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Abstract. The feasibility of extrapolation of completely monotone functions can be
quantified by examining the worst case scenario, whereby a pair of completely mono-
tone functions agree on a given interval to a given relative precision, but differ as much
as it is theoretically possible at a given point. We show that extrapolation is impossible
to the left of the interval, while the maximal discrepancy to the right exhibits a power
law typical for extrapolation of similar classes of complex analytic functions. The power
law exponent is derived explicitly, and shows a precipitous drop immediately beyond the
right end-point, with a subsequent decay to zero inversely proportional to the distance
from the interval. The local extrapolation problem, where the worst discrepancy from
a given completely monotone function is sought, is also analyzed. In this case explicit
and easily verifiable optimality conditions are derived, enabling us to solve the problem
exactly for a single decaying exponential. In the general case, our approach leads to a
natural algorithm for computing solutions to the local extrapolation problem numerically.
The methods developed in this paper can easily be adapted to other classes of analytic
functions represented as integral transforms of positive measures with analytic kernels.
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1. Introduction

Theory of completely monotone functions (CMF) was developed in the 1920s and 1930s
in the works of S. Bernstein [2], F. Hausdorff [24], V. Widder [48, 46] and Feller [14] in
connection with the Markov moment problem [29]. This class of functions arises in several

1



2 HENRY J. BROWN AND YURY GRABOVSKY

areas of mathematics [27, 1, 31, 49] and remains of current research interest (see reviews
[34, 32]). Its importance in applications is rapidly becoming more and more appreciated.
Multiexponential models, whereby a quantity of interest is a linear combination of decaying
exponentials with positive coefficients are abundant in physics [25, 17], engineering [22, 40],
medicine [41, 11, 10], and industry [42, 38].
While the problem of central practical importance in applications is the estimation of

parameters of a multiexponential model [35, 12, 38, 36], our goal is a theoretical analysis
of reliability of such procedures. To quantify the feasibility of recovery of such functions
from noisy measurements, we look for a pair of completely monotone functions with relative
discrepancy ǫ on [a, b] ⊂ [0,∞), as measured by the L2 norm, that differ as much as possible
at a given point x0 6∈ (a, b). We show that the discrepancy can be made as large as one
wishes for 0 ≤ x0 ≤ a, while for x0 ≥ b the relative discrepancy scales as ǫγ(x0), where

(1.1) γ(x0) =
2

π
arcsin

(
b− a

x0 − a

)
, x0 ≥ b.

An analogous problem has been considered for the class of Stieltjes functions (see e.g.,
[43, 29, 30]) in [20].
Our general methodology, developed in [19, 21, 20] for the Stieltjes class, can be applicable

to many different classes of functions that can be represented by integral transforms of
positive measures with analytic kernels. For example, CMFs are the Laplace transforms of
positive measures, while the Stieltjes functions, for which this approach was first developed,
are the Stieltjes transforms of positive measures [47]. The main technical difficulty is to
link the problem of the worst discrepancy between a pair of functions in our function class
to the much better understood problem of largest deviation from 0 among functions in
a reproducing kernel Hilbert space of analytic functions (such as Hardy spaces) that are
small on a curve in their domain of analyticity [6, 33, 16, 45, 9, 44]. The latter problem can
be reduced to the analysis of the asymptotics of eigenvalues and eigenfunctions of specific
integral operators [37, 23, 39, 19, 21]. The former is treated using the same methodology as
in [20], where a family of Hilbert space norms was constructed that bridge the gap between
the Hardy space norm and the L2 norm on the given curve.
We also investigate the local problem of finding a completely monotone function g(x),

such that ‖f0 − g‖L2(a,b) ≤ ǫ, that maximizes and minimizes f0(x) − g(x), x 6∈ [a, b],
where f0(x) is a given completely monotone function, normalized by ‖f0‖L2(a,b) = 1. For
this problem, we derive necessary and sufficient conditions for the extremals g(x), using the
direct analysis of the variation due to Caprini [3, 4, 5]. Caprini’s method has the advantage
of suggesting an algorithm for computing the extremals numerically. The implementation
of this algorithm suggested the exact solutions for f0(x) = e−x, which are then explicitly
exhibited and analyzed. The Caprini analysis-based approach has already been exploited
in the context of extrapolation of Stieltjes functions [18]. The details and implementation
of an analogous algorithm for completely monotone functions will be addressed elsewhere.
There are three main innovations in this paper. The reduction to an integral equation is

now done using a new version of Kuhn-Tucker theorem, valid in all locally convex topolog-
ical vector spaces, making it applicable to a broader class of problems. In the case under
study, the resulting integral operator has already been fully analyzed in [26]. The theory
in [19, 21] shows how the asymptotic behavior of eigenfunctions for large eigenvalues leads
to explicit formulas for exact exponents in the power laws, like (1.1).
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The second innovation is a nontrivial construction of a continuous family of Hilbert space
norms that bridge the gap between the Hardy space norm and the L2(a, b) norm. While the
constructed family of norms does not bidge the gap completely, it does so asymptotically.
The explicit form of the power law (1.1) and the explicit asymptotics of the solution to the
integral equation are essential to establishing the link.
The third, is the worst case analysis of the local problem. There, the necessary and

sufficient conditions for extremality are found and used to compute the two completely
monotone functions deviating the most from a single decaying exponential, with which
they agree up to a relative precision ǫ on a finite interval.

