Ocean Acidification pub by Erin Graham accepted

Link

“Species-specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification” by Erin R. Graham and Robert W. Sanders is accepted for publication in Marine Ecology.

ABSTRACT: Increasing sea surface temperatures and ocean acidification (OA) are impacting physiological processes in a variety of marine organisms. Many sea anemones, corals, and jellies in the phylum Cnidaria, form endosymbiotic relationships with the dinoflagellate Symbiodinium spp., which supplies the hosts with fixed carbon from photosynthesis. Much work has focused on the generally negative effects of rising temperature and OA on calcification in Symbiodinium-coral symbioses, but has not directly measured symbiont photosynthesis in hospite or fixed carbon translocation from symbiont to host. Symbiodinium species or types vary in their environmental tolerance and photosynthetic capacity, therefore, primary production in symbiotic associations is directly related to symbiont type. However, symbiont type has not been identified in a large portion of Symbiodinium-cnidarian studies. Future climate conditions and OA may favor non-calcifying, soft-bodied cnidarians, including zoanthids, over coral species. Here we show that two zoanthid species, Palythoa sp. and Zoanthus sp., harboring different symbiont types (C1 and A4), had very different responses to increased temperature and increased pCO2/low pH. Thermal stress did not affect carbon fixation or fixed carbon translocation in the Zoanthus sp./A4 association, and high pCO2/low pH increased carbon fixation. In contrast, both thermal stress and high pCO2/low pH greatly inhibited carbon fixation in the Palythoa sp./C1 association. However, the combined treatment of high temperature and high pCO2 increased carbon fixation relative to the treatment of high temperature alone. Our observations support the growing body of evidence that demonstrates that the response of symbiotic cnidarians to thermal stress and OA must be considered on a host-specific and symbiont-specific basis. In addition, we show that the effects of increased temperature and pCO2 on photosynthesis may change when these two stressors are combined. Understanding how carbon fixation and translocation varies among different host-symbiont combinations is critical to predicting which Symbiodinium associations may persist in warm, acidified oceans.

Zaid awarded his Ph.D.

Link

Zaid McKie-Krisberg successfully defended his Ph.D. dissertation, entitled “Phagotrophy in Photosynthetic Eukaryotic Microbes from Polar Environments” on 20 November 2014. Congratulations, Zaid.

Grier Sellers publishes paper and completes his Ph.D.

Link

Grier graduated in August and had one of the chapters of his dissertation accepted for publication in Journal of Phycology. Here’s the link.

Abstract

The peridinin-containing plastid found in most photosynthetic dinoflagellates is thought to have been replaced in a few lineages by plastids of chlorophyte, diatom, or haptophyte origin. Other distinct lineages of phagotrophic dinoflagellates retain functional plastids obtained from algal prey for different durations and with varying source species specificity. 18S rRNA gene sequence analyses have placed a novel gymnodinoid dinoflagellate isolated from the Ross Sea (RSD) in the Kareniaceae, a family of dinoflagellates with permanent plastids of haptophyte origin. In contrast to other species in this family, the RSD contains kleptoplastids sequestered from its prey, Phaeocystis antarctica. Culture experiments were employed to determine whether the RSD fed selectively on P. antarctica when offered in combination with another polar haptophyte or cryptophyte species, and whether the RSD, isolated from its prey and starved, would take up plastids from P. antarctica or from other polar haptophyte or cryptophyte species. Evidence was obtained for selective feeding on P. antarctica, plastid uptake from P. antarctica, and increased RSD growth in the presence of P. antarctica. The presence of a peduncle-like structure in the RSD suggests that kleptoplasts are obtained by myzocytosis. RSD cells incubated without P. antarctica were capable of survival for at least 29.5 months. This remarkable longevity of the RSD’s kleptoplasts and its species specificity for prey and plastid source is consistent with its prolonged co-evolution with P. antarctica. It may also reflect the presence of a plastid protein import mechanism and genes transferred to the dinokaryon from a lost permanent haptophyte plastid.

