrary time T > 0. Suppose ug € D(A%) and qy € D(A). Then
the e-approximate system [83)—(@9) has a unique solution (q¢°,u) on [0,T] with regularity

q° € L(0,T; D(A)) n L*(0, T; D(A%)) o7
and
2
ut € (L=(0,T;D(A%)) n L*(0, T; D(A))) (98)
Proof. For n > 1, we consider the Galerkin approximants
Pup =2 (p,w;)r2w; (99)
j=1
and
Pov =Y (v,¢5)126; (100)
j=1

where w; and ¢; are the eigenfunctions of the homogeneous Dirichlet Laplace operator —A and the Stokes
operator A respectively. Here, we abused notation and wrote IP,, for both projections.
For a fixed € > 0 and n > 1, we consider the approximate system of ODEs

Oy, + Pr(uy, - Vay,) + A%q;, — eAgy, = 0, (101)

ol + Aus, + P (B(us,us)) = =P (gn V(A™ 1)5%) (102)

with initial data ¢5,(0) = P,,qo and ug,(0) = P, up, and homogeneous Dirichlet boundary conditions ¢, |sq =
u$laq = 0. We establish a priori uniform-in-n bounds as follows:
Step 1. L? bounds for the charge density approximants. We take the scalar product in L? of the
equation obeyed by the charge density approximants g, with ¢;,. We obtain the energy equality
1d

5 lalie + 1A 1 Te + el Ai T2 =0, (103)

where the nonlinear term vanishes due divergence-free condition obeyed by wu;,. Integrating in time from 0
to ¢, and taking the supremum over [0, 7'], we conclude that

T (o7
sup (02 +2 [ (IASG5(0) 122 + el gt (9)12) di < 2laol 2. (104)
0<t<T 0

Step 2. L? bounds for the velocity approximants We take the L? inner product of the equation (T02)
obeyed by the velocity approximants v, with u$,. The nonlinear term (P, (B(u$,, us,)), uS,) 7.2 vanishes due
to the self-adjointness of the Leray projector [P and the divergence-free condition obeyed by u;,. We obtain
the energy equation

i 2 + 143U 12 =~ [ (a9 (A )egt) - u (105)

Using the fact that u, belongs to the space spanned by the first n eigenfunctions of A, choosing p € (2,4]
such that the continuous Sobolev embedding D(A%) c LP holds, and using the boundedness of the Riesz
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transform R = VA~! on LP, we estimate
[ ey (A s uida| = | [ iAo utda

< Naple2 IVAT AN ) eqp 2o fun 2 = lag ) 2 IRACA ™) eqp |z s | 2o

< Cgsl 2 IACAeqp o s o < Cllag |2 1AZ T (AT )eqf | 2 s | o (106)
where ¢ is the Holder exponent satisfying % + % + % = 1. In view of Lemma and the Poincaré inequality
1
lunlze < ClVug |2 = ClA2ug, | 12, (107)
we infer that
— € € € a ¢ 1 .
fQPn(QSLV(A Dedn) - undz| < Cllan | 12| A% 5 2| AZup | 2, (108)
from which we obtain the differential inequality
d 1 oe € L e
—lup e + 1AZug 72 < Cllas |72 1A% 4517 (109)
dt

after use of Young’s inequality for products. Now we integrate in time from 0 to ¢, take the supremum
over [0,7"], and use the uniform bound (104) for the charge density approximants ¢, derived in Step 1 to
conclude that

T
sup [ug, (£)[72 + fo | Vs, (8) 724t < 2]uo| 72 + Cllgol 72 (110)

0<t<T

Step 3. H' bounds for the velocity approximants. We take the scalar product in L? of the equation
(102) obeyed by u;, with Au;,. We estimate the convective nonlinear term

fIP’ B(us,, u;,) Auy, dz

via use of the Ladyzhenskaya interpolation inequality, and the ellipticity of the Stokes operator. As for the
electrical forcing nonlinear term, we choose p € (2,4] so that D(A%) is continuously embedded in L7,

apply Holder’s inequality with exponents p, q = p2p2, 2, use the boundedness of the Riesz transform on L?

< Cllug | o[ Vg | o | Auy | 2 < CllunHLz |V > HAunHLz (111)

and the continuous embedding of D(A%) in L9, and apply Lemma to obtain

f P (a5, V(A™)eqr) Aug,d| < Clgp | o |V (A™)eqs, | 1o | Auy | 2

< CIAS G52 I RACA™ Vel Lol AuS | 2 < CIAS 65 2l AGA ™Yo o | Act | 2

< CIAT G5 A7 (M) el 2 N Aug o < Cel A% g5l 12 llgs 2 | Aus 12 (112)

where C is a positive constant, which does not depend on n but on €, and that blows up as e approaches 0.
Applying Young’s inequality, we obtain the differential inequality

d 2 2 2 4 2 2 2
S 1Vunlze + 1 Aun] 72 < Clug 72 [Vup |2 + Cellan |22 A2 gl e (113)

In view of Gronwall’s inequality and the bounds (104)) and (110) derived in Steps 1 and 2, we conclude that

T 4 8
sup [Vuf ()12 + [ [Aug (0)[Fadt < OO0l 00 (19w + Claola). (119)

0<tT

Step 4. H' bounds for the charge density approximants. The L? norm of V¢;, evolves according to
the energy equality
1d

5o Ve + I E G2 + A28 = [ uf, - vasAgda. (115)



14

We integrate by parts the nonlinear term, use the homogeneous Dirichlet boundary conditions and divergence-
free property obeyed by the velocity approximants u,, choose p so that D(A2 ) is continuously embedded

in L? and ¢ so that % + % + % = 1, apply Holder’s inequality, and obtain

| [ s aradida] < [ [vusllvasPde < [vug e ooVl e
~ |V ool RAGS |20 1965 |12 < Vs |l Adil o 95 22

<OIVug ol A2 g5 2| Vg | 2. (116)
In view of the Gagliardo-Nirenberg interpolation inequality, we have
2 a-2

IVus e < ClVug [ 72 Vgl 4 - (117)

Integrating by parts, and applying the Poincaré inequality to the vector field u;, that vanishes on the boundary
of €2, we observe that

|V l7e =~ fQUZ Augdr < g | 2 [ Aug | 2 < O Vg, [ 12| Aug, | 12 < %llVUZHiz + Ol Aug |72, (118)
from which we infer that
[Vusllze < O Aug 2, (119)
and consequently
[Vurlze < ClAug | 12 < C Aug, | 2. (120)
Putting (113), (IT6) and (120) together, we obtain the differential inequality

o

d
IVl + [AT2 gl Te + 26 %G5 72 < CllAwL 72 Va7 (121)

after applying Young’s inequality. By Gronwall’s inequality and the bound (114]), we conclude that

a3

T
2 1 2 2 2
sup [Vas (0132 + [ (1A Fa(0)13: + el A% (1)]32)
0<t<T 0

4 8
2 Culaold,yeCHol 2 ol )
< eIVl Celmlz)e IVqol7, (122)

ending the proof of Step 4.

The existence of a solution (¢, u°) to the e-approximate system (85)—(89) with regularity and (98))
is obtained via application of the Aubin-Lions lemma, use of the uniform in n bounds derived in Steps 1, 2,
3 and 4, and passage in the weak limit with use of the lower semi-continuity of the norms.

As for uniqueness, suppose (¢f, u) and (g5, u$) are two solutions to the e-approximate system (85)—(89)
with regularity and (98). We denote by ¢¢, a, and p° the differences

q° =q1 - q5,U° = uy —uy, p° = pi - Py, (123)

which obey the system
0G° + NG - eAG = —u] - VG - U -V, (124)
By = AT + Vi = —u§ - Vi — @ - Vs — g5 - V(A ™) = G- V(A1) egs, (125)

with homogeneous Dirichlet boundary conditions and vanishing initial data. We take the scalar product
in L? of (124) and (123)) with ¢ and u€ respectively. We estimate using Ladyzhenskaya’s interpolation
inequality, the continuous embeddings of D( A%) into L and D(A?) into L7°5. We obtain the differential
inequalities
1d

5 7t 1 [ 2 < CIVE 2| A2 5] L2132 (126)

~ [ ~
I P P P T Y ]
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and
1d,. 5 - T - _ -
5%\“”%2 + Va2 < )7l vusl e + (g5 I pa |V (A™)e@ | 12 + 1G22 1V (A )eqs ] 1) 156 4
- B 1 N 5 1 P
<Ol g2 |vas| 2| Vus| 2 + C (IICJE I+ ||A2QS||L2) IG° N 2 2] ;-1 vas] 72, (127)

which, added together, yield the energy inequality

d (1 cn2 e 2 [:3 2 ~ ~e2
pn (g 17z + lac]7-) < C(IIAHWSHiz + [ Vus|7e + il e + 1) (G132 + 1a)3-) (128)

after applications of Young’s inequality. By Gronwall’s inequality, we infer that

1372 + 1) 72 < exp (C(1)) (13°(0) |72 + |a°(0)[72) (129)
where
¢ 1+ € 2 € 2 € 2
C)=C [ (A3 q5() 3 + [Tus(s) e + i ()| 34+ 1) ds (130)
is finite. This gives the uniqueness of the solutions to (85)—(89), completing the proof of Proposition 4]
Now we prove Theorem I}

Proof of Theorem [I} The proof is divided into several steps.

Step 1. Uniform L2 bounds for ¢¢. The L? norm of ¢¢ evolves according to the energy equality
1d € & ¢ €
5 71672 + 1A% T2 + e|Ag°[ 72 =0, (131)

from which we obtain the differential inequality

d € €
g1z +ellalzz <0 (132)

in view of the Poincaré inequality. Multiplying both sides by e“'?, and integrating in time from 0 to ¢, we
infer that

la“()172 < lgo 72" (133)
for all ¢ > 0. Integrating (I31)) in time from O to ¢, we also have the bound
t g € 2 1 2
[ 1A% g ()12 < Slaol (134)

forall ¢ > 0.

Step 2. Uniform L? bounds for u¢. We take the L? inner product of the equation (6] obeyed by u¢ with
u€. Integrating by parts, the nonlinear term (u® - Vu®, u®) 2 and the pressure term (Vp©, u€) 2 vanish due
to the divergence-free property of u¢. We estimate the nonlinear term (¢°V(A™1).q¢, u¢) 2 as in (T08), and
we conclude that the time derivative of the L? norm of ¢ satisfies the differential inequality

d a
Elllflliz +|vulie < Cla[ 7l A 7, (135)

as shown in (T09). In view of the Poincaré inequality cofu®|2, < |Vu¢|2,, we obtain the pointwise in time
bound

€ 2 —min{cy,ca}t 2 2 t < e 2
Ju 12 < e (Juol 3+ Clanle [ IA%q()]3ads) (136)
which yields the decaying in time bound
Jus ()72 < e ™M= (Jug| 72 + Claoll 72 ) (137)
due to the bounds (133)) and (134) derived in Step 1. Integrating (I33) in time, we have
t
[ 1vus()12ds < JuolEz + Claollfz. (138)

forall ¢ > 0.
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Step 3. Uniform L” bounds for ¢¢. For an even integer p > 4, we take the scalar product in L? of the
equation obeyed by ¢¢ with (¢°)?~. The nonlinear term (u‘- V¢, (¢°)?~!) ;2 vanishes. Consequently, we
obtain the differential equation

1d 1 142
a1 @A @ e [ (@A =0 (139)
which gives the differential inequality

d € €
a1 + Coalp-1)l4‘I7, <0 (140)

in view of the Poincaré inequality for the fractional Laplacian in L” and the Cérdoba-Cérdoba inequal-
ity. Therefore, the L” norm of ¢ decays exponentially in time and obeys