2. Preliminaries and problem formulation

We say that f : (0,∞) → [0,∞) beongs to the class CM1, if it can be represented as

(2.1) f(x) = fσ(x) =

∫ ∞

0

e−xtdσ(t),

where σ is a positive, Borel-regular measure on [0,∞), such that f(x) < ∞ for all x > 0.
In what follows, we will adopt the notation fσ(x) to denote the function given by (2.1).
Formula (2.1) implies that f ∈ H(R), where R = {z ∈ C : ℜ z > 0} is the complex right
half-plane, and H(Ω) denotes the space of all complex analytic functions on the open set
Ω ⊂ C. The uniqueness property of analytic functions suggests that the knowledge of a
CMF on an interval [a, b] should determine such a function uniquely. In practice, where f(x)
is known only approximately, the feasibility of extrapolation becomes a nontrivial question
that we address in this paper. Specifically, we assume that we know the values of a CMF
f(x) on the interval [a, b] up to a given relative precision ǫ in L2(a, b). We want to know
how accurately we can extrapolate this function outside of [a, b]. One immediately observes

that for any given CMF f(x) the function fK(x) = f(x) + ǫ
√
2Ke−K(x−a) is completely

monotone for any K > 0, and that ‖fK(x)−f(x)‖L2(a,b) ≤ ǫ. However, for any c ∈ [0, a], we
can make fK(c)−f(c) as large as we wish by choosing K sufficiently large. This shows that
if we know that a pair of CMFs has a relative discrepancy ǫ in L2(a, b), their discrepancy
at x ≤ a can be made as large as one wishes. We therefore conclude that we may assume,
without loss of generality, that a = 0 and rescale b to 1. For this reason, we restrict our
attention to a subclass C2 of CMFs defined by

(2.2) C2 = {f ∈ CM : ‖f‖2 < +∞},
where ‖ · ‖2 denotes the L2(0, 1) norm. We note that C2 is not a vector space, but a convex
cone. The natural vector space the cone C2 lies in is X = C2 − C2, which is a real vector
space, even though its elements are complex-analytic functions on R.
To formulate the problem of the worst case extrapolation, we denote

(2.3) ∆[f, g](x) =
f(x)− g(x)

‖f‖2 + ‖g‖2
,

1The original definition of CMF is a nonnegative C∞ function on (0,∞), whose kth derivative is either
always positive or always negative, depending on whether k is even or odd. It was shown by S. Bernstein
[2] that the two definitions are equivalent.
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describing the relative discrepancy at the point x between the two functions {f, g} ⊂ C2.
The worst case extrapolation problem is

(2.4) ∆x0(ǫ) = max
‖∆[f,g]‖2≤ǫ

|∆[f, g](x0)|,

where x0 ≥ 1 is a given point. In other words, we seek the largest relative discrepancy
between two C2 functions, that are at most ǫ apart on [0, 1] in the L2 sense. Our primary
goal is to prove formula (1.1), which is equivalent to the following theorem.

Theorem 2.1. Let x0 ≥ 1, then

(2.5) γ(x0)
def
= lim

ǫ→0+

ln∆x0(ǫ)

ln ǫ
=

2

π
arcsin

(
1

x0

)
,

where ∆x0(ǫ) is given by (2.4), and the limit in (2.5) exists.

The idea of the proof is to relate (2.4), that we call the (f, g)-problem, to a simpler
problem that we know how to solve explicitly:

(2.6) ∆x0
∗ (ǫ) = max

φ∈Aǫ

φ(x0), Aǫ = {φ ∈ H : ‖φ‖ ≤ 1, ‖φ‖2 ≤ ǫ},

where H = {φ ∈ H2(R) : φ(z) = φ(z̄)} is a real subspace of the standard Hardy Hilbert
space H2(R), and where ‖ · ‖ is a multiple of the standard Hardy space norm

(2.7) ‖φ‖2 = sup
x>0

1

2π

∫

R

|φ(x+ iy)|2dy =
1

2π

∫

R

|φ(iy)|2dy =
1

π

∫ ∞

0

|φ(iy)|2dy.

We call (2.6) the φ-problem. We note that the Hardy space H2(R) is a reproducing kernel
Hilbert space (see, e.g. [7]), and problems like (2.6) have been well-understood [19, 20].
Our goal is to show both that

(2.8) γ∗(x0)
def
= lim

ǫ→0

ln∆x0
∗ (ǫ)

ln ǫ
= γ(x0),

and that γ∗(x0) is equal to the right-hand side of (2.5). We follow here the same strategy
that was used in [20] in an analogous problem about Stieltjes functions. The main difference
(and therefore difficulty) is that the Hardy norm ‖·‖ is not equivalent to ‖·‖2 on the convex
cone C2. This makes the direct comparison between γ(x0) and γ∗(x0) impossible.
Our way of resolving this difficulty is to bridge the gap between the two norms by intro-

ducing a continuous family of intermediate Hardy space-like norms of increasing strength
on X = C2−C2, all of which are a equivalent to ‖ · ‖2 on C2. Each norm in the family gives
rise to the corresponding φ-problem (2.6), where it replaces the Hardy norm ‖ · ‖. What
permits us to close the circle of inequalities between the corresponding power law exponents
γ is our ability to solve the the original φ-problem (2.6) explicitly and thus estimate all of
its intermediate norms directly. We remark that it is the absence of the explicit solution of
the φ-problem in [20] that prevented us from completing the rigorous proof of the analog
of (2.8) in the context of Stieltjes functions.

3. Existence of maximizers

The goal of this section is to prove the attainment of the maxima both in (2.4) and in
(2.6). We start by proving the representation property of functions in H.
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Lemma 3.1. For any φ ∈ H, there exists σ ∈ L2(0,∞), σ(t) ∈ R, such that

(3.1) φ(z) =

∫ ∞

0

σ(t)e−ztdt, ℜ z > 0.

Proof. If φ ∈ H, then φ(iy) ∈ L2(R), and therefore, there exists σ ∈ L2(R), such that

φ(iy) = σ̂(y) =

∫

R

σ(t)e−iytdt.

The symmetry of functions in H, i.e. φ(iy) = φ(−iy) implies that σ(t) ∈ R. Since H is a
subspace of the Hardy space H2(R), for any φ ∈ H there is the Kramers-Kronig relation
[8, 28] that says that the real part of φ(iy) is the Hilbert transform of its imaginary part.
Since the Hilbert transform is a Fourier multiplier operator by i sign(t), the Kramers-Kronig
relation can be written as ℜĝ(y) = 0, where g(t) = σ(t) − σ(t)sign(t). But then, g(t) has
to be an odd function on R. We conclude that g(t) must be identically zero since it is zero
on (0,∞). It follows that σ(t) = 0 for all t < 0, and

φ(iy) = σ̂(y) =

∫ ∞

0

σ(t)e−iytdt, y ∈ R.

