Sarah DeVaul & Bob Sanders present at Ocean Sciences Meeting in New Orleans

Link

Sarah presented some of her Ph.D. work on mixotrophy at the winter meeting (February 21-26) of the Association for the Sciences of Limnology and Oceanography (ASLO) . Bob presented work from his last ocean voyage in the Antarctic with Rebecca Gast of Woods Hole Oceanographic Institution. There are also a number of graduate students from the Cordes lab that presented at the meeting.

New pubs: DeVaul et al. in J. Phycol.; Mitra et al. in Protist

Link

Temperature-dependent phagotrophy and phototrophy in a mixotrophic chrysophyte by Sarah DeVaul Princiotta, Brian T. Smith and Robert W. Sanders has been published in the Journal of Phycology (52:432-440) and can be found here.

Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies by Aditee Mitra and 22 co-authors (including R.W. Sanders) was published in Protist (167:106-120) and is available online at  http://www.sciencedirect.com/science/article/pii/S1434461016000043

Sarah DeVaul Awarded Best Grad Student Talk at PSA

Link

At the 2015 Annual Meeting of the Phycological Society of America, which happened to be in Philadelphia this year, Sarah was awarded the Bold Award for the best graduate student talk during the conference. Her talk was entitled “Striking a Balance between Phototrophy and Heterotrophy in the Mixotrophic Chrysophyte Dinobryon sp.” Congrats to Sarah!

Three presentations from the lab at PSA Annual Meeting

Link

The lab will have three presentations at the Phycological Society of America annual meeting that is taking place in Philadelphia this month.

Sarah DeVaul has an oral presentation entitled: Striking a balance between phototrophy and heterotrophy in the mixotrophic chrysophyte Dinobryon sp.;

Grier Sellers talk with Rebecca Gast (Woods Hole Oceanographic Institution is entitled: Dark survival and recovery of a foreign organelle-retaining dinoflagellate and its haptophyte prey and plastid source following a simulated austral winter

and Bob Sanders will present a poster by Zaid McKie-Krisberg, Rebecca Gast and Bob Sanders entitled:  Gene expression and gene ontology in two species of mixotrophic Antarctic phytoplankton.

Papers published in ‘Limnology & Oceanography’ and ‘Freshwater Biology’

Link

Sanders, R.W., S.L. Cooke, J.M. Fischer, S.B. Fey, A.W. Heinze*, W.H. Jeffrey, A.L. Macaluso*, R.E. Moeller, D.P. Morris, P.J. Neale, M. Olson, J.D. Pakulski, J.A. Porter, D.M. Schoener*, C.E. Williamson. 2015. Shifts in microbial food web structure and productivity after additions of naturally occurring dissolved organic matter: results from large-scale lacustrine mesocosms. Limnology & Oceanography. 60: 2130-2144. DOI: 10.1002/lno.10159

Cooke, S.L., J.M. Fischer, K. Kessler, Craig E. Williamson, R.W. Sanders, D.P. Morris, J.A. Porter, W.H. Jeffrey, S.B. DeVaul*, J.D. Pakulski. 2015. Direct and indirect effects of additions of chromophoric dissolved organic matter on zooplankton during large-scale mesocosm experiments in an oligotrophic lake. Freshwater Biology. 60:2362-2378.  DOI:10.1111/fwb.12663

*Current or former graduate students in the lab.

Graham paper published in JEMBE

Link

Erin’s final paper from her Ph.D. work was published: Graham, E.R., A. Parekh, R.K. Devassy and R.W. Sanders. 2015. Carbonic anhydrase activity changes in response to increased temperature and pCO2 in Symbiodinium-zoanthid associations.Journal of Experimental Marine Biology and Ecology 473:218-226.  Here’s a link.

Amy Parekh and Roni Devassy were undergraduate researchers in the lab.

Congrats to them all!

 

McKie-Krisberg paper published in Microbial Ecology

Link

McKie-Krisberg, Z.M., R.J. Gast and R.W. Sanders. 2015. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbial Ecology 70:21-29.