. _CQ,Q(P—l)t
lg* () Le < lqollzre 7 (141)
for all ¢ > 0. .
Step 4. Uniform H! bounds for u. The L? norm of A2u¢ evolves according to the energy equality
1d, 1 _
§£IIA5UEH%2 + [ Au)Zz = (=g V(A1) g, Au) 2 = (B(us, ), Auf) 2. (142)
We estimate ) ,
|(B(uf,u), Au®) 2] < Clluf| 2, [Vu| 2] Auf] 7, (143)

as in (I1I), via applications of Ladyzhenskaya’s inequality. Now we choose p € (
continuously embedded in LP, and we let ¢ be the Holder exponent obeying % +
Lemmal I} we have

(=g V(AT )eq", Au) 2] < g o V(AT )eq 1o ]| Auc 2
<Cllq [ pal A5 (A )eq [ g2 Au| 2 < Clg o | AZ g 2] Au| L2 (144)
Putting (142)—(144) together, and applying Young’s inequality for products, we obtain

,4] so that D(A?) is
+% = 1. In view of

ESE LN )

d, 1 a 1
@IIAQUGIIiz + | AuF2 < Cllg 72| AZ ¢ )72 + Cllus| 72 AZus| (145)

where ¢ is the smallest even integer greater than or equal to ¢. Finally, we bound the dissipation from below

by min {c2, w ||A%u6 |2 using the Poincaré inequality co ||A%U6 172 < |Auf|72, multiply both
sides of the resulting differential inequality by the integrating factor
R N AL Ol (146)

integrate in time from O to ¢, and use the time decaying estimate (141) to conclude that

s 209’({(571)}25 C t,, €2 Al €2 _d t -
Abue (2 < & e T O A, (vl + € [ laolalafal3ads).
0
(147)
which reduces to
. 2Cq o (4-1)

Lz, < (e 2SR o2, 4Clal )’ 2 2 2

[AZu(t)]72 <e e\l 2) ([ Vuolzz + Claol7alaol72) (148)

as a consequence of the bounds (134), (137) and (I38). Moreover, the L? norm of Au¢ is square integrable
in time and obeys

t € 2 C 2 C 4 2
[ 14 (5)[ads < C (Juol3a + Jaolla + 1) Ui CUlia)” (jug 3, + Clao s laol3s) (149)

forall ¢ > 0.
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Step 5. Uniform ' bounds for ¢¢. As shown for the Galerkin approximants in (T2, the time derivative
of the L? norm of V¢¢ satisfies the differential inequality

%Hqulliz +AY 27 < Cl AU 2 Ve T (150)
Here we have implicitly used the cancellation law
| uvveve =0 (151)
that holds due to Sobolev H? regularity of ¢¢. From (T50)), we obtain
C1VG s + (e1 ~ ClAT3:) 19712 <0 (152)

after bounding the dissipation from below using the Poincaré inequality. We multiply by the integrating

—_ t € 2 . . . .
factor ¢t~ Jo 14v I72ds integrate in time from O to ¢, and infer that

Vg |32 < [ Vao|32e0e ! (153)

for all t > 0, where Cj is a constant depending only on the initial data and is given explicitly by

2 (ol +Claoll,)’
Co = C (Jluol2: + o]t + 1)7 O it AM0li2)” (19ug |2, + ClaoalaolZ) . (154)

Integrating (I50) in time from O to ¢, we obtain

¢ o« .
[ 1A E G (@) [fads < [Vaol 2 (1+ Coe) (155)
forall ¢ > 0.
Remark 2. Compared to the existence result obtained in [6l] which was proved only for o = 1, Theorem
requires less regularity on the initial data (H'), and yields furthermore exponential decay in time.
5. HIGHER REGULARITY: PROOF OF THEOREMQ]

In this section, we bootstrap the regularity of solutions and show that the charge density ¢ and velocity
u satisfying (81)—(84) decay exponentially in time in all Sobolev spaces and, consequently, in all Holder
spaces.

Theorem [2]is a direct consequence of the following proposition:

Proposition 5. Let € > 0. Fix an integer k > 2. Suppose that qy € D(A*) and ug € D(Ag). Assume there is
a positive constant T'y, depending only on the H*™' norms of the initial data and k such that the bounds

A" g ()72 < The™ (156)
and

t
[ 1A% () s < T (157)

hold for any t > 0. Then there is a positive constant I}, depending only on the H k norms of the initial data
and k and a constant ¢ > 0 depending only on the size of ) and o such that the bounds

k
|AFG (#)[72 + A2 g (1) [ 72 < The™ (158)
and
t kil ¢ 2 /
/O | A" s (s)|2ads < T, (159)
hold for any t > 0.

In order to prove Proposition 5 we need the following commutator and fractional product estimates:
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Proposition 6. Let m > 1 be an integer. Let @ = (i, 1z) € H™ be a two-dimensional vector field and
G € D(A™2) be a scalar function. If m is even and @- vV € D(A™), then it holds that

I[A™, @ 9]dl> < Claf g | A2 ] 2. (160)
If m is odd and @ - V§ € D(A™Y), then it holds that
I[VA™ @ V1l g2 < Cla] et [A™ 2 ] 2. (161)

Here, C'is a positive constant depending only on m and a.

Proof. We present a proof by induction. Suppose m = 2. Let @ = (@y, o) € H® and G € D(A%*2) such that
@-v§ € D(A?). Since A? = —A, the commutator (-A)(%-V§) —@-V(~A)g reduces to (~A)i-V§—2Vii-

VV{, where
vVu-VVq:= ivai V0,4, (162)
i
hence its L2 norm can be bounded as
[(=A)(@-Vq) - u-V(=A)ql 2 < C(|Au|La [Vl e + [VElLa[VVG]Lr) (163)

for any p, q € [1, co] obeying zlJ + % = % Using the Gagliardo-Nirenberg inequalities, and choosing p so that
D(A2) is continuously embedded in LP, we have
[(=A)(@- ) = @-V(-A)ql 2 < Cllal s A% 2] 2, (164)

which gives (T60) for m = 2. Suppose that (T60) holds for an even integer m, any field @ € H™"* and any
scalar ¢ € D(A™"2) with the property @ - VG € D(A™). We show that

IA™2(@-v§) — - VA™2G] 12 < || grmes | A2 G 2 (165)

holds for any field & € H™* and any scalar § € D(A™*2*2) with the property @ - V§ € D(A™*?). Indeed,
the commutator in can be written as

m+2

(-8)" (@99 @ V(-A)"7 g
= (-A)F ((-A)ii- Vi+ii- V(-A)§-2Vii- VV§) —ii- V(-A) 3§
= [(-2)% (-aa-vg) - (-Aw) - v(-2) % g
+[(-0)F (@ V(-A)]) - - V(-A) % (-A)§] - 2(-2) % (V- VVg) - Ad- V(-A) FG,  (166)

and its L2 norm is thus bounded as
me2 m+2
I(=A)" 2 (@-vq) -a-V(-A) 2 q|
< C|AG| gt [A™*2 G| 2 + Clat] grmen [AT 2 AG 12
+C(-A) 2 (Vii- VV§) |12 + Cl AT V(-A) 2 G 12 (167)

in view of the induction hypothesis. Since H™ is a Banach Algebra and D(A™*?2) is continuously embedded
in H™"2, we have

[(=2)% (Va- V)| 2 < C| Vil | VTG
< Ol gma @] ez < Claf gmes [A™*2q] 2 (168)

Putting (167)) and (168) together, we obtain (165). Consequently, (I60) holds for all even integers m. The
proof of is similar. We omit further details.
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Remark 3. The commutator esnmates (160) and (161) are not sharp. Indeed, for any integer m > 1 and

P1,DP2,q1,q2 € (1,00) obeymg oo q11 = plz + (]12 % we can show that
I[A™, @V JQHLz < Cllafwma |qlwm-ren + |lym-r1.0 |G wme1, (169)

holds when m is even, and
A"V, 6 V]G] 2 < C[lalwmar |Glywm-re + @l gm-1.e [ Glwme] (170)

holds when m is odd, by following the induction argument provided above (see for instance (163)) for the
base step). The estimate (160) and (161)) are adapted to the electroconvection system and are used to prove
the C'*° smoothness of solutions.

Proposition 7. Let m > 1 be an integer. Suppose v € D(AmTH), peD(A™), and F € (H™)?. Then it holds
that
n m+1
A= B(v,v)| 2 < Clvfre= | A2 0] 12, (171)
and

|AZP(pF)| 2 < C[|F = |A"pll g2 + [ Fllzrm | pll ] (172)

Proof. By the Helmholtz-Hodge decomposition theorem, the Leray projection of v - Vv can be uniquely
decomposed as

P(v-Vv)=v-Vo+Vr (173)
where 7 solves the Poisson equation
- Ar = V- (v-Vv) (174)
with Neumann homogeneous boundary conditions 2 3, = 0. Having this decomposition in hand, we bound
|A%Z B(v,v)| 12 < C|P(v- V)| gm < Clv- Vol gm + C|Vr| gm (175)

where we used the estimate HA§1~J”L2 < C| 0| gs that holds for any v € D(Ag) and any /3 € R (see [28])).
Since v is divergence-free, we have

lo- V| gm = |V - (v @) grm < Cllo ® v grmer < Clv] oo 0] st (176)

where the last inequality follows from standard integer Sobolev product estimates. Moreover, the elliptic
regularity of the solution to the Poisson equation yields the estimate

|V g < Cllv- Vol gm < Clo @ v] gt < Cllv] e 0] gmor. (177)

m+1

In view of the bound ||v| gm+1 < C|A 2" v||12 (see [28]), we obtain (I71)). The proof of (172) is similar and
will be omitted.

Now we present the proof of Proposition [5}
Proof of Proposition (5| For any arbitrary positive time T, the approximants ¢° and u® belong to the spaces
L*(0, T; D(AF))NL2(0, T; D(A*1)) and L= (0, T; D(A%))nL2(0, T; D(A3 ) respectively, a fact that
can be shown by performing energy estimates on the Galerkin regularized system (I0I)—(102)) and passage
in the weak limit by use of the Banach Alaoglu theorem. We establish decaying in time bounds which do
not depend on e.

We start by showing that the spatial H**! norm of v is finite in time over [0, c0) and obeys

fo [us(8) |2 dt < T (178)

for some positive constant L' depending only on k and the initial data. Indeed, the L% norm of A4 evolves
according to the energy equality
k_ 1
- A§’U,E 2 + A5+5u€ 2
AT+ AR

kE
2

fA2 2 B(u,u) - EASII fA 7% P(¢°V(A™) g ) - A3y, (179)
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We estimate the nonlinear term in u° as follows,
UQ A573 B(uf,uf) - A3 Sucdal < iuA%%ueniz +C A2 Bl u) |3
< IR, + Ol e AR w2 < AR B, + OB, (180)

where the second inequality holds due to the fractional product estimate (171)) and the last inequality follows

from the continuous embedding of D(Ag) in L when k is strictly greater than 1. As for the nonlinear term
in ¢¢, we have

| [ ARV AT Buda] < 115 R+ CJAR PG T (A

E 1 2 k-1 €2 -1 2 2 -1 2
[ A2 20|72 + C (A g N2 V(AT eq I Fe + g 17 [ V(AT eq [ Fen)

IA
N N

k,1 a
< —[AZ U7, + A 2|72 AR g3 (181)

where the second inequality follows from Proposition [/, and the last inequality uses the continuous em-

bedding of D(A'*2) in L® and the uniform boundedness of V(A);! in Sobolev spaces (see Lemma [1).
Collecting the bounds (180) and (I8T), and inserting them in (I79), we obtain the differential inequality

d,  k kol a - E
AP+ AR < CIATT 2 [AM )72 + Ol Az 7, (182)
which reduces to
d koo ko2 L 142 12 ak-1_ €2
g A2 U L2 + (2 - ClAZuT ) [ A2 e < CIAT 2 ¢ [A™ 4L (183)
by making use of the Poincaré inequality. Multiplying both sides by the integrating factor
pmin{erea}t=C ff HA%ue(s)Hist, (184)

integrating in time from O to ¢, using the hypotheses (I56) and (157), and exploiting the square integrability
in time of | A" 2 ¢¢|| ;2 obtained in (T33), we infer that

|AZ ()25 < Ty pe” minterealt (185)
for any ¢ > 0. Integrating (I82) in time from O to ¢, we also conclude that
¢ kil e 2
fo | A3+ 30 (s)|2ads < Tz (186)

for any ¢ > 0. Here I';, ; and I'y, o are positive constants which do not depend on € nor on the time ¢ but only
on the initial data and the order of regularity k. Since 0f2 is smooth, D(AgJ“%) is continuously embedded
in H**1n D(A% ), yielding consequently the desired estimate (T78)).