Therefore representation (3.1) holds since Hardy functions possess a unique analytic exten-
sion into the complex right half-plane. �

We remark that in view of representation (3.1) the Hardy inner product in H can also
be computed as

(3.2) (φσ, φµ) = (σ, µ)L2(0,∞).

To establish attainment in (2.6), we need the following lemma.

Lemma 3.2. For any φ ∈ H

(3.3) ‖φ‖2 ≤
√
π‖φ‖.

Proof. Using representation (3.1), we have

‖φ‖22 ≤ ‖φ‖2L2(0,∞) =

∫ ∞

0

∫ ∞

0

σ(s)σ(t)

s+ t
dsdt = π((Hσ)(−t), σ(t))L2(R),

where Hσ is the Hilbert transform and σ ∈ L2(0,∞) is extended by zero on (−∞, 0) to
yield a function in L2(R). Hence

‖φ‖22 ≤ π‖(Hσ)(−t)‖L2(R)‖σ‖L2(R) = π‖σ‖2L2(R) = π‖φ‖2.
�

The attainment in (2.6) is now obvious since Aǫ is closed, convex, and bounded in H,
and the evaluation functional H ∋ φ 7→ φ(x0) is continuous. (It is obvious, for example,
from representation (3.1) and the fact that e−x0t ∈ L2(0,∞).)
To prove the attainment in (2.4), we need the following lemma.

Lemma 3.3. For any f ∈ C2

(3.4) ‖fσ‖2 ≥ ‖σ‖∗,
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where

(3.5) ‖σ‖∗ =
∫ ∞

0

dσ(t)

t+ 1
.

Proof. Using representation (2.1), we compute

‖fσ‖22 =
∫ ∞

0

∫ ∞

0

1− e−(t+s)

t+ s
dσ(t)dσ(s).

Now observe that since minx≥0 x
−1(x + 1)(1 − e−x) = 1, then for any s > 0 and t > 0 we

have
1− e−(t+s)

t+ s
≥ 1

t+ s+ 1
≥ 1

(t+ 1)(s+ 1)
.

Inequality (3.4) follows. �

We are now ready to prove the attainment in (2.4).

Theorem 3.4. The maximum in (2.4) is attained.

Proof. Let {fn, gn} ⊂ C2 be a minimizing sequence for (2.4). Then sequences

f̃n =
fn

‖fn‖2 + ‖gn‖2
, g̃n =

gn
‖fn‖2 + ‖gn‖2

are bounded in L2(0, 1). By Lemma 3.3 the corresponding measures σ̃n, µ̃n are bounded
in X∗, where

(3.6) X =
{
Φ ∈ C([0,∞)) : lim

t→∞
(1 + t)Φ(t) = 0

}

is a Banach space with ‖Φ‖X = supt>0(t+1)|Φ(t)|. Since X is separable, there are weak-*

converging subsequences, not relabeled, σ̃n
∗
⇀σ0 ∈ X∗, µ̃n

∗
⇀µ0 ∈ X∗. Since e−x0t ∈ X, we

conclude that f̃n(x0)− g̃n(x0) → f0(x0)− g0(x0), where

f0(x) =

∫ ∞

0

e−xtdσ0(t), g0(x) =

∫ ∞

0

e−xtdµ0(t).

In fact, the pointwise convergence of f̃n and g̃n together with their weak precompactness

in L2(0, 1) implies that f̃n ⇀ f0, and g̃n ⇀ g0 in L2(0, 1). The weak lower semicontinuity
of the norm in L2(0, 1) implies that {f0, g0} ⊂ Aǫ and therefore attain the maximum in
(2.4). �

4. The φ-problem

The goal of this section is to solve the φ-problem (2.6).

4.1. Reduction to an integral equation. The φ-problem (2.6) asks to maximize a linear
continuous functional on the Hilbert space H over a convex and closed subset Aǫ ⊂ H.
A new general version of the Kuhn-Tucker theorem, valid in all locally convex topological
vector spaces, is formulated and proved in Appendix A. In order to apply it, we need to
describe the admissible set of functions Aǫ in the standard form (A.1). To do so, we first
observe that

‖φσ‖ = ‖σ‖L2(0,+∞) = sup
‖Ψ‖L2(0,+∞)≤1

∫ ∞

0

Ψ(t)σ(t)dt, ‖φ‖2 = sup
‖ψ‖2≤1

∫ 1

0

φ(x)ψ(x)dx.



ON FEASIBILITY OF EXTRAPOLATION OF COMPLETELY MONOTONE FUNCTIONS 7

Let us show that L2(0, 1) acts on H by weakly continuous functionals, where the action of
ψ ∈ L2(0, 1) on H is defined by

φ 7→ (φ, ψ)2 =

∫ 1

0

φ(x)ψ(x)dx.

Indeed, |(φ, ψ)2| ≤ ‖ψ‖2‖φ‖2 ≤
√
π‖ψ‖2‖φ‖, by Lemma 3.2. We also have

(φσ, ψ)2 =

∫ 1

0

φσ(x)ψ(x)dx =

∫ ∞

0

(Λψ)(t)σ(t)dt, (Λψ)(t) =

∫ 1

0

ψ(x)e−xtdx,

while the bound

|(φσ, ψ)2| ≤
√
π‖ψ‖2‖φσ‖ =

√
π‖ψ‖2‖σ‖L2(0,∞)

implies

‖Λψ‖L2(0,∞) ≤
√
π‖ψ‖2.