Abstract: Antarctic phototrophs are challenged by extreme temperatures, ice cover, nutrient limitation and prolonged periods of darkness. Yet this environment may also provide niche opportunities for phytoplankton utilizing alternative nutritional modes. Mixotrophy, the combination of photosynthesis and particle ingestion, has been proposed as a mechanism for some phytoplankton to contend with the adverse conditions of the Antarctic. We conducted feeding experiments using fluorescent bacteria-sized tracers to compare the effects of light and nutrients on bacterivory rates in three Antarctic marine photosynthetic nanoflagellates representing two evolutionary lineages: Cryptophyceae (Geminigera cryophila), and Prasinophyceae (Pyramimonas tychotreta and Mantoniella antarctica). Only G. cryophila had previously been identified as mixotrophic. We also measured photoautotrophic abilities over a range of light intensities (P vs. I) and used dark survival experiments to assess cell population dynamics in the absence of light. Feeding behavior in these three nanoflagellates was affected by either light, nutrient levels, or a combination of both factors in a species-specific manner that was not conserved by evolutionary lineage. The different responses to environmental factors by these mixotrophs supported the idea of tradeoffs in the use of phagotrophy and phototrophy for growth.

Sarah DeVaul receives PSA Fellowship

Link

Sarah had a busy week. While she was at the Northeast Algal Society Symposium giving a talk and winning awards, she learned that she had received the Hannah T. Coasdale Fellowship from the Phycological Society of America to cover some of her costs toward attending a workshop on Molecular Methods for Algae Research offered by The Scottish Association for Marine Science in Oban, Scotland.

Sarah DeVaul receives NEAS awards

Link

Sarah attended the Northeast Algal Society Symposium in Syracuse, NY and received an NEAS Travel Award plus the Robert T. Wilce Award for Best Graduate Student Presentation. Her talk was: “Temperature-Dependent Phagotrophy and Phototrophy in a Mixotrophic Chrysophyte.”

Ocean Acidification pub by Erin Graham accepted

Link

“Species-specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification” by Erin R. Graham and Robert W. Sanders is accepted for publication in Marine Ecology.

ABSTRACT: Increasing sea surface temperatures and ocean acidification (OA) are impacting physiological processes in a variety of marine organisms. Many sea anemones, corals, and jellies in the phylum Cnidaria, form endosymbiotic relationships with the dinoflagellate Symbiodinium spp., which supplies the hosts with fixed carbon from photosynthesis. Much work has focused on the generally negative effects of rising temperature and OA on calcification in Symbiodinium-coral symbioses, but has not directly measured symbiont photosynthesis in hospite or fixed carbon translocation from symbiont to host. Symbiodinium species or types vary in their environmental tolerance and photosynthetic capacity, therefore, primary production in symbiotic associations is directly related to symbiont type. However, symbiont type has not been identified in a large portion of Symbiodinium-cnidarian studies. Future climate conditions and OA may favor non-calcifying, soft-bodied cnidarians, including zoanthids, over coral species. Here we show that two zoanthid species, Palythoa sp. and Zoanthus sp., harboring different symbiont types (C1 and A4), had very different responses to increased temperature and increased pCO2/low pH. Thermal stress did not affect carbon fixation or fixed carbon translocation in the Zoanthus sp./A4 association, and high pCO2/low pH increased carbon fixation. In contrast, both thermal stress and high pCO2/low pH greatly inhibited carbon fixation in the Palythoa sp./C1 association. However, the combined treatment of high temperature and high pCO2 increased carbon fixation relative to the treatment of high temperature alone. Our observations support the growing body of evidence that demonstrates that the response of symbiotic cnidarians to thermal stress and OA must be considered on a host-specific and symbiont-specific basis. In addition, we show that the effects of increased temperature and pCO2 on photosynthesis may change when these two stressors are combined. Understanding how carbon fixation and translocation varies among different host-symbiont combinations is critical to predicting which Symbiodinium associations may persist in warm, acidified oceans.

Zaid awarded his Ph.D.