The evolution of the spatial L2 norm of A¥¢€ is described by the ODE
S IAR G Ta + AR 2 g T2 + €| AF* g 72 = fQA’H(uE Vg ) A g da. (187)

Suppose k is even. Since ¢¢ € D(A**1), we have u¢- Vg¢ € D(A*"1) in view of the equation (85) obeyed by
q¢. From Proposition [2, we conclude that u¢ - V¢¢ € D(A¥). We apply the commutator estimate and
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estimate
‘./Q AP (u - v AR geda| = ’[Q[Ak(uE-qu)—ue‘VAkqe] Argcda
<A L2 [ AR (uf - Vg°) - ut - VARG 12

< CA G po ) i | A2 ) 2

< SN g1, + O B[R (188)
Now suppose that k is odd. Then it holds that u¢ - V¢¢ € D(A¥™1), thus
‘fﬂ L (A ng)Aqugdm‘ = ‘[Q VAR (uf - vge) - VAk_lqﬁd:L“
= ‘[Q [VA]‘C_l(u6 “Vq©) —ut- VVAk_lqe] . VAk_lqedx‘

< CA G| ol prron | A2 g7 2

1 2 € € €
< SIARE g Ta + Cllupnn [A " 72, (189)
in view of the estimate (I61)). This yields the differential inequality
d a
ARG T Te + [AM R ¢ T < Ol nn [A 72, (190)
which implies that
d
allAkqglliz +(e1 = Clu[Fen) |40 72 < 0. (191)

. . : at=C ff |uc)? .., ds
We multiply by the integrating factor e H

and conclude that

, integrate in time from O to ¢, make use of (186),

|AFge () |72 < Ty 3e (192)

for any ¢t > 0. Also here I';, 3 is a positive constant depending only on the initial data and £. We have thus
completed the proof of Theorem 3]

6. GLOBAL ATTRACTOR: PROOF OF THEOREM 3]

In this section, we address the long time dynamics of the forced system (6)—(10). We take the potential
P to be zero for simplicity (see Remark [§]below).
For « € (0, 1], we consider the forced system
oq+u-Vg+A®qg=0
Ou+u-Vu+Vp—Au=-qRqg+ f, (193)
V-u=0
in the presence of smooth time independent divergence-free body forces f in the fluid. The system (193]
is posed on 2 x [0, c0), with homogeneous Dirichlet boundary conditions and initial data qo and ug. We
address the long time behavior of solutions.
We recall the spaces H and V defined respectively in and @ 1) and the solution map
S(t): Ve~V (194)
associated with (193)) and defined by

S(t)(q0,uo) = (q(t), u(?)), (195)
where w(t) := (q(t),u(t)) is the unique solution of (193) with initial datum wy := (qo, up) at time ¢.
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6.1. Existence of an Absorbing Ball. We start by proving the existence of a ball B, compact in H, such
that the image of B, under S(¢) lies in B,, itself for all large times.

Proposition 8. Suppose « € (0,1] and f ¢ D(A%). Then there exists a radius p > 0 depending only on
the H' norm of f and some universal constants such that for each wq = (qo, ug) €V, there exists a time Tj
depending only on |V qo| 12 and | V| 12 and universal constants such that

S(t)wo € By = {(q,u) €V [Va| 2+ [Aul 2 < p} (196)
forallt>1Ty.
In order to prove Proposition (8] we need the following fractional product estimate:

Proposition 9. Let § > 0 be sufficiently small. Let s € ((5 +0). Let p € L nD(A?®). Then there exists a
constant C > 0 depending on s and § such that the followmg fractional product inequality

s=5
|A2" P(pRp)| 12 < ClplL=|A°p| L2 (197)
holds.

Proof. In view of the bound ||A§v||L2 < C||v|| s that holds for any v € D(Ag) and any [ € R (see [28]),
the boundedness of the Leray projector on fractional Sobolev spaces, and the continuous embedding of
D(As*‘s) into H*~° ([13, Proposition 2.1]), we have

s=8 5=
| A2 P(pRp)| 1> < CIP(pRp)| fy:-5 < ClpRp|gys-s < CIA* (pRp)| 2. (198)

We write the Riesz tranform as R = (R, R2), fix i € {1,2}, and use the integral representation to
estimate

IA*°(pRip)[72 = (A*°(pRip), A*°(pRip)) 12
:fQ[Q(P(OC)Rz‘P(HT)—P(Z/)Rip(y))Zsta(x,y)dmdy+[Qp(ac)2Rip(x)QBs,5(gc)dgg
<2 [[ [ (o) = p(w))*Rap(w Ky, )y
+2 [ [ o) (Rip(a) = Rip())*Koos(wy)dady + [ p(@)Rip(x)*Bos(x)da  (199)

where the last bound is obtained by adding and subtracting p(y)R;p(z) followed by an application of the
algebraic inequality (a+b)? < 2(a?+b*). Due to (70). the kernel K,_s is bounded from above by a constant
multiple of |z — y|~(?*2572%)  Thus, the estimate (T99) boils down to

T 2
WSR3 <C [ Riptap [ X o,
+Clplt [f f(Rzp(x)—Rm(y))sz_a(x,y)dxdwfQRiP(ﬂc)QBs—é(x)dx]

x o
< [ rip@? [ PO bty v 1l 10 Ripl 200)

Since s - § € (0, 3), the space D(A*™°) is identified with the usual Sobolev space H*°. Thus, the Riesz
transform of p belongs to D(A*™%) and satisfies the estimate

|A* Rl 12 < C| Rpll s = CIVA™ pl gos < CIAT pl gosin < CIA ] 12 (201)

where the last inequality follows from the continuous embedding of D(A*~°*!) in H*~9*! ([13] Proposition
2.1]). Now we seek good control of the double integral in (200). In fact, an application of Holder inequality



23

yields

fo oty [ IO vy (f [ Roterasas)” ([, [ LDZHDE dy)

2p2 é
< ColBiplZan, ( / / [ () = p(y)| ) 202)

y|2+2p2(1+s 0-1/p2)

for any p1,p2 > 1 obeying pil + p% = 1. We choose p» slightly bigger than 1 so that =1- 5. Due to the
finiteness of the domain size, it holds that

| Ripll 1201 < Cllpll 200 < Callpl 2o (203)

Here we used the boundedness of the Dirichlet Riesz transform R : LP(€2) — LP(2) on bounded domains
with smooth boundaries for any p € (1,00) (see [33] 22, [39]), a fact that was obtained first in [33] for
bounded Lipschitz domains (with restrictions on the values of p) and C'* domains (for any p € (1, c0)) based
on complex interpolation techniques, and later in [39] based on a classical Calderon- Zygmund decomposi-
tion approach. Consequently, we obtain

[Rm( )? f Ip(a;)y|2£>2(sy)2|5 dxdy < Cop|? (fo lo(z) - ply) |::))

o -y
— 2
= Calpli=lol? . g s 04)

_3
2

Due to the continuous embeddings of H* into W53 for sufficiently small 6 and D(A®) into H®, we
infer that

p(x) - p(y s
S oty [ EEEOE bty < €1l -l (205)

Putting together and (203)) gives the des1red product estimate (197).

Now we present the proof of Proposition
Proof of Proposition[8} Fix (go,uo) € V. In view of the first three steps established in the proof of Theorem
[I} and in the presence of body forces in the fluid, we have the following bounds

la(t)[72 < laol72e, (206)

t - B
[ INEa() Badr < o 3ae™, 207)

S
Ju(®)|72 < (luoll72 + Cllaolz2) e + | £172. (208)
t

[ Ivu()Badr < (Tl + Claokiz) ™ + 17132 + 1 f132(2 - 5), (209)

and o

_c(p-1

la() v < |gollre” 7 (210)

for any ¢ > 0, any s € [0,¢], and any even integer p > 4. The constant ¢ depends only on the size of the
domain 2 and the power «. Based on (206)—(210), we deduce the existence of a time ¢y depending on |wy [y
and a radius R depending only on | f]|z2 such that the bound

t+1 a
la@®le + lu@E+ [ (1A% 1F2 + [ Vu(s)32) ds < B 211)

holds for all ¢ > ¢.
Step 1. Velocity H/! bounds. The analogous energy inequality of (T43) in the presence of forces f is
given by

d 1 a 1
allAQUII%z + | Aul7z < ClalZa 1A% al72 + Clul72[ A2 w72 + C| f172 (212)
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where ¢ is some large even integer. In view of (210)), there exists a time ¢; > t( depending on ¢ and |wy |y
such that

lg(t)|ra <1 (213)

for all ¢ > t;. Due to (211), the conditions of the uniform Gronwall Lemma [3] are satisfied. Thus we infer
the existence of a time ¢3 > ¢; depending only on |wq |y such that

t+1
[va()lfe+ [ 18u(s)[Fads < Ry (214)

for all ¢ > to, where R; is a positive constant depending only on the body forces and universal constants.

Step 2. Charge Density 1.°° bounds. There exists a time t3 > to such that A1+%q(t3) is bounded in L?
by some constant depending on |Vqo| 2, |Vuo| 2, and | f| 72, a fact that follows by repeating the energy
calculations obtained in Steps 4 and 5 of Theorem [1|but in the presence of body forces in the fluid. At this
specific time 3, the charge density is L°° n H' regular due to continuous Sobolev embeddings. By making
use of the LP estimates (210), we have

la(t) 2= < lla(ts)] e ") (215)
for all ¢ > t3. From (215)), we deduce the existence of a time ¢4 > t3 such that
la() ]~ <1 (216)

for all t > ¢4.
Step 3. Velocity D(A%+%’5) bounds. Let 6 > 0 be sufficiently small. In view of (214), there exists a
time t5 > t4 such that || Au(t5)| 2 is bounded by some constant depending on |wq |y and f. We study the

evolution of the norm \\A%+%_5u\|iz starting at time ¢5. Indeed, we have
Ld,  1ias 9 1+9-5 112
342 Tl + AT a7

= —fQA%_(SIP’(qRq)-A“%_‘Sudx— fﬂA%_‘SIP’(u-Vu)-A“%_‘Sudx— fﬂA%_‘sf-A“%_‘suda:, (217)
from which we obtain the differential inequality

d l,a_ a_ a_ o _ o _

AT T, 4 [ATE ), < CJATP(gRq) [Tz + C AT P(u- Vu) 7. + CATf[]. (218)

due to Young’s inequality. We bound the nonlinear term in ¢ by using the fractional product estimate (197))

with s = % and obtain
|ATP(¢Rq)[7> < Clg|7=|A% ] (219)

As for the nonlinear term in u, we use the divergence-free condition obeyed by u and estimate
a_ lia_
|ASP(u- V)72 <OV (u@u)|? g0 < Cllul}1igo0s < ClAT 5 w7, (220)

where the second inequality follows from the fact that H 14320 is a Banach Algebra for a sufficiently small

d, and the last inequality uses the continuous embedding of D(A%+%_6) into H'*220 ([28)). Putting