Thus, we obtain the desired description of Aǫ

Aǫ = {φσ ∈ H : (σ,Ψ)L2(0,∞) ≤ 1 ∀‖Ψ‖L2(0,∞) ≤ 1, (σ,Λψ)L2(0,∞) ≤ ǫ ∀‖ψ‖2 ≤ 1}.
In order to apply the Kuhn-Tucker theorem, we need to compute the smallest closed convex

cone F̂ ⊂ H × R containing the set

F = {(Ψ, 1) : ‖Ψ‖L2(0,∞) ≤ 1} ∪ {(Λψ, ǫ)L2(0,∞) : ‖ψ‖2 ≤ 1}.

We can characterize F̂ as

F̂ = {(Ψ + Λψ,A+ ǫB) : ‖Ψ‖L2(0,∞) ≤ A, ‖ψ‖2 ≤ B, A ≥ 0, B ≥ 0}.

Indeed, it is obvious both that F̂ is a convex cone and that each element of F̂ is a non-

negative linear combination of two elements from F . To prove that F̂ is closed suppose
that

Ψn + Λψn → P in L2(0,∞), An + ǫBn → α, ‖Ψn‖L2(0,∞) ≤ An, ‖ψn‖2 ≤ Bn.

Then An ≤ An + ǫBn and Bn ≤ (An + ǫBn)/ǫ. Hence, we can extract convergent subse-
quences (not relabeled) of An → A and Bn → B. We can also extract the weakly convergent
subsequences (not relabeled) Ψn ⇀ Ψ, ψn ⇀ ψ. The weak lower semicontinuity of the
norms implies that ‖Ψ‖L2(0,∞) ≤ A, ‖ψ‖2 ≤ B, while A+ ǫB = α and Ψ+Λψ = P . Thus,

(P, α) ∈ F̂ , and we conclude that F̂ is weakly closed. Now, according to the Kuhn-Tucker
theorem A.1,

(4.1) ∆x0
∗ (ǫ) = max

φ∈Aǫ

φ(x0) = min
ψ∈L2(0,1)

(
ǫ‖ψ‖2 +

∥∥Λψ − e−x0t
∥∥
L2(0,∞)

)
.

The minimizer ψǫ in (4.1) exists for any fixed ǫ > 0, because this is a convex and coercive
variational problem. However, this problem is difficult analyze; Hence, we are going to
modify the maximization problem (4.1) to make it more tractable, while using our under-
standing of the relation between solutions of (2.6) and (4.1) to obtain the maximizer in
(2.6). Using that for 1/p+ 1/q = 1,

(4.2)
1

p

(
p

q
a2 + b2

)
=
a2

q
+
b2

p
≤ (a+ b)2 ≤ pa2 + qb2 = q

(
p

q
a2 + b2

)
,
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we conclude that for the sake of understanding the asymptotic behavior of ∆x0
∗ (ǫ), we can

replace the variational problem (4.1) by a quadratic one:

(4.3) Qx0(ε) = min
ψ∈L2(0,1)

ε2‖ψ‖22 +
∥∥Λψ − e−x0t

∥∥2
L2(0,∞)

,

where ε = ǫ
√
p(ǫ)/q(ǫ), and where the parameters p(ǫ), q(ǫ), satisfying 1/p(ǫ)+ 1/q(ǫ) = 1

will be chosen later to optimize the upper bound that, according to (4.2), reads

(4.4) ∆x0
∗ (ǫ)2 ≤ q(ǫ)Qx0(ε), ε = ǫ

√
p(ǫ)

q(ǫ)
.

The advantage of the quadratic minimization problem (4.3) over (4.1) is that the mini-
mizer ψε of (4.3) solves a linear integral equation

(4.5) ε2ψ(x) + (Kψ)(x) =
1

x0 + x
, x ∈ [0, 1],

where K : L2(0, 1) → L2(0, 1),

(Kψ)(x) = (Λ∗Λψ)(x) =

∫ 1

0

ψ(y)dy

x+ y

is a bounded, nonnegative, and self-adjoint operator. Hence, (4.5) has a unique solution
ψε ∈ L2(0, 1).
Representing the kernel (x+ y)−1 of the integral operator in the form

1

x+ y
=

∫ ∞

0

e−xte−ytdt,

we conclude that the solution ψε of (4.5) satisfies

(4.6) ψε(x) =
1

ε2

∫ ∞

0

(e−x0t − Λψε)e
−xtdt.

This shows that ψε ∈ L2(0, 1) has the unique extension, also denoted ψε ∈ H, which has
a representation (3.1), with σ = ε−2(e−x0t − Λψε) ∈ L2(0,∞). Therefore, in view of (3.2),
we have

(4.7) ‖ψε‖ =
1

ε2
‖Λψε − e−x0t‖L2(0,∞).

Setting x = x0 in (4.6), we obtain

ψε(x0) =
1

ε2

∫ ∞

0

(e−x0t − Λψε)e
−x0tdt.

Multiplying (4.6) by ψε and integrating over [0, 1], we get

‖ψε‖22 =
1

ε2

∫ ∞

0

(e−x0t − Λψε)Λψεdt.

Subtracting the two equations and taking (4.7) into account yields

(4.8) ‖ψε‖22 + ε2‖ψε‖2 = ψε(x0).

This relation implies that Qx0(ε) = ε2ψε(x0), while the upper bound (4.4) becomes

(4.9) ∆x0
∗ (ǫ)2 ≤ q(ǫ)ε2ψε(x0) = ǫ2p(ǫ)ψε(x0).
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The lower bound for ∆x0
∗ (ǫ) is obtained by using a test function

(4.10) φǫ =
ǫψε

‖ψε‖2
∈ H,

which obviously satisfies ‖φǫ‖2 = ǫ, and where p(ǫ) is chosen so that ‖φǫ‖ = 1. Specifically,
using (4.8), we have

‖φǫ‖2 =
ǫ2‖ψε‖2
‖ψε‖22

=
q(ǫ)

p(ǫ)

(
ψε(x0)

‖ψε‖22
− 1

)
=

ψε(x0)

‖ψε‖22
− 1

p(ǫ)− 1
.