Link

Zaid McKie-Krisberg successfully defended his Ph.D. dissertation, entitled “Phagotrophy in Photosynthetic Eukaryotic Microbes from Polar Environments” on 20 November 2014. Congratulations, Zaid.

Grier Sellers publishes paper and completes his Ph.D.

Link

Grier graduated in August and had one of the chapters of his dissertation accepted for publication in Journal of Phycology. Here’s the link.

Abstract

The peridinin-containing plastid found in most photosynthetic dinoflagellates is thought to have been replaced in a few lineages by plastids of chlorophyte, diatom, or haptophyte origin. Other distinct lineages of phagotrophic dinoflagellates retain functional plastids obtained from algal prey for different durations and with varying source species specificity. 18S rRNA gene sequence analyses have placed a novel gymnodinoid dinoflagellate isolated from the Ross Sea (RSD) in the Kareniaceae, a family of dinoflagellates with permanent plastids of haptophyte origin. In contrast to other species in this family, the RSD contains kleptoplastids sequestered from its prey, Phaeocystis antarctica. Culture experiments were employed to determine whether the RSD fed selectively on P. antarctica when offered in combination with another polar haptophyte or cryptophyte species, and whether the RSD, isolated from its prey and starved, would take up plastids from P. antarctica or from other polar haptophyte or cryptophyte species. Evidence was obtained for selective feeding on P. antarctica, plastid uptake from P. antarctica, and increased RSD growth in the presence of P. antarctica. The presence of a peduncle-like structure in the RSD suggests that kleptoplasts are obtained by myzocytosis. RSD cells incubated without P. antarctica were capable of survival for at least 29.5 months. This remarkable longevity of the RSD’s kleptoplasts and its species specificity for prey and plastid source is consistent with its prolonged co-evolution with P. antarctica. It may also reflect the presence of a plastid protein import mechanism and genes transferred to the dinokaryon from a lost permanent haptophyte plastid.

New faces in the lab

Link

Several undergraduate researchers started working in the lab during the summer and fall. Tiffany Nguyen and Lydia Adnane were supported as Presidential Scholars, and Brian Smith and Jessica Wyatt with Undergraduate Research Awards.

Gulf of Mexico Voyage

Link

Bob Sanders joined Erik Cordes and his team aboard the R/V Atlantis for a voyage in the Gulf of Mexico during April & May. Erik’s research group used the manned submersible Alvin to investigate effects of ocean acidification and oil on cold-water (and typically deep-sea) corals. The team also includes Rob Kulathinal, co-PI on the grant funding the research, several Temple graduate students, and collaborators from Penn State and Haverford College. Pictures and updates from the cruise can be found by searching for “Acid Horizon.”  Link to the facebook page.

Kyle Gilroy has paper published

Link

Kyle, a graduate student in Engineering, designed a project in Biology 5436 (Freshwater Ecology) that was expanded to result in a recently published paper:  Gilroy, K.D., S. Neretina and R.W. Sanders. 2014. Behavior of gold nanoparticles in an experimental algal-zooplankton food chain. Journal of Nanoparticle Research 16:2414. Link

Abstract

The release of engineered nanomaterials offers a significant concern due to their unexpected behavior in biological systems. In order to establish the level of threat from releasing nanomaterials into ecosystems, simplified food webs are an effective method to determine toxicity and bioassessment. A study is presented examining the behavior of citrate-capped gold nanoparticles (AuNPs) introduced into a model food chain consisting of a phytoplankton food (Ankistrodesmus falcatus) and a zooplankton grazer (Daphnia magna). UV–Vis spectroscopy is used to monitor the behavior of AuNPs in the presence of algae (Ankistrodesmus) and Daphnia over the span of 5 days. Transmission electron microscopy shows the attachment of gold aggregates to the surface of the Ankistrodesmus. Bright field microscopy shows significant accumulation of AuNPs in the gut of Daphnia via uptake of contaminated Ankistrodesmus and directly from water. No toxicity was evident for Daphnia exposed to AuNPs at the concentration used (880 µg L−1).