218)—-(220) together gives
d lia a_ lia el a_
prLeci “ulfz + AU Te < AT U)o + Clali< A% g 72 + AT 72 (221)
Since
t+1 l,a_5 9 t+1 9
[ AR ) fads <© [ Au(s) [Fads, (222)

the conditions of the uniform Gronwall Lemma [3] are satisfied for all ¢ > t5 in view of (211), (214), and
(216). Therefore, we deduce the existence of a time ¢¢ > t5 depending on |wy |y, and a radius Ry depending
only on f such that

« t+1 @
AR 3+ [ AT T u(s) [Fads < Ry 223)
t
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for all £ > tg.
Step 4. Velocity gradient P bounds. The velocity u can be represented as

A t A
u(t) = e Ay (r) - [ e (DA (B(u,u) + P(qRq) - f) (s)ds (224)
T
for any ¢ € [7, 00). In view of the Stokes semi-group estimate
|2 0] 1o < C 2 o] o (225)
that holds for p € (1, o0) (see [27, Proposition 1.2]), we have
1 IIU(T) IILP
HA2U||LP <C —— _HB(U ’U,)HLpdS
f = PaRDlds+ [ | flurds. (226)
We estimate
1 p-1
|B(u, u)|zr < Cllu-Vulr < Clluf = [Vul zr < Cluf = Vul 72| Vul 5,
1 -1 p-L 1
< Cluf e |Vul 72 | Vul o < Clul el fo [Vl 72 (227)
via interpolation of LP spaces and use of Sobolev embeddings. Due to Holder’s inequality with exponents
prl and , we obtain

i1
/T = 1B ) lsds (228)

gcst](w<s)i2uu<s>nm+e)( [— (H)pﬂ ) (f ”“”W“ds)7

se(T,t

1 t T 1
<C swp (19wl ) ([ Pelipnds) ™ 0= 229)

se[T,t

As for the nonlinear term in ¢, we have

t
[ =IPanlds <0 sup ()l VE=T (230)

due to the finiteness of the domain size and the boundedness of the Dirichlet Riesz transform on LP spaces.
We obtain the bound

1 lu(T) L ( 5 )(
Azu(t)| e < CYRT2LY | o g Vul? e f +€d) t— )2
|AZu(t)| e — seElTI;] IVl 72w f |ulfpzeeds | = (t-7)%

+C sup ||q(s)||%oo\/t—7'+C’Hf||Lp\/t—7' (231)

se(T,t

for any 7 > 0 and ¢ > 7. Fix a nonnegative integer k > 0. Taking 7 = t¢ + k and t € [t + k + 1,6 + k + 2],
and noting that 1 </t -7 < /2, we have

19 te+k+2 pr1
\|A%u(t)HLp < Cllu(te + k)| g + CR;’+ (fHk Huuﬁpﬁds) " V20 + V20| f e (232)
6

Due to the boundedness of the local in time integral ftzifﬁ ||u||%12+€ds independently of ¢g and k, we infer

the existence of a radius R3 > 0 depending only on the body forces such that

sup |AZu(t)| e < Rs. (233)
te[te+k+1,te+k+2]
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This is true for any integer k > 0, thus
[AZu(t) 1 < Ry 34)
for any ¢ > t; where t7 :=tg + 1.

Step 5. Charge Density H' bounds. The evolution of the L? norm of V¢ described by (T50) does not
satisfy the conditions of the uniform Gronwall Lemma 3|due to the absence of the local in time integrability
fory = | Vg ||%2 Hence Lemma does not apply in this case. In order to show that the L? norm of Vq is
uniformly bounded for large times, independently of the initial data, we need to estimate the nonlinear term
differently. Indeed, |Vq/| 2 obeys the differential inequality

S Ivals + 1A Eqls < [ [vullvgldr. (235)
By the fractional interpolation inequality (79), we have
Vgl 2o < g B2 A5 ] B (236)
By making use of Holder’s inequality with exponents === 2+°‘ ,2+ @, 2+ o, we obtain
1 d 1+Z 2+cx 1+< 24+
S IVal + 1A S a3 < Clvul 2 ) 3 1A ) 237)
which, followed by an application of Young’s inequality with exponents <%= 2+a and 22 reduces to
L9l + N3l < CIval ol (238)
Since |Vu|r» < C”A%UHLP for any p € (1, 00) ([27, Proposition 1.4]), it holds that
t+1 2+a 9
[ 1vu)] e la(s) [ wds < p (239)

for some p depending only on the body forces and the power «, thus the uniform Gronwall Lemma [3] is
applicable and yields the existence of a time tg > t7 depending only on |Vqo| 2, |Vuol 2, and a radius
R4 > 0 depending only on f such that

t+
Va()le+ [ 1A Eq(s)]3ads < Ry (240)

holds for all times ¢ > tg.
Step 6. Velocity 172 bounds. The following energy inequality

d 3 a
%HAUH%? +|A2u]7. < C|Va[72|AT 2 g] 72 + Cl Aul L2 + CV £ (241)
holds and satisfies the conditions of Lemma 3] yielding (196)). This ends the proof of Proposition [§]

Remark 4. As a consequence of Proposition|8| we infer the existence of a positive time T" such that
S(t)B,c B, (242)
forallt>T.

Remark 5. The case of T? with periodic boundary conditions is simpler: for any o € (0,1], there exists
a radius R > 0 depending only on ||V f| 2, such that for each wy = (qo,ug) € V, there exists a time T
depending only on |Vqo| 2 and | Vuo|| 12 and universal constants such that

S(t)wo € B = {(q,u) € Vs [AYF q| g2 + | Auf 12 < R} (243)
forallt >T. Indeed, for any s € [5,1+ 5], the energy equality

S INGZ 4 A5 13 = - [ [N Va) - VA% Aad (44)
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holds and yields

1d a a
5@”“(1”%2 + A2 q| 72 < O Aull 2 |A 2 ] 12 A% 12 (245)

due to standard periodic commutator estimates. An application of Young’s inequality gives the differential
inequality

d s s+< s
1A ql7z + [A**2 )72 < ClAu]7:|Ag] 72 (246)

Choosing s = 5, using 211) and (214), and applying Lemma we obtain good control of both |A% q| 12
and ffrl |A®q|2.ds. Then we take s = «, repeat the same argument, and obtain control of |A®q| 2 and

ft“l ||A37aq||%2 ds. A bootstrapping argument yields the existence of a time Ty depending on |wq|y and a
radius R’ depending only on f such that

o t+1
A Eg(OlF+ [ 1A () Fads < 47)

for all t > Ty. Therefore, we deduce (243) and obtain the absorbing ball Br which is compact in the
strong norm of V. That is not the case on bounded smooth domains with homogeneous Dirichlet boundary
conditions as those periodic commutator estimates break down in the presence of boundaries.

Remark 6. One of the main elements of the proof of Proposition|8|is the boundedness of the velocity gradient
in LP spaces for all p € (2,00). The maximal LP regularity has been studied in the literature for the Stokes
equations (30, 38, 40l and references therein), the Navier-Stokes equations (124} 126, 27, 134, 43| 144] and
references therein), and parabolic evolution equations (|21}, 29]] and references therein) on bounded and
unbounded domains, under various regularity conditions imposed on the boundaries, and equipped with
different types of boundary conditions.

6.2. Continuity Properties of the Solution Map. We investigate the instantaneous continuity of the solu-
tion map S(t) at each fixed positive time ¢.

Proposition 10. Let w9 = (q?,ul), w9 = (¢9,uY) € V. Lett > 0. There exist functions K1(t), Ka(t),

and K3(t), locally uniformly bounded as functions of t > 0, and locally bounded as initial data w?, wg are

varied in V), such that S(t) is Lipschitz continuous in H obeying
|S(t)w? = S(E)ws 3, < K (1) |wi — w33, (248)
S(t) is Lipschitz continuous in V obeying
[S(t)wy = S(t)ws [ < Ka(t)|wh - w3, (249)
and S(t) is Lipschitz continuous from H to V obeying
[S()wf - S(Eyw 3 < Ks(t)|wy - wh 3, (250)
for any 6 > %

Proof. We set (q1,u1) = S(t)(¢),u}) and (g2,u2) = S(t)(¢3,u3). The differences ¢ = ¢; — go and
u = uy — ug obey the system

9a+ AN = —u1 - Vg —u-
{tC_H q=-uy-Vqg-u-Vq, 251)

Owu+ Au = —B(ug,u) — B(u,u2) - P(q1Rq) - P(qRq2).

The following differential inequality
d a
pn (lalZz + lulZ2) + A% gl 22 + | Vul 72

<C (1A S gl + [VualZs + i3 + 1) (lal3 + Jul?) 252)
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holds, as shown in (128). Consequently, the Lipschitz continuity of S(t) in the norm of H, given by (243)),
follows with

t 1+< 2 2 2
i) =exp {0 [ (ISl + 190l + ol + 1) s} (253)

In order to study the Lipschitz continuity of S(¢) in the norm of V, we take the L? inner product of the
first and second equations in (251)) with —Aq and Au respectively, add the resulting energy equalities, and
estimate. We obtain

1d a
5= (Ivale + |vulz) + A5l 2 + [ Aule
< [ [vullvaPde+ [ [vullVarlvaldz + [ ol vulAulde

v [ Jlvuzladdz + [ jorl|RallAuldo+ [ lq] RasllAulda (254)

after integration by parts. By making use of Holder’s inequality, continuous Sobolev embeddings, the bound-
edness of the Riesz transform on L?, and the ellipticity of the Stokes operator, (254) reduces to

1d

537 (ale + [Vulg) + A" 2 )7 + | AulZ,
o a 1 3
< Ol Au] 12 |Val 1A S gl 2 + CllAul 2| Val 2 |A" 2 @2 2 + Clu | [Vl 2, Aul 2,
+ O 9ul 2| Vusl | Aul 2 + Clarl s lal so| Aul 2 + Cllal s laell s Aul 2. (255)

An application of Young’s inequality yields
d a
p (Ival7z + [Vulz2) + [AT 2 q] 72 + | Aul

<O (1ama + |AuslZa + e + lau 3o + A Sl ) (190032 + [Vul?a).  @56)

which gives the desired V-Lipschitz continuity property (249), with

t o
Kot =exp {C [ (18w]3a + |Aus s + furl + oo+ 1A B qolfa)ds). @57
Finally, we prove the Lipschitzianity property (250). We seek a differential inequality of the form
d _ -
S (P1wl}) < CrPlwly + ot vulfa + Z(1) (¢wl}) (258)

for some /3 < 1 and a locally integrable function in time Z(t). Solving (258), integrating (252)) in time from
0 to ¢, and using (248)), we obtain

2wl < Ka(t)|woll3, (259)
where
t1-8 5-1 t t
K1) = C| {5 Kal) + 1~ 1nK1(t)fO Ki(s)ds +1 exp{fo Z(s)ds}. (260)
Indeed, the L? norm of #° |w||3, obeys
d a
= (C1wl) + 1 (IAT 2 gl 72 + | Aulls )

<ot ol + C (|8 |32 + | Aus 2 + 1o + a3 + 1A g 22) (£ })
<5tV vgl2e + 6t [ Vul?e
0 (18w + | A2 + o4 + fan B+ 1A S0l (Plwl})  (26D)
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due to (256). This latter energy inequality is of type (238) provided that we have good control of the term
5t~ Vq|2,. By the interpolation inequality (79), we have

IVal32 < Clql z;" A5 q|Te e (262)

hence
1 a 240 5 1 2
5 ale < Cot IR 15 (1A S5 ) < SOTIAM B gl + Cad S R gl 26
via use of Young’s inequality for sums with exponents 2*7‘1 and QfTO‘ Since ¢ is greater than % (258) holds
with5:1+%—5and
Z(t) = C(IIAW 172 + 1 Auz| 72 + Jurl7a + a7 + HA“Efmlliz), (264)
completing the proof of Proposition

Remark 7. The choice of 0 in (250) results from the need to control the local in time integrals of |Vq ||%2 by
constant multiples of the difference of the initial data in H. However, the energy equality (252) gives such
a boundedness only for fot ||A%q||%2ds. The remedy is interpolation and control by the dissipation of the
energy inequality in hand (261)), which imposes restrictions on the power 0 of the time singularity.