Setting ‖φǫ‖2 = 1, we obtain

(4.11) p(ǫ) =
ψε(x0)

‖ψε‖22
= 1 +

ε2‖ψε‖2
‖ψε‖22

∈ (1,+∞),

due to (4.8). The choice (4.11) of p(ǫ) implies that φǫ ∈ Aǫ, yielding the lower bound for
∆x0

∗ (ǫ)

(∆x0
∗ (ǫ))2 ≥ (φǫ(x0))

2 =
ǫ2ψε(x0)

2

‖ψε‖22
= ǫ2p(ǫ)ψε(x0),

provided p(ǫ) is given by (4.11). Hence, the lower bound for ∆x0
∗ (ǫ) agrees with the upper

bound (4.4), and therefore,

(4.12) ∆x0
∗ (ǫ) =

ǫψε(x0)

‖ψε‖2
,

where ψε solves (4.5) and ε and ǫ are related by

(4.13) ǫ =
‖ψε‖2
‖ψε‖

,

which is easy to obtain combining (4.11) and the formula for ε from (4.4). Substituting
this into (4.12), we also obtain

(4.14) ∆x0
∗ (ǫ) =

ψε(x0)

‖ψε‖
.

We can use formulas (4.13) and (4.14) to establish the explicit leading order asymptotics of
∆x0

∗ (ǫ), if we can compute the explicit leading order asymptotics of the right-hand sides in
(4.13) and (4.14). Specifically, if E0(ε) and E1(ε) are continuous and monotone increasing
functions on [0, 1), such that E0(0) = E1(0) = 0, and

lim
ε→0+

ψε(x0)

E0(ε)‖ψε‖
= 1, lim

ε→0+

‖ψε‖2
E1(ε)‖ψε‖

= 1,

then we want to conclude that

(4.15) lim
ǫ→0+

∆x0
∗ (ǫ)

E0(E
−1
1 (ǫ))

= 1.

Since ǫ(ε) ∼ E1(ε), then the assumed properties of E1(ε) imply that ǫ → 0+ if and only if
ε→ 0+. Then,

lim
ǫ→0+

∆x0
∗ (ǫ)

E0(E
−1
1 (ǫ))

= lim
ε→0+

E0(ε)
ψε(x0)

E0(ε)‖ψε‖

E0

(
E−1

1

(
E1(ε)

‖ψε‖2
E1(ε)‖ψε‖

)) .
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Thus, (4.15) follows, if functions E0 and E1 have the additional property

(4.16) lim
ε→0+

E0(ε)

E0(E
−1
1 (E1(ε)r(ε)))

= 1,

whenever r(ε) → 1, as ε → 0+. It is not difficult to give an example of continuous and
monotone increasing functions E0 and E1, with E0(0) = E1(0) = 0 that fail to satisfy
(4.16).

4.2. Solution of the integral equation. To solve the integral equation (4.5), we diago-
nalize the bounded self-adjoint operator K. The problem of computing the eigenfunctions
of K can be related to a problem about the truncated Hilbert transform

(H1u)(ξ) = P.V.

∫ 1

0

u(y)dy

ξ − y
,

regarded as a map H1 : L2(0, 1) → L2(−1, 0), that has been solved in [26]. The relation
between the operators K and H1 is expressed by the formula K2 = H∗

1H1, which shows
that if u is an eigenfunction of K with eigenvalue ν > 0, then u is also a singular function
of H1 with singular value ν. Conversely, if u is a singular function of H1 with singular
value ν, then K2u = ν2u, which implies that (K + ν)(K − ν)u = 0. Since K is a bounded
nonnegative operator, the operator K + ν is invertible and we conclude that Ku = νu. In
[26] it was shown that the spectrum of H∗

1H1 is continuous and its eigenfunctions can be
found explicitly by observing that the differential operator

(Lu)(x) = −(x2(1− x2)u′(x))′ + 2x2u(x)

commutes withH∗
1H1. We can easily verify that L also commutes withK. That means that

if u is an eigenfunction of L corresponding to the eigenvalue λ, then λKu = KLu = LKu.
Hence, Ku is also an eigenfunction of L with the eigenvalue λ. As computed in [26], the
eigenspaces of L are all one-dimensional, spanned by

(4.17) u(x;µ) = x
−
1

2
+ iµ

F

([
1

4
+
iµ

2
,
3

4
+
iµ

2

]
, [1]; 1− x2

)
, λ = µ2 +

1

4
, µ ≥ 0,

where F ([a, b], [c]; z) is the Gauss hypergeometric function. We conclude that functions
u(x;µ) are eigenfunctions of K. The corresponding eigenvalues, are the singular values of
H1, which, according to [26], are given by

(4.18) ν(µ) =
π

cosh(πµ)
.

We note that the function z 7→ F ([a, b], [c]; z) is analytic in C\ [1,+∞). Therefore, u(x;µ),
given by (4.17), is analytic in the complex right half-plane. The orthogonality of the
eigenfunctions is conveniently expressed in terms of the “u-transform” and its inverse (see
[26]):

(4.19) f̂(µ) =

∫ 1

0

f(x)u(x;µ)dx, f(x) =

∫ ∞

0

f̂(µ)u(x;µ)µ tanh(πµ)dµ.
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Multiplying the second equation by f(x) and integrating gives the generalized Plancherel
formula

(4.20) ‖f‖22 =
∫ ∞

0

|f̂(µ)|2µ tanh(πµ)dµ.

The knowledge of the eigenfunctions of K permits us to solve the integral equation (4.5):

(4.21) ψε(x) =

∫ ∞

0

u(x0;µ)u(x;µ)µ tanh(πµ)

2ε̂2 cosh(πµ) + 1
dµ, ε̂ =

ε√
2π
.

Moreover,

(4.22) ‖ψε‖22 =
∫ ∞

0

u(x0;µ)
2µ tanh(πµ)

(2ε̂2 cosh(πµ) + 1)2
dµ,

while

(4.23) ψε(x0) =

∫ ∞

0

u(x0;µ)
2µ tanh(πµ)

2ε̂2 cosh(πµ) + 1
dµ.