New faces in the lab

Link

Several undergraduate researchers started working in the lab during the summer and fall. Tiffany Nguyen and Lydia Adnane were supported as Presidential Scholars, and Brian Smith and Jessica Wyatt with Undergraduate Research Awards.

Gulf of Mexico Voyage

Link

Bob Sanders joined Erik Cordes and his team aboard the R/V Atlantis for a voyage in the Gulf of Mexico during April & May. Erik’s research group used the manned submersible Alvin to investigate effects of ocean acidification and oil on cold-water (and typically deep-sea) corals. The team also includes Rob Kulathinal, co-PI on the grant funding the research, several Temple graduate students, and collaborators from Penn State and Haverford College. Pictures and updates from the cruise can be found by searching for “Acid Horizon.”  Link to the facebook page.

Kyle Gilroy has paper published

Link

Kyle, a graduate student in Engineering, designed a project in Biology 5436 (Freshwater Ecology) that was expanded to result in a recently published paper:  Gilroy, K.D., S. Neretina and R.W. Sanders. 2014. Behavior of gold nanoparticles in an experimental algal-zooplankton food chain. Journal of Nanoparticle Research 16:2414. Link

Abstract

The release of engineered nanomaterials offers a significant concern due to their unexpected behavior in biological systems. In order to establish the level of threat from releasing nanomaterials into ecosystems, simplified food webs are an effective method to determine toxicity and bioassessment. A study is presented examining the behavior of citrate-capped gold nanoparticles (AuNPs) introduced into a model food chain consisting of a phytoplankton food (Ankistrodesmus falcatus) and a zooplankton grazer (Daphnia magna). UV–Vis spectroscopy is used to monitor the behavior of AuNPs in the presence of algae (Ankistrodesmus) and Daphnia over the span of 5 days. Transmission electron microscopy shows the attachment of gold aggregates to the surface of the Ankistrodesmus. Bright field microscopy shows significant accumulation of AuNPs in the gut of Daphnia via uptake of contaminated Ankistrodesmus and directly from water. No toxicity was evident for Daphnia exposed to AuNPs at the concentration used (880 µg L−1).

Zaid McKie-Krisberg published in ISME Journal

Link

Zaid’s paper “Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans” (McKie-Krisberg, Z.M. and R.W. Sanders) is now on line at ISME Journal (Nature Publishing Group). Here’s the link

Abstract: Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs. I (photosynthesis vs. irradiance) responses in different nutrient conditions. The widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.

Erin Graham completes Ph.D.

Link

Erin successfully defended her dissertation on November 22, 2013 and will officially graduate in January. The title of her dissertation is: “Energy in Symbiosis: Cabon Flux in Algal Mutualisms Involving Vertebrate and Invertebrate Hosts.”

Scott Fay paper in Aquatic Microbial Ecology

Link

Scott Fay, a former post-doc in the lab has had some of the work he did at Temple University published in Aquatic Microbial Ecology:  Fay, S.A., R.J. Gast, and R.W. Sanders. accepted. Linking bacterivory and phyletic diversity of protists with a marker gene survey and experimental feeding with BrdU-labeled bacteria. Here’s a link to the open access paper: Fay, Gast, Sanders AME

Niveen Ismail paper published in Chemistry and Ecology

Link

Niveen, who received her MS at Temple and is now pursuing a Ph.D. in Environmental Engineering at Stanford, had her Master of Science work published: N.S. Ismail, D.J. Velinsky, J.T.F. Ashley & R.W. Sanders. 2013. Chorioallantoic membrane as a non-lethal sampling method for polychlorinated biphenyls analysis in the northern diamondback terrapin (Malaclemys terrapin terrapin). Chemistry and Ecology 29:391-403. [doi:10.1080/02757540.2013.779680]  Here’s a link to the online manuscript.