6.3. Injectivity of the Solution Map. We obtain injectivity of the solution map S(t) by adapting the ap-
proach of [[7] to the system (193).

Proposition 11. Let w = (¢1(0),u1(0)),w) = (g2(0),u2(0)) € V. Suppose there exists a time T > 0 such
that S(T)w) = S(T)wY. Then w? = u58.
Proof. The proof is divided into main steps.

Step 1. Time analyticity of solutions. Suppose (qo,ug) € V, and denote the solution of (I93)) at time

™

t by (q(t),u(t)). We complexify all functional spaces and operators, fix an angle 6 € (-7, 5) and take
t = se'® for s > 0. We have

19956 22 + 143 u(se”)]3:]
= L [ase®), ~Ba(56®)) 2 + (use”), Au(se®)) 2]
:( wdq(sew) Aq(sew)) (q(sew) wA (sew))
( (sela) Au(sezg)) (u(seze) elaA (8619))
[ ( (se'?), -Aq(se’ ))L2+ei9(%(sele),Au(sew))LQ] (265)

where Re(z) denotes the real part of a complex number z € C, and (-,-)2 is the complexified L? inner
product. Thus, the evolution of the norm || V¢(se'?) 13, + HA%u(sew) |7, is described by

1 d 2 7 2 7
5 75 LIvatse™) g + 43 u(se”) 2] + cos [[AT 2 q(se™) |1 + | Au(se™)] 1. (266)
= Re [ (u-Vq,~Aq) 12 ~ ¢ (B(u,u), Au) 12 ~ e (P(qRq), Au) 2 + € (f, Au) 2] (267)

We estimate

a 2-a a
|(u-Va,~Aq) 2] < C|Vul, 41Val 21 Val o < ClVul | Aul 3 [Val2|A™ 22

cosf a i i C i ok
<=3 [||A1+2<J(se a)||%2+AU(seg)|i2]+TVU(se Nialvalse®) ., (268

COS



30

cosf

3 3 , C 4
[(B(u,u), Au) 12| < C|Vul 7, | Aul;, < | Au(se®)|3. + WIIW(%ZO)H%, (269)
cosf i C i
|(P(qRq), Au) 2| < | Au(se™) |72 + — |Va(se”) |1, (270)
8 cosf
and
(. Au)z] < <50 Au(se®) |20+ <) 12 @71)
’ =73 L2 cosg 112

using the Holder, Gagliardo-Nirenberg, and Young inequalities, and continuous Sobolev embeddings. Com-
bining (266)—([271), we obtain the differential inequality

d : 1 C : !
T Iatse) 5 + Az u(se™)| 5 | € —— | Vu(se?) |72 Va(se”) s

(cosf) o
C 06 C 0y 4 C 2
+—_— + + — 272
oy Ve + o lVatse )+ 511 1)
from which we conclude that
IVa(se)|72 + | A2u(se) |72 <2[[VaolFa + | Vuol 72 +1] (273)
provided that
C 9 C C C
— + + + <T 274
S(COSGfHL2 cosf (cosf)3 (0050)4;@) 0 @79

Here C is a positive universal constant, and I'g is a positive constant depending only on |wp||y;. Therefore
(g, u) is locally time analytic on the region R consisting of complex times ¢ = se'® obeying (274). Due to
the uniform-in-time boundedness of (g, «) in the norm of V), the time analyticity becomes global.

Step 2. Backward uniqueness. Since S(T)w? = S(T)wS, then S(t)w? = S(t)w) for all times ¢ > T
due to the uniqueness of solutions in V. From the time analyticity property derived in Step 1, we conclude
that S(T )w(l) and S(T )wg coincides for all positive times. Consequently w(l) = wg, ending the proof of
Proposition 1]

6.4. Decay of Volume Elements. Let ¢ be a smooth function defined on open set @ ¢ RV, N > 1, and
taking values in V. Let X; = S(¢)¢(£2). The volume element in 3}, is given by

) )
G (SDB(@)) A-wen 25 (S(1)6(0))| dar . dawy,

where day . . . day is the volume element in RY. The functions

wj = 0 S(t)o(a), i=1,...,N (275)
6041-
solve the linearized system
9y(q,u) + A(q,u) + L(©)(g,u) = 0 (276)
along (q(t),u(t)) :==w(t) = S(t)o(a), where
Alg, u) = (A%q, Au) (277)
and
L(@)(g,u) = (@-Vg+u-vq,B(u,u) + B(a,u) + P(¢Rq + ¢Rq)) . (278)

We address the time evolution of the volume element of the N-dimensional surface ¢(€2) transported by
S(t). For that purpose, we consider the norm

VN (t) = [wi(t) A Awn(t)avy (279)

where w1, ..., wy solves along some @(t) = S(t)@o, and AN H is the N-th exterior product of H with
the following scalar product

(Wl AN AWN;YL A "'/\yN)AN’H = det(wuy])'H
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Proposition 12. There exists a positive time to depending only on |io |y, a positive integer Ny depending
only on || f| 1.2, and a positive constant ¢ depending on «, such that the following decaying estimate

V() < Vi (0)e N "2t (280)
holds for all t >ty and N > Ny.
Proof of Proposition[12} We have
O(wr A Awny)+ (A+ L(@))nv(wr A Awpn) =0, (281)
where
(A+L(@)N=(A+LQ)AIZA- AL+ +T A AIA(A+ L(D)), (282)
7 being the identity operator. Consequently, we obtain the evolution equation
d
EVN + Trace((A+ L(©0))Qn)VN =0 (283)
where () is the orthogonal projection in H onto the space spanned by w1, ...,wy. By Gronwall’s inequal-
ity, we obtain
t
Var(t) < Viy (0) exp {- [0 Trace((A + L(@))QN)ds}. (284)
For each time ¢ > 0, we let ¢; = (14,v;),4=1,..., N, be an orthonormal family of functions in H spanning
the linear span of wy,...,wy. Then, we have
N N
Trace((A+ L(@))@n) = D (Adi, di)r2 + 3 (L(@)di, ¢i) 2. (285)
i=1 i=1
In view of Lemma 2] we obtain the lower estimate
N N
> (Adi, 6i) 2 = 30 [(A"rs,mi) 2 + (Avi,vi) 2] 2y + oo+ py 2 ON'T2 (286)
i=1 i=1
where p1, ..., un are the first V eigenvalues of A. Now we show that
4 1
|Trace(L(w)Qn)| < C (||a;||$, + @l + 1) N + §Trace(AQN). (287)

Indeed, the trace of L(w)Q n can be estimated as follows,

[Trace(L(@)QnN)| = i, Gi) 2

MZ

|(@-Vr;+ ;- V(],TZ)L2|+Z|(B(U2, ) + B(u,v;) + P(r; Rq + qRr;),v;) 2]
=1

.
Il
—_

N

2MwH4Wﬂmwm

i=1

Here the boundedness of the Riesz transform on LP spaces is exploited. In view of the continuous embedding

I/\

Loie * vl val g2 villpa + 7il 22 1G] ol v HL4] : (288)

of D(A%) into L7°= and the Gagliardo-Nirenberg interpolation inequalities, we bound
o 2-a a
lvil L a IValz2llrill | yar < Cloil 2 Voill 5 1Vl 2 Az 2
1 a 1 =
< g 1A% rilie + [Azvil 5 | + C19al 22 il 3. (289)
Applications of Ladyzhenskaya’s interpolation inequality and Young’s inequality give
lvill Ll V@l pzlvill a + 17l L2 @l pavil s

1, 1 _ _
< ZHAWHQLQ +C(Ival7s +lal7s + 1) (lvill 72 + il 72) - (290)
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Putting (288)-(290) together, and using the normalization | ;3. = ||, + |vi|3, = 1, we obtain the
desired estimate (287), from which we infer that
t 1 rt t a
/0 Trace((A+ L(©))Qn)(s)ds > 3 ] Trace(AQnN)ds - CN/O (||a;||$, + @l + 1) ds
0

a1 t 4
> ONt (N5 = (Hw”% v wl + 1)ds). (291)

We apply Proposition [8] and obtain the existence of a time ¢y depending only on @[y and a radius py
depending only on | f| ;2 such that
4
|@1% + @] +1 < py (292)
for all ¢ > ty3. Consequently, it holds that

/OtTrace((A+L(w))QN)(s)ds >CNMY2¢ (293)

for all ¢ > tg, provided that N2 > 2p;. Putting (284) and (293) together, we obtain (280), completing the
proof of Proposition[12]

6.5. Existence of a Finite Dimensional Global Attractor. As a consequence of the connectedness and
compactness of the absorbing ball B, in #, the continuity and injectivity of the solution map S(t), and
the exponential time decay of volume elements, we conclude that the model has a finite-dimensional
global attractor. We refer the reader to [[7, Chapter 14] for a detailed proof of the analogous result for the
two-dimensional forced Navier-Stokes equations.

Remark 8. We note that Propositions|8] and|[I2|hold in the presence of a time independent potential
®. In this latter case, the radius of the absorbing ball depends on the size of the body forces f in the fluid
and the potential ®. This gives Theorem[3]

7. REGULARITY OF THE GLOBAL ATTRACTOR FOR « = 1: PROOF OF THEOREM [4]

In this section, we address the forced electroconvection system (193)), where « is taken to be 1. We
prove the existence of an absorbing ball, compact in the strong norm of V), based on fractional commutator
estimates.

7.1. Commutator Estimates. For 0 < < 1, we denote by C%7 () the Holder space with norm

lglcon = gz + [d]con (294)

where ~ ~
[¢]con =sup M

wey  Jw -yl .

Proposition 13. Let s € (0,1), v € [0,1], and s < . Suppose @ € C%7. The operator [A®,ii] can be
uniquely extended from C§°(S2) to L*(2) such that
[[A%, a]q] 2 < Cla]con [q] 22 (296)
holds for any § € L?.
Proof. The estimate is a particular case of Theorem 2.6 in [11].
Proposition 14. Let s € (0,2) and p € (2,00]. Let G € C$°(S2). Then the estimate
_s—1-2 - —g—
(99 A94@)] < C (1alwiod(2) ™" + (o) d(2)2) (97)
holds for all x € €.
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Proof. Using the integral representation formula (52)) and integrating by parts, we have

VY, A%]q(2)] = c

[0 15 fQ (vxvx—vyvy)HD(x,y,t)d(y)dydt], (298)

which can be bounded as

[VV, A*]q(z)] < e

/0 t% fﬂ(vm + vmvy)HD(%yvt)Q(y)dydt‘

[ fﬂ(vyw+vyvy)HD(a:,y,t)q(y)dydt‘ (299)

+Cs

via a direct application of the triangle inequality. Subtracting and adding (), the latter inequality yields
[VV,A*]g(z)| < Cfowt‘l‘s fglvx(vx +Vy)Hp(z,y,t)||q(y) - q(z)|dydt
+Cl@)] [ THE [ 19a(Va + 9,) oy, 1)l dydt
0 [T [ 19,0+ ) Ho (e, Ollily) - 3(@)ldydt

+ Clg(2)| fow 15 fﬂ IV, (Vo + V, ) Hp (2,9, )|dydt. (300)

In view of the heat kernel estimate (59), we bound
[T [ 19a(Ta ) Ho (o)) - a() dydt

o0 s -2
<Clal g [0 [ o=yl HI9(T0 + ) Ho (o, 0)ldydt

C

< Cla) o3 d(x) (301)

and
fo T3 fﬂ Va(Va + Vo) Hp(z,y, t)ldydt < Cd(x) 2. (302)

By making use of the heat kernel estimate (60)), we estimate

[T [ 19a(Va+ V) Ho e,y Olliy) - d@)dydt < Cla) pazd@) 75 (303

and
fomt—l‘% fQ IV (Va + V) Hp (2,9, £)|dydt < Cd(z) 2. (304)