Substituting (4.22) and (4.23) into (4.8) gives

(4.24) ‖ψε‖2 =
1

π

∫ ∞

0

u(x0;µ)
2µ sinh(πµ)

(2ε̂2 cosh(πµ) + 1)2
dµ.

When x = x0 > 1 the coefficient −x2(1−x2) in the differential operator L becomes positive,
and we expect the eigenfunctions u(x0;µ) to grow exponentially as µ→ ∞. Thus, if we set
ε = 0 in (4.22) and (4.23), we obtain exponentially divergent integrals, while they remain
convergent for each ε > 0. Thus, ‖ψε‖2 → ∞ and ψε(x0) → ∞, as ε → 0, and the precise
asymptotics of these quantities, as ε→ 0, would depend on the rate of exponential growth
of u(x0;µ), as µ→ ∞.

4.3. Asymptotics of ∆x0
∗ (ǫ). In this section the notation A(ǫ) ∼ B(ǫ) means A(ǫ)/B(ǫ) →

1, as ǫ → 0+. Similarly, A(µ) ∼ B(µ) means A(µ)/B(µ) → 1, as µ → +∞. The goal of
this section is to compute the following explicit asymptotics2 of ∆x0

∗ (ǫ).

Theorem 4.1.

(4.25) ∆x0
∗ (ǫ) ∼

{
C∗(x0)ǫ

2
π
arcsin

(

1
x0

)

, x0 > 1,√
2
π
ǫ| ln ǫ|, x0 = 1,

where

(4.26) C∗(x0) =
1

2

√
x0

2(x20 − 1) arcsin
(

1
x0

)



2π arcsin

(
1
x0

)

arccos
(

1
x0

)




arccos( 1
x0 )

π

.

Formula (4.15) expresses the asymptotics of ∆x0
∗ (ǫ) in terms of the asymptotics of ‖ψε‖2,

ψε(x0), and ‖ψε‖, given by (4.22), (4.23), and (4.24), respectively. In turn, these depend
on the asymptotics of u(x0;µ), as µ → ∞. The following lemma gives the asymptotics of
u(z;µ), as µ → ∞ for all z in the complex right half-plane, excluding the interval [0, 1].

2For our purposes, we only need the exponent. We derive the explicit formula for C∗(x0) because we
can, and because the technique we use may be of broader interest.
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While in this section we will only need the asymptotics of u(z;µ) for real z > 1, the
asymptotics for other values of z will also be required later on.

Lemma 4.2. Let u(x;µ) be the eigenfunctions of the integral operator K. Then formula
(4.17) gives the analytic extension of u(x;µ) from [0, 1] to the complex right half-plane.
Moreover,

(4.27) u(z;µ) ∼ R(z)
eµα(z)√
2πµ

, as µ→ ∞,

for every z ∈ Ω = {z ∈ C : ℜz > 0, z 6∈ [0, 1]}, where

(4.28) R(z) = z−1/2(z2 − 1)−1/4, α(z) = arccos

(
1

z

)
= i ln

(
1− i

√
z2 − 1

z

)
.

and where the principal branches of the natural logarithm and all fractional powers are used.

The proof is a straightforward application of the asymptotic formulas for the Gauss hy-
pergeometric function from [13]. The required calculations needed to apply these formulas
to our specific case are detailed in Appendix B. We also remark that u(1;µ) = 1 and that
the asymptotics of u(x;µ) for x ∈ [0, 1) is given in [26, formula (4.34)].
The exponential growth of u(z;µ) as µ → ∞, described by Lemma 4.2 permits us to

compute the explicit asymptotics of ψε(z), ‖ψε‖2 and ‖ψε‖, given by (4.21), (4.22), and
(4.24), respectively. This is made possible by the following lemma.

Lemma 4.3. Suppose that v ∈ C([0,∞)) is such that v(µ) → 1, as µ → +∞, k ∈ {1, 2},
and ℜβ ∈ (0, k). Then

(4.29)

∫ ∞

0

eπβµv(µ)dµ

(2ε̂2 cosh(πµ) + 1)k
∼ (1− β)k−1ε̂−2β

sin(πβ)
as ε̂→ 0+.

Proof. Changing the variable of integration µ′ = πµ+ 2 ln ε̂, we obtain

∫ ∞

0

eπβµv(µ)dµ

(2ε̂2 cosh(πµ) + 1)k
=
ε̂−2β

π

∫ ∞

2 ln ε̂

eβµ
′

v
(
µ′

π
− 2

π
ln ε̂
)

(eµ′ + e−µ′+4 ln ε̂ + 1)k
dµ′.

Since ℜβ ∈ (0, k) and v(·) is a bounded function, the Lebesgue dominated convergence
theorem applies, and we obtain3

lim
ε̂→0+

∫ ∞

2 ln ε̂

eβµ
′

v
(
µ′

π
− 2

π
ln ε̂
)

(eµ′ + e−µ′+4 ln ε̂ + 1)k
dµ′ =

∫

R

eβµ
′

dµ′

(eµ′ + 1)k
=
π(1− β)k−1

sin(πβ)
.

�

As a corollary, we obtain the explicit asymptotics of ψε(z), ‖ψε‖2 and ‖ψε‖.
Theorem 4.4. Let x0 > 1 and ψε be the solution of the integral equation (4.5). Formula
(4.21) defines an analytic extension of ψε(x) from [0, 1] to the complex right half-plane.
Suppose z ∈ Ω = {z ∈ C : ℜz > 0, z 6∈ [0, 1]}. Then,

(i) ψε(z) ∼
R(x0)R(z)

2π sin(πβ(z))
ε̂−2β(z), where β(z) =

α(x0) + α(z)

π
, and ε̂ =

ε√
2π

.

3The formula is correct only for k = 1 or 2. For general k ∈ N, the correct right-hand side is more
complicated: 1

(k−β)B(k,β−k) sin(π(β−k)) , where B(x, y) is the Euler beta function.
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(ii) ‖ψε‖2 ∼
1

π

√
x0 arcsin(1/x0)

2(x20 − 1)
ε̂−β(x0);

(iii) ε‖ψε‖ ∼ 1

π

√
x0 arccos(1/x0)

2(x20 − 1)
ε̂−β(x0).

Proof. We begin by “substituting” our large µ asymptotics (4.27) from Lemma 4.2 into
formulas (4.21), (4.22), and (4.24). We obtain

ψε(z) =
R(x0)R(z)

2π

∫ ∞

0

eπβ(z)µv(z;µ)

2ε̂2 cosh(πµ) + 1
dµ,

‖ψε‖22 =
R(x0)

2

2π

∫ ∞

0

eπβ(x0)µv(x0;µ)

(2ε̂2 cosh(πµ) + 1)2
dµ,

and

‖ψε‖2 =
R(x0)

2

4π2

∫ ∞

0

e(1+β(x0))πµṽ(x0;µ)

(2ε̂2 cosh(πµ) + 1)2
dµ,

where

v(z;µ) =
u(x0;µ)

u0(x0;µ)
· u(z;µ)
u0(z;µ)

tanh(πµ), ṽ(z;µ) = 2v(z;µ)e−πµ cosh(πµ),

and

(4.30) u0(z;µ) = R(z)
eµα(z)√
2πµ

.

In order to apply Lemma 4.3, we must verify that the function µ 7→ v(z;µ) and the exponent
β(z) satisfy the assumptions in Lemma 4.3. The continuity of µ 7→ v(z;µ) follows from the
Euler integral representation of the hypergeometric function combined with formula (4.17),
which gives

(4.31) u(z;µ) = z−
1
2
+iµ sin

(
3π
4
+ iπµ

2

)

π

∫ 1

0

t−
1
4
+ iµ

2 (1− t)−
3
4
− iµ

2 (1− (1− z2)t)−
1
4
− iµ

2 dt.

The integrand is continuous in µ and bounded by t−1/4(1− t)−3/4|(1− (1− z2)t|−1/4eπµ ∈
L1(0, 1). An application of the Lebesgue dominated convergence theorem implies that
µ 7→ u(z;µ) is continuous on [0,∞) for any z ∈ Ω. Formula (4.30) shows that u0(z;µ)
is nonvanishing and continuous in µ > 0 proving the continuity of µ 7→ v(z;µ), while
Lemma 4.2 implies that v(z;µ) → 1, as µ → ∞, for every z ∈ Ω. Finally, the required
constraint ℜβ(z) ∈ (0, 1) for any z ∈ Ω, is guaranteed by the following lemma.

Lemma 4.5. ℜα(z) ∈ (0, π
2
) for any z ∈ Ω, where α(z) is defined in (4.28).

Proof. We observe that α : Ω → C is injective since cosα(z) = 1/z. Thus, ∂∞α(Ω) =
α(∂∞Ω), where ∂∞Ω refers to the boundary of Ω in the Riemann sphere C∪{∞}. It is easy
to see that α(z) maps the ray i(0,+∞) to the line π/2 + iR; the ray i(−∞, 0) to the same
line π/2+ iR. It maps the interval [0, 1] + 0i to the ray i[0,+∞] and the interval [0, 1]− 0i
to the ray i[−∞, 0]. While,

√
z2 − 1 = z

√
1− z−2, when z → ∞, z ∈ Ω. Therefore,

α(z) → i ln(−i) = π/2, as z → ∞. We conclude that ∂∞α(Ω) = iR∪ π/2+ iR∪ {∞}, and
α(Ω) = {w ∈ C : 0 < ℜw < π/2} since α(Ω) must be a connected subset of C. �
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Lemma 4.3 can now be applied, and we obtain

ψε(z) ∼
R(x0)R(z)ε̂

−2β(z)

2π sin πβ(z)
,

‖ψε‖22 ∼
R(x0)

2(1− β(x0))ε̂
−2β(x0)

2π sin πβ(x0)
,

and

‖ψε‖2 ∼
R(x0)

2β(x0)ε̂
−2β(x0)−2

4π2 sin πβ(x0)
.

Substituting the values of R(x0), α(x0), and β(x0), we obtain the claimed asymptotic
formulas (i)—(iii). �

Now, we can compute the explicit asymptotics of ∆x0
∗ (ǫ), given in (4.15). We compute

ψε(x0)

‖ψε‖
∼ ε̂1−β(x0)

√
x0

2(x20 − 1)β(x0)
=: E0(ε),

and

‖ψε‖2
‖ψε‖

∼ ε

√
arcsin(1/x0)

arccos(1/x0)
=: E1(ε).

It is now evident that functions E0(ε) and E1(ε) are continuous and monotone increasing on
[0, 1), such that E0(0) = E1(0) = 0. Since E1(ε) is linear and E0(ε) is a constant multiple
of a power, property (4.16) reads

E0(ε)

E0

(
E−1

1 (E1(ε)r(ε))
) =

E0(ε)

E0 (εr(ε))
= (r(ε))β(x0)−1 → 1, as ε→ 0+.

for any function r(ε) such that r(ε) → 1 as ε→ 0+. Thus, formula (4.15) applies, and

∆x0
∗ (ǫ) ∼ E0(E

−1
1 (ǫ)) =

√
x0

2(x20 − 1)β(x0)

(√
2π arcsin(1/x0)

arccos(1/x0)

)β(x0)−1

ǫ1−β(x0).

Substituting the values of α(x0) = arccos(1/x0) and β(x0) = 2α(x0)/π into the above
formula, we obtain Theorem 4.1 for all x0 > 1. In particular, we see that for any x0 > 1

(4.32) γ∗(x0) = lim
ǫ→0

ln∆x0
∗ (ǫ)

ln ǫ
=

2

π
arcsin

(
1

x0

)
.