Putting (300)—([304) together and using the two-dimensional continuous embedding of the Sobolev space
2
W into the Holder space C”"' 77 (Q), we obtain (297), ending the proof of Proposition

Corollary 1. Ler v € (0,1]. Let p € (2, 00) and € > 0 such that
T::2—a—2ae—§—§>0. (305)
b D

4 16

r’ o

. 1,3 1,
Fixue W, " nW, «, and define the numbers py = max {p, &} and rg = max{ } The operator

w-[VV, A%] can be uniquely extended from Cg°(Q2) to T/VO1 PO such that the estimate

la-[vV,A2]d], o < Cllwro |dlwrzo (306)

2+«

holds for any q € VVO1 PO,
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Proof. Fix ¢ € C§°(Q2). In view of Propositionwith s = 5, we have

a-[VV, A%]d(x)l < Cldlwsli(@)ld(x) ™5 + Cla(a)|g(x)ld(z) 5. (307)

Since u € W “ and § € W T , we can apply Hardy’s inequality to control @(-)d(-)~* and G(-)d(-)! a
follows,

Ja()d() ] 1o < IVl g (308
and

4040 o <ClIval (309)

Using Holder’s inequality with exponents —— 3 , 16 , and 16 and the fact that powers of the distance to the
boundary function d(z)~” are space integrable for B €0, 1) we estimate

lagd(-) 2| o < a()dO) 7,16 1O, o 142 ] ge < Clval s |Val, s . (310)
Another application of Hardy’s inequality yields
la()d()H ], 4 <Clval 4 (311)
from which we obtain
_l_a_2 _o_2 _
()5 < 1GOOI 2 1O <0Vl 612
after a direct application of Holder’s inequality with exponents % and wﬁ%. We note that the Holder
a_ 2
exponent r is chosen in such a way that optimizes the value of p for which |d(-) 2 7| 2p < oo.

L @rra)(15e)
Finally, we combine (307), (310) and (312), use the density of C5°(£2) in I/VO1 P "and extend by continuity
to obtain for all G € W, 7.

1,2
Proposition 15. Let s € (0,2), B € [0,1), andp € (2,00]. Let w € W, * be divergence-free and G € C5° ().
Then it holds that

[v.A°)(@ V) (@)
<O (Jul,, 1 3 Vilwiod(a) ™+ i) alwod(@) ™ @) @ld@)2)  G13)
fora.e. x €.

Proof. The pointwise integral representation formula of the commutator [V, A®](% - V§) is given by

(VA(@-99) AV (@ V) @) = e [~ [ (V29 ) Hp(a,y. )9, (@)i(y)dydt, (314)

which, after integration by parts, reduces to

(VA (i 9) AV V) (@) = ¢ [~ F [ (9,9, + 0 H(e,0,0) - (w)i(w)dudt. 313)
Subtracting and adding @(z) and ¢(z) and using the divergence-free condition obeyed by w, we obtain
(VA*(@-vq) - AV (- V) (x)

= e [T [ (94(Va+ V) Hp(w,p.0) - () - (@) (dv) - (=) dyat
“en [T [ (9T V) () - (i) () dyd

+ eqii(z) - [O Ties jQ (Vy (Vo + V) Hp(z,y, 1)) - (@(2)d(x))dydt
= Aj(x) + Ax(z) + As(x). (316)
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In view of the heat kernel estimate (60), we estimate

1@ < Claleors[@ ang [ 177 [ o=y 019,(Vo+ 9,) Hp(a,y, Dldyt
< C[a]co,lfamco,l_%dw) o, 317)
_2
[Aa(@)| < Clu@(@ oz [ t77F [ o =3l 219, (Va + V) Hp oy, 0)ldydt
SCIﬁ(x)\[q]Co,l_%d(x)_s " (318)

and
[As(@)] < Cla@)li@)| [t [ 19,(v2 +v,) Hp(a,y.t)ldydt
< Cla()|g(2)ld() . (319)
Puttmg (B16)-(B19) together and using the continuous embeddings of W% into C%'=% and WP into
o™ P we obtain (313). This finishes the proof of Proposition
Corollary 2. Let a€ (0,1]. Let p € (2,00), € >0, and 3 > 0 such that

r=2-a- 2a6—§—%>0 (320)
p p
and
1 2
B2 % (321)
2 4 p

Fix u e W r m W X3 N W B and define the numbers py = max{p, 13a } and rqg = max{4 16 %} The
operator [V, A2 ]u -V can be uniquely extended from C§°(2) to Wo PO such that the estimate

17, A%)(@- V@), ,a. < Clilwro |l o (322)

L2+a

holds for any q € Wol’po.
Proof. Let G € C5°(€2). In view of (313) with s = 5, we have

[V, A%](@-vg)(2)|

We apply the L= norm. The second and third terms on the right hand side of (323]) are estimated as in
Corollary (1} As for the first term, we use the condition ( which guarantees that ( +0+2 ) (2+a) <1
and infer that this latter power of the distance to the boundary function is integrable. By the density of
C$(2) in VVO1 0 and extension by continuity, we obtain (322).

Proposition 16. Let s € (0,2) and p € (2,00]. Let G € Cg"(Q). Then the estimate
9. A94(@)] < € (|alwasd(x) 5 +[@(@)]d() ") (324
holds for all x € Q.

Proof. Using the integral representation formula (52)) and integrating by parts, we have

(V. ANa@) = | [ [ (04 9,) Hpa,y. Oly)dyde).

(325)
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which, after subtracting and adding G(z), reduces to
(v.Ala@) <€ [T [ (9049, oy O)(y) - i) ldyde
+C|q(z)] /000 173 /Q |(Va + Vy)Hp(z,y,t)|dydt (326)
In view of the heat kernel estimate (58)), we bound
[T [ 1090+ ) b,y D) - d)ldydr

©o s _2
<Clalng [ 177 [ o=yl #1(Ve+ 9, Hp(a,y. Dldyat

< Clalwrsd(a) ™" (327)
and
fo Tie3 fQ (Vo + Vy) Hp(z, y, t)|dydt < Cd(z) ™. (328)
This gives (324).
Corollary 3. Let v € (0,1]. Let p € (2,00) and € > 0 such that
T:ZQ—Q—2a6—§—§>O. (329)
p D

Fix @ L3 1,18 _ 8 _ 4 16
ixu e Whr n W', and define the numbers pg = max{p, ;-5 and ro = max ., .’ . The operator

va- [V, A%] can be uniquely extended from C§°(Q) to I/VO1 PO such that the estimate

||Vﬁ'[V,A%]qNHL i < Clalyro gl (330)

2+a

holds for any q € VVO1 PO,
Proof. Let G € C5°(€2). We apply (324) with s = 5 and obtain

(9. A% i@ < C (Jalwrrd(@) 277 +la(@)ld(@) %) (331)

By Holder and and Hardy inequalities, we have

<Clval, alglwreld(z) 27

e 2H

|va-[v,A=]q] 4 L@ dae

Hval s dG)dO) ™, 5 1407 ] gs

< Clalyyrro1Gllyvo- (332)

This completes the proof of Corollary [3]

7.2. Smoothness of the Global Attractor. In this subsection, we address the regularity of the global at-
tractor.

Proposition 17. Suppose o =1 and f € D(A% ). Then there exists a radius p > 0 depending only on f and
some universal constants such that for each wy = (qo,uo) € V, there exists a time Ty depending only on
[Vaol z2 and |Vuo| 2 and universal constants such that

S(t)wo € By = {(g,u) € V: [AZg| 2 + [ Au| 2 < 5 (333)

forallt > To.
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Proof. There exists a radius R > 0 depending only on the body forces f, such that for any wq € V, there is a
positive time ¢y depending only on the V-norm of wy = (go,ug) such that the solution (g, u) of (193)), with
initial datum wy, obeys

t+1
la®llz=+19a(®) 2+ [Au@®)] 2+ [ [9Au(s)|Fds < B (334)

at any time ¢ > ¢, a fact that follows from the proof of Proposition[§] Moreover, there exists a positive time
3
t1 > to depending only on |wy |y such that for ¢(t1) € D(A2) with a size dependency only on the forces

f, and such that ¢ € L*(t1,T; D(A%) n L2(t1,T; D(A?)) for any T > t;. We seek bounds for the charge
density in those latter Lebesgue spaces, independent of the initial datum but depending only on the size of

the body forces.
The L? norm of A%q evolves according to the energy equality
1d 3 1 1
SolARalE + |Agl: = - [ VA% (u- V) VARqd, (335)

which is equivalent to

oIl +12al7s = - [ [VA2(u-Va) - A3V (u-0)]- VASqdr

2dt
- fQA%v(u -Vq) - VA2 qdz. (336)
We set
1 1 1
A:= fQ [VA§(u -Vq) - A2V (u- Vq)] -VAzqdz (337)
and
1 1
B = fQAiv(u- Vq) - VA2 gda. (338)
We decompose B into a sum of five spatial integrals B, By ,Bs, By, and Bs;, where
By = A(A%(u.vvq)_u.A%VVq)-VA%qu, (339)
By = fﬂu (A2VVq - VVAZq)- VA2 qdz, (340)
1 1 1
Bs = fQ(Aa(Vu-Vq) ~Vu-A2Vgq)- VA2 qdz, (341)
By - fQ (Vi AZVq - Vu-VAZq)- VA gda, (342)
and
1 1

In view of Corollarywith o =1and p = 9, the embedding of D(A%) in L*, and L? interpolation inequali-
ties, we have

A< 9, A2 V)| 3 [A2q] 1 < Ol Al 12|Vl o] Ag 2
< CfAul e ||VQH%2 ||Vq||%1s||A61||L2 < ClAul e ||V(JH%2 ||AQ||;§
< <18l + Claul g val?.. (344)
We note that the very regular dissipation |Agq| ;2 is exploited for the sake of interpolation. We estimate
[Bil < [[A2,u]9Val 2| A%q] 2 < Ol 9ul o~ [TVal 2| A% g

1 1 1 31
<ClAul;,|VAu|;.|Val;.lAq] . < gHAqH%z + C|lAul2 VAU 72 Va7 (345)
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by appealing to Propositionwith § = % By making use of Corollarywith a=1andp=29, we bound
1 3
|[Bo| < u-[AZ,VV]g| 4 [A2q] s < ClAu] 2]Vl o] Agl 2
1 1]
< ClAu| 2| Vel -l Agl > < gllAqllia +ClAul 5[ val 7. (346)
Another application of Proposition[I3] yields
1 3 3 1
B3| < [[[A2, Vu]Va|2|A2q] 12 < C|VAu[ 2|Vl 2 A2 gl 2 < éllAQIlia +C|vAu|Z:|Val7: (347)
after making use of standard Sobolev embedding. By Corollary 3| with & = 1 and p = 9, we have
1 3 1
|Bal < [Vu-[AZ,V]g| 4 [A2q] s < C|Au 2] Ve[ o] Agl 2 < gIIAQIliz +C|Auli%Va|7..  (348)
Finally, we estimate
3 3 1 2 4 2
|Bs| < ClVulpa[A2q] pa[A2q] 2 < S1AqlT2 + ClAulL: [ Vel (349)
via a direct application of Holder’s inequality. Putting (336)—(349) together, we conclude that
d, , 3
T IAZal72 + [AqlTe < C (| Aulzs + | Aule + | Aulpa|VAu]z: ) [Va[7.. (350)

In view of (334), the property (333) holds, ending the proof of Proposition
Now we address the smoothness of the attractor X:

Proposition 18. Let wy €V and f € D(A% ). Suppose there exists a time t > 0 depending on |wol|y, and
a radius Ry, > 0 depending only on | f | g such that the estimate
k L b+l ki 2
[A%q(@®) ]2 + | A="2u(t)] 2 + ft | A2 u(s)|L2ds < Ry, (351)

holds for all t > tg. Moreover, suppose there is a time tj, > tg such that the L? norm of AF*3 q(tx) is bounded
by some constant depending only on | f|| gx and |wo|y. Then there exists a time t},, > 0 depending on
|wolv, and a radius Ry.1 > 0 depending only on | f|| gr+1 such that the estimate

k+3

& t+1 ~
A g(0) 2 + 4B @) gz + [ A u(s) Fads < B (352)

holds for all t > 52. Moreover; there is a time ty.1 > 52 such that the L? norm 0fAk+%q(tk+1) is bounded by
some constant depending only on || f || ye+1 and ||wol|y.

Proof. The L? norm of A’”%q evolves according to the energy equality
1d 1 1 1
Sl EglF + A4 glF = - [ AP (u- vg)A™ S gda. (353)
2dt Q
We let
1
N = fQ A2 (u- Vq)AkJ'%qda: (354)
and we distinguish three different cases: k =1, k > 2 even, and k > 3 odd.
If k = 1, the equality (353) reduces to

d, .3
T IAZal72 + [AqlTz < C (|Aulzz + | Aule + | AulL2|VAulz: ) [Va[7:, (355)
as shown in (350).

Now we fix an even integer & > 2 and decompose the nonlinear term A as a sum

N=N1 +N2, (356)
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where

N, = fQ AR [AF(u- V) - u- VARG AF*3 gz (357)
and

1 1
N = fﬂ A% [u- VARG AR gda (358)
We estimate the term N}
1
AT < [A*(u-Vg) —u- VAFq| 2| A g p2 < Clluf ot [A* 2 q] 2| A" g 2

< Ol s |IAFa A gl < = IAF g3, + Cluln [A%g]3, (359)
by appealing to Proposition [6] Due to the incompressibility of the fluid, we can decompose N> as the sum
No=Noq+Noo (360)
where
Noj = /Q [A% (u- VAkq) —u- A%VAkq] Ak+%qd:c (361)
and
Nag = fQu [A%vAkq - VA%A’“q] AF*3 gda. (362)
In view of the commutator estimate [[12, Theorem (2.2)], the following pointwise commutator estimate
(A2, 94 < Cd(2) =79 lo (363)

holds for any ¢ € C§°(2), thus the operator u - [V, A%] extends from C¢° to L? such that the estimate

[u- (A2, 9] 4 < Clud() s ()25 g G20 < C|Vulpisoldl o < ClAu| 20 (364)
holds for any ¢ € L? due to Hardy’s inequality. As a consequence, the term N3 5 can be bounded as follows,
[Nao| < Cllu-[AZ, vIAfgl 4 |A%*Z g1 < Ol Aull 2| ARq ] 1o | A¥ ]| 2
< O Aul 2 |A¥ql 5, A% ] 5. 1A gl 2 < Ol Aul 2 [ AFql 3, 1A% g 5,
< 1A, + O Al Akl (365)
We estimate N3 5
[Na| < ITAZ, u]VAFq] 2 [AF*2 g 12
< O Vul| = [VA gl 2| A" 2 q] 2
< OVl 2| A g 2, AR,
< AR g1 + Ol Aulda Akl (366)
by making use of Proposition[I3] Therefore, the energy equality (353) yields
%IIA’“%qH% + A5 g13, < O (JAulll + | A ulfs) |A%g[3. (367)
As for the last case, we fix an odd integer k > 3, rewrite N as
N = fQ VAZAR (4 vq) - VAR 2qdx, (368)
and decompose it into the sum of two terms

N =N+ /Ny (369)
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where
Ni= [ AR [N (u- 9g) - u- VAFg]- VAR Fqda, (370)
and
/\72=vaA%(u-VA’“‘lq)-VA’“-%qu. (371)

The term N has the same structure as the nonlinear term on the right-hand side of (333) with ¢ replaced by
A¥1g, thus it bounds as

N < %”AMI(JH%2 +C (|Aul % + |Aul 7z + [ Aulf2 [ VAu]T2) [A%q]7-. (372)
As for the term N 1, We can rewrite it as
N = [Q v [Ak_l(u “Vq)-u- VAk_lq] VA qdz (373)
after integrating by parts several times, and then we decompose it as a sum
Ni=Nig+Nio (374)
where
Nig = /Q [Ak%V(u- vq)—u- VA'“qu] - VAFqdz (375)
and
Nip= [ [u-VA'9g - v(u- VA 1 g)] - VA qda. (376)

The decomposition above uses the fact that vV and A*~! commutes when & is odd. By expanding V(-
vAF1g), the term A7 5 reduces to

Nig=- fﬂ [Vu- VA" q]- VA qdz (377)
and is bounded by
W12

In view of the commutator estimate (I61)), we estimate
Wil < IIVA* u- Vgl 12| VA ] 12

1
< Clull gt |A* 2 g 2 | A* g 2

1
< C|Vul = A%q] 12| A** g 12 < 1—6\\1\'“1(1\\%2 +C|vAul72 A% 7. (378)

1 251
< oA gl g + ClA™ w2 ARl e, (379)
where the last bound follows from interpolation and Young’s inequality. Therefore, the energy inequality
d 1 k+1
AT + [A gl < O [JATF ul s + VAUl L + | Aul 8] A% (380)

holds when k > 3 is odd. In all three cases, and due to the assumption (351) and the Gronwall Lemma[3] we
obtain a time T}, ; > tg depending on the size of the initial datum in V, and a radius pj, ; > 0 depending only
on f such that the estimate

/\k:-%—l b+l Ak+1 2 d
AT =2q@)]2+ | AT a(s)lz2ds < pra (381)

holds for all ¢ > T}, ;. From (381)), we infer the existence of a time T}, 5 > T} 1 such that the L? norm of
A**1g(T}.2) is bounded by some constant depending only on || f || ;+ and |wo]y.

The L? norm of A**1q obeys

d 3 k
1A a7 + AT 2 q] e < Ol AT ul T [AM g7, (382)
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as shown in (I90). By using the assumption (351) and applying the uniform Gronwall Lemma 3] we obtain
atime T} 3 > T}, o depending only on f and |wp|y, and a radius py 2 > 0 depending only on f such that the
estimate

t+1 3
IS g(0) e+ [ 143 g(s) Fads < pr (383)

holds for all ¢ > T}, 3. As for the L? norm of Agﬂu, we have
d B2 ky3 o2 k+1 4 ki1 4 Lp)
1A e + A2 2 ul, <OJA™ g2 + ClA2 ]2 + Ol A2 £l 72 (384)

as shown in (I82). A use of (351) and (383) shows that the assumptions of the Gronwall Lemma [3] are
satisfied and consequently, we obtain a time T}, 4 > T}, 3 depending only on |wply, and a radius py 3 > 0
depending only on f such that

k t+1 k+3
|45 u@lpz+ [ 1A (o) Fads < prg (385)

holds for all ¢ > T}, 4. Going back to (383), we infer the existence of a time T}, 5 > T}, 4 such that the L? norm
of Am%q(Tk,g)) is bounded uniformly in f and |wgly. We have thus completed the proof of Proposition

We end this section by the proof of Theorem [4 B

Proof of Theorem@ The existence of the global attractor X is based on the compactness of the absorbing
ball B; in the strong norm of V' (Proposition[T7)), the continuity of the solution map (Proposition|[I0) and the
injectivity of the solution map (Proposition [L1)). The finite fractal dimensionality in V' is a consequence the
decay of volume elements (Proposition and the Lipschitz continuity property (250). The smoothness of
the attractor follows from Proposition

8. GLOBAL GEVREY REGULARITY IN THE PERIODIC CASE: PROOF OF THEOREM [3]

The proof of Theorem [3]is based on the method of [25]], adapted for fractional dissipation.
We need the following propositions:

Proposition 19. Let 7 > 0 and m > 2. Suppose w € D(e™* A2+ and q e D(e™ * AZ*2). There exists a
positive constant C depending only on m and o such that the following estimate

(€™ A5 (u-vg),e™ % A% q) 1]

<Ol AE e A glps (1 AR gl e e AR Egl) G86)
holds.
Proof. Let
u= Y ue’?, (387)
jeZ2~{0}
and
q= ) g’ (388)
jeZ2~{0}
be the Fourier series expansions of u and ¢ respectively. Denoting e™ * u an ¢™ % ¢ by u* and ¢*, we have
w= 3 u;eijw,u]*. = eTU‘juj, (389)
jeZ2~{0}
and
¢'= Y qelTg =y (390)

jez2~{0}
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In view of the divergence-free condition V - u = 0, the L? cancellation
(u-ve AZ g, e AT g) 0 = 0 391)
holds, hence
(€™ A% (u-vg), e AT g) 2l = |(N AT (u-Vg) —u-ve N AT ¢, M AT )

> (7 e kT eI e (u - k) gra
Jj+k+1=0

= (2m)? : (392)

Applying the mean value theorem to the function f(z) = zze™?
%x%_le”ﬂ + %Tam%

, whose derivative is given by f'(z) =

(o] _ & .
+*371e™ 2 we bound the difference

m & 1 m [e] &
< [%M?‘leﬂvﬁ +§7'04M2+2_167M7:|Hk:]—|l|] (393)
for any m > 2, where M := max {|k|,|l|} . Consequently, we bound the sum (392) by

(€™ A2 (u-vg),e™ A% q)

m & ]_ m |, « a m a
<o) 3 [GarE et groart et - e oMo

j+k+1=0 2
<en? 3 |Gt Sraar A |Ee g adal. 099
j+k+1=0 2

where the last inequality uses the relation j + k + [ = 0, that implies the inequality ||k| — |I|| < |j]. We split
this latter series into the sum S + .59 + S3 + Sy, where

Si=2m'm Y MR e fug kgl lai, (395)
J+k+1=0,)l|<|k]

Sp=2r’m Yy M2 M e |kl grlla, (396)
J+k+1=0,]k|<|l|

Sy=2m’ar 3 MEETMEGT M gk gxlal, (397)
J+k+1=0,)l|<|k|

and

Sy=2r%ar Y MEPEeMET e fu 1Kl gl (398)

J+k+1=0,]k|<||

In view of Holder, Young, and Plancherel inequalities, we estimate the sum S as follows,
Sv=2mm Y kT e gl
J+k+1=0,|l|<|k|

2 . m m.o
<2mm >0 |jllugllkl gl = a7
J+k+1=0

< Clllillusller z2< o IF1 2 laglle2 z2~ o 12 la ez (22~ 03
< O ul 2 |e™ 2 A g7 (399)
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for any € > 0. In order to bound the sum Sy, we use the relations |I|2 < |k|2 +[j|2 and |I|2 < 2% (|k:|% + |j|%)
and obtain

m g m b
Sp=2mPm 30 ET G e k] gl
J+k+1=0,|k|<|l|
<2 h2m S | (KF 4 11F ) 0l llar|
J+k+1=0

< Cljlles ex za oy 11KV 2 Ik ez oy 112 1ai 2 220
+ C3I= e ez gz oy i ler zogory N L7 222 4oy
< Cle™ A%eu] 2] AT g2,
+ O™ AE ) o™ A% g 2™ AL (400)

for any € > 0. In the same manner, we estimate

Sy=2m’ar > R[TTE 0 E e el gullal
J+k+1=0,)l|<|k]
<2m’ar Y Ljllugllkl 2 (g0 g7 |
J+k+1=0
< CT| A% u 2| €M AT g o e AT 2 g 1 (401)
for any € > 0, and
Sp=2rar Y IR e €M gk lgx |
J+k+1=0,]k|<||
. m gm m, o
<Cr Y Ll (IR1% +151% ) 1% % g llagllaf |
J+k+1=0

<Ol A% eu) e AT gl e E AT g 2
£ Orlem™ AT o | AT N AT g 2 (402)
for any € > 0. Adding (399)-(@02) and choosing m > 2, we infer that
A% (v, e A% ol < O (1A% Ml + |7 AE T ) e A% g
+ O (A% ul e+ [ A% Tl ) et A% gl A% g, 403)
finishing the proof of Proposition 19}

Proposition 20. Let 7 > 0 and m > 2. Suppose v € D(e™? AT*2) and q € D(e™ > A% ). There exists a
positive constant C depending only on m such that the following estimate

(€™ AE (qRg), e A% ) o] < O™ AE 2] e AR g3, (404)
holds.

Proof. We set u, ¢, u* and ¢* as in (387)—~(390). The Fourier series expansion of Rq = VA™!q is given by

Rg= Y z‘i.qje“*’”. (405)
sz~ oyl
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Thus, we have

(e AT (qRg), ™ AR ) o] = [(2m)%0 Y ™M g (ur )KL g
J+k+1=0

<C ¥ ERORE +15)flgglla; |
J+k+1=0

< Clg; e zogop NIEI 7 laillez 22 op 2 2 1f Nl 2z oy
TA%

<COle”™ " A gl 2™ A% gl 2|7 AT Pu] 2 (406)

for any € > 0. Therefore, we obtain (404) provided that m > 2.

Proposition 21. Let 7 > 0 and m > 2. Suppose u € D(e™? A'2*?). There exists a positive constant C
depending only on m such that the following estimate

(™7 A2 v, ™ AT ) | < Ofle™ 7 AT 20 2 e™ 7 AT 2, (407)
holds.
Proof. Setting v and »* as in (387) and (389) respectively, we estimate

|(67A7A%+1u ) Vu,eTA? A%+1U)L2| _ Z e27ll2 |l|m+2[(uj k)ug] -

J+k+1=0
m m gm
<C Y UEZ(RE IE ) kol g |
j+k+1=0
< CIAY w2 A w2 |AS Ut o + CIAT w2 AT w2 | AT P02 (408)

for any € > 0, yielding (407).
We end this section by proving Theorem [5}
Proof of Theorem 5| The proof is divided into two main steps:

Step 1. Local Gevrey Regularity. We take the scalar product in D(e” A2 of the equation (8T) obeyed
by the charge density ¢ with A" g. We obtain the energy equality
1d g, m g m,a g, m,a
SO AT G2, ()] O A S 2, 4 | ON AT g2,
= (TN AT (u-vg), T DA AT g) s, (409)

We estimate the nonlinear term by making use of Proposition[I9] Young’s inequality, and the boundedness
of 7 by 1, yielding

("M% A (u-vq),e™ DA A% ) 1o
]_ @ m, o 3 m & m 2 m
<1 NT g 4 0 (1 AT N AT ) AT )

Since 7/(t) < §, we obtain the differential inequality

d g, m F m.a
R R RGN T
< C’(HeT”A%”uH%Q N HeT”A%“uHLg) [N A% )2, @11

Now we take the scalar product in D(eT(t)A% ) of the equation (82)) obeyed by the velocity u with A™*2x.
Due to the divergence-free condition obeyed by u, we have the cancellation

(eT®OAT g TOAT gme2y ) (412)



45

T(AZT A B4l

Hence the L2 norm of e u evolves according to

1 S m L m,a L m
5%Heﬂ-(t)A2 A7+1uH2L2 _ T/(t)HeT(t)AZ A7+Z+IUH%Q + HeT(t)AZ A7+2UH%2
- _(eT(t)A7 A%+1(u . vu)’eT(t)AT A%_HU)LZ _ (eT(t)A7 A%+1(QRQ),€T(t)A7 A%+1U)L2. (413)

In view of Propositions [20] and [21] followed by applications of Young’s inequality for products, we obtain
the differential inequality

d a a a a
o |eT®A> A2, + |eT A A2 2y, < Clem A2 A2 s + Cllem A2 A2q|f.. (414)
We add (411)) and (414). Setting
y(t) = [e" O AZ ()72 + |7 DN AT () |7, (415)
we have
y'(t) < Cy(t)* (416)
for all ¢ > 0. where Dividing both sides by y(¢)? and integrating in time from 0 to ¢, we obtain
1 1 1
——2>——-Ct>—— 417)
y() ~ y(0) 2y(0)
provided that
t< :=Tp. 418
2Cy(0) =10 (418)
Therefore,
H (A% AL 2 (A% AL 2 AZ o2 AZ+ 0012
€ g2 + e 2 u(®)]72 < 2[A= qofl 72 + 2[ A= uo |7 (419)

forall ¢ € [0, Tp].

Step 2. Extension of the local analyticity property. For a fixed real number m > 2, we prove that the
charge density ¢ is bounded in L (0, oo, H 2 (T?)) and the velocity v in bounded in L (0, oo, Hz *1(T?)),
from which we can conclude that the Gevrey regularity propagates from the short time interval (0, 7p)
into (0, o). For that objective, we show that

[A% q(0)]72 + 1A% u(®) 72 < CUIAZ qof 2, |AZ w0 p2)e ™ (420)

for all ¢ > 0. Indeed, the norm ||A%CI||%2 + HA%”uH%Q obeys

| &

m m mto m
(1A% a2 + A% )2 ] + |A™5 g2, + A% )2,

N |
QU

t
= —(A% (u-vq), A% q) 2 - (A% (qRq), A% *2u) 2 — (AT (u- V), AS1u) . (421)

We estimate
(A (u-Vq),A? q)2| = [(A% (u-Vg) —u- VA2 ¢, A% q) 2|
<C[IVulr=|AZ g2 + |AFul 4 |Val o [ IAZ g]12

<C[|VAUl2[A% gl g2+ A% 2| AT 2 q] 2 | [AF g 1

«a

1, m m
< I Pulge + C[IA 2 qlg + [VAulZ: [ A% ], (422)
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(A% (qRq), A% ?u) 2| < [AZ*2u 12 |A (qRq)| 12
< CIAE2ul 1 [IA% gl ol Ral = + |RAR gl 2l -]
<CIAT ul 12| A% g2 |A" 2 g 12
< SIAE 2l + CIAV EglR A% ol (423)
and
[(AZ (- V), A% ) o] = (A2 (u- V) —u- VA2 T, A2 ) o]
< 17Ul A E 0l < LA 20, 4 O]9 AufZ A5 w2, o
by making use of the continuous Sobolev embeddings H % (T2) ¢ L7 (T2), H(T2) c La(T?), and
H1(T?) ¢ L*=(T?) that hold for any ¢ > 0, the boundedness of the Riesz transform on Sobolev spaces,

periodic fractional product and commutator estimates [[15, Appendix A], and Young’s inequality for prod-
ucts. Putting (421)—({@24) together, we obtain the energy inequality

m m

d m m o m m
ATl + [AT ule | <O 1vAule + A Sl ] [IAT gl fe + [AT ulfa]. @29)
Since
[ [1A B a1 + 19Au(s)13:] ds < CUI Ao |12, [A%uo ] 12) (426)

holds for all £ > 0 (see Theorems [1|and , we conclude that (g, u) satisfies (420). We have thus finished the
proof of Step 2, completing the proof of Theorem [3]

APPENDIX A. SPECTRAL LEMMA

We present a lemma describing the asymptotic behavior of eigenvalues associated with a vector-valued
operator:

Lemma 2. Let H be a Hilbert space. Suppose A; and Ay are operators defined on D(A;) c H and
D(Asg) c H respectively
A :D(A))cHw~ H, (427)
Ay:D(Ay) c H — H, (428)

such that Ay and As are strictly positive and injective, with compact inverses, A7 and A3", in H. Let A be
the operator defined on D(A1) x D(As) by

A(al,ag) = (Alal,Agag). (429)

Then A, A; and As have unbounded increasing sequences of eigenvalues, {11; };Zl, {)\jl };i ) and {AJQ};) 1
respectively, such that
00 1\ *° 2\
{:uj}j=1 = {)‘j }j:l v {)\j}jz]_ : (430)

If>\]1- > 15 and )\32 > 17 for all nonnegative integers j, then

. min{er, e} mings,8)
W2 oty -

for all integers j > 0. Consequently, the sum of the first N eigenvalues of A obeys
g + -+ 2 Cp, g, min {ey, ¢} N1 min{onf2) (432)

for some positive constants Cg, g, depending only (31 and [3.
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Proof. The operators A7! and A;! are self-adjoint, injective, and compact, with ranges D( A1) and D(Az)
respectively. By the spectral theory for Hilbert spaces, there are orthonormal bases of H, {fjl };Z ) and

{5]2- };i L consisting of eigenfunctions of the operators A and As respectively, such that

A& = \jgj, (433)
AsE5 = g5, (434)
with 0 < AT S Ay < S A <AL <-- > o0and 0 < AT S A3 < - < AP < A2 <o - oo. The

operator A~1is also self-adjoint, injective, and compact in H x H, so there is an orthonormal basis of H x H
. . . oo 1
consisting of eigenvectors {¢; } o1 of A, such that

Agj = g5, (435)

with 0 < p1 < po < ++- < pj < pjeq < -+- — oo. The eigenvalues of A are precisely the collection of
eigenvalues of A; and As, counted with multiplicity. For NV > 1, we have

{pivi=1,... . N}={N:i=1,...j}u{\:i=1,... .k} (436)
for some nonnegative integers j and k obeying N = j+k. If ux = AL, then puy > 157 and py > )\% > cok2.
Ifuy= )\i, then iy > cszQ and py > )\; > cljﬁl. Thus, we infer that

_1 1 g, C2y8 1 min{B1,82) , pmin{B1,5)
,U,N—i,uN+§,uNZEj +?k Zémln{cl,CQ}[] +k ]

min {cy, 2} G+ k)min{ﬁlﬁz} _ min {cy, 2}
= 91+min{B;,82} 21+min{p1,82}

As a consequence of these latter lower bounds, we obtain (432)). This ends the proof of Lemmal[2]

Nmin{ifa}, (437)

APPENDIX B. UNIFORM GRONWALL LEMMA
We present a Gronwall Lemma that will be used to study the time asymptotic behavior of solutions.

Lemma 3. Let y(t) be a nonnegative function of time t that solves the differential inequality

d
ay+cy£ C1+CyF, +C’3F2y", (438)

where ¢ > 0 is a positive real number, C1,Cy and C'3 are nonnegative real numbers, n is a nonnegative
integer, and I and F5 are nonegative functions of time t. Suppose there exist a time ty and a positive
number R such that y(to) < oo and, for any t > to, it holds that

t+1
f Fi(s)ds<R (439)
t
ing =0, and
t+1
[ [Fl(s) + Fg(s)yn_l(s) + y(s)] ds <R (440)
t

ifCs+#0andn > 1. Then

y(t) < (c7'C1 +2CHR + 2R) 23 F (441)

for all timest >ty + 1.

Proof. We distinguish two cases: C3 # 0, n > 1 and C3 = 0. In the first case, we fix two times s and ¢ such

that to < s < t. We multiply both sides of the inequality (@38) by e/~ S Py ()T g integrate in time
from s to ¢t. We obtain the bound

y(1) < (y(s) . % o [ ' Fl(T)dT) exp {03 A ! F2(T)y"1(7)df} . (442)
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In view of (#40), we have
to+k+1
f y(r)dr <R (443)
t

0+k
for any nonnegative integer k > 0. Thus, for each integer k > 0, there exists a time #j, € [t + k,to + k + 1]
such that
y(t) < 2R. (444)

We note that the distance between two consecutive times 7, and ;.1 does not exceed two. By making use
of (@#40), we infer that

w0 < (4 + L ca [ Binar)esn e [ B ear)

t
< (2R L, 2023) (2C3R (445)
C

for any ¢ € [{1, 11 ]. Therefore, (@43)) holds on the time interval [g, o), yielding the desired bound (@4T]).
In the case where C3 vanishes, the estimate (441)) holds as a consequence of [1, Lemma 1].
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