The singular behavior at x0 = 1 of coefficients in all of our asymptotic formulas indicates
that the asymptotic analysis for x0 = 1 needs to be done separately.

Theorem 4.6. Let ψε be the solution of the integral equation (4.5) with x0 = 1. Then

(i) ‖ψε‖22 ∼ ψε(1) ∼
2(ln ε)2

π2
;

(ii) ‖ψε‖2 ∼
−2 ln ε

π2ε2
.
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Proof. Whenever x0 = 1, our formulas (4.22), (4.23), and (4.24) simplify because u(1;µ) ≡
1:

(4.33) ψε(1) =

∫ ∞

0

µ tanh(πµ)

2ε̂2 cosh(πµ) + 1
dµ, ‖ψε‖22 =

∫ ∞

0

µ tanh(πµ)

(2ε̂2 cosh(πµ) + 1)2
dµ,

(4.34) ‖ψε‖2 =
1

π

∫ ∞

0

µ sinh(πµ)

(2ε̂2 cosh(πµ) + 1)2
dµ.

The situation here is similar to the one for x0 > 1 in that setting ε̂ = 0 still results in
divergent integrals. This indicates that it is the behavior of the integrands at µ = ∞
that determines the asymptotics of the integrals when ε̂ → 0+. When µ is large tanh(πµ)
will be replaced by 1, and both 2 cosh(πµ) and 2 sinh(πµ), by eπµ. To make this heuristic
argument rigorous, we make a simple observation that we formulate as a lemma for easy
reference.

Lemma 4.7. Let (G, σ) be an arbitrary measure space. Suppose that for any ε ∈ (0, ε0)

{Wε, Ŵε} ⊂ L1(G; dσ) and

(i) lim
ε→0+

∣∣∣∣
∫

G

Wε(µ)dσ(µ)

∣∣∣∣ = ∞;

(ii) lim
ε→0+

‖Wε − Ŵε‖L1(G;dσ) <∞.

Then
∫
G
Wε(µ)dσ(µ) ∼

∫
G
Ŵε(µ)dσ(µ), as ε→ 0+.

Proof. lim
ε→0+

∣∣∣∣∣

∫
G
Ŵε(µ)dσ(µ)∫

G
Wε(µ)dσ(µ)

− 1

∣∣∣∣∣ ≤
lim
ε→0+

‖Ŵε −Wε‖L1(G;dσ)

lim
ε→0+

∣∣∣∣
∫

G

Wε(µ)dσ(µ)

∣∣∣∣
= 0. �

As we have already pointed out, the integrals in (4.33) and (4.34) satisfy condition (i) of
the lemma. Then estimates

| tanh(πµ)− 1| ≤ 2e−2πµ, |2 sinh(πµ)− eπµ| = e−πµ

ensure that condition (ii) of the lemma is satisfied, and we conclude that

ψε(1) ∼
∫ ∞

0

µdµ

2ε̂2 cosh(πµ) + 1
, ‖ψε‖22 ∼

∫ ∞

0

µdµ

(2ε̂2 cosh(πµ) + 1)2
,

and

‖ψε‖2 ∼
1

2π

∫ ∞

0

µeπµdµ

(2ε̂2 cosh(πµ) + 1)2
.

Similarly, the estimate ∣∣∣∣
µ

2ε̂2 cosh(πµ) + 1
− µ

ε̂2eπµ + 1

∣∣∣∣ ≤ 2ε̂2µe−πµ

implies that

ψε(1) ∼
∫ ∞

0

µdµ

ε̂2eπµ + 1
.

To handle the remaining two integrals, we define

Wε(µ) =
µeπµ

(2ε̂2 cosh(πµ) + 1)2
, Ŵε(µ) =

µeπµ

(ε̂2eπµ + 1)2
.
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We first compute

|Wε(µ)− Ŵε(µ)| =
µε̂2(2ε̂2eπµ + 2 + ε̂2e−πµ)

(2ε̂2 cosh(πµ) + 1)2(ε̂2eπµ + 1)2
,

and estimate

2ε̂2eπµ + 2 + ε̂2e−πµ ≤ 3(ε̂2eπµ + 1),

so that

|Wε(µ)− Ŵε(µ)| ≤
3µε̂2

(2ε̂2 cosh(πµ) + 1)2(ε̂2eπµ + 1)
.

Next, we estimate

ε̂2eπµ + 1 ≥ ε̂2eπµ, (2ε̂2 cosh(πµ) + 1)2 ≥ 1,

and obtain

|Wε(µ)− Ŵε(µ)| ≤ 3µe−πµ ∈ L1(0,∞).

Thus, Lemma 4.7 is applicable and

ψε(1) ∼
∫ ∞

0

µdµ

ε̂2eπµ + 1
:= I1(ε̂), ‖ψε‖22 ∼

∫ ∞

0

µdµ

(ε̂2eπµ + 1)2
:= I2(ε̂),

‖ψε‖2 ∼ I0(ε̂) :=
1

2π

∫ ∞

0

µeπµdµ

(ε̂2eπµ + 1)2
=

ln
(
1 + 1

ε̂2

)

2π3ε̂2
∼ − ln ε̂

π3ε̂2
,

establishing part (ii) of the theorem. Part (i) is proved by means of the L’Hôpital rule:

lim
ε̂→0+

I1(ε̂)

(ln ε̂)2
= lim

ε̂→0+

ε̂I ′1(ε̂)

2 ln ε̂
= − lim

ε̂→0+

2πε̂2I0(ε̂)

ln ε̂
=

2

π2
.

To apply the L’Hôpital rule to I2(ε̂), we compute

I ′2(ε̂) = −4ε̂

∫ ∞

0

µeπµdµ

(ε̂2eπµ + 1)3
= −2

(ε̂2 + 1) ln(1 + ε̂−2)− 1

π2ε̂(ε̂2 + 1)
∼ 4 ln ε̂

π2ε̂
.

Thus,

lim
ε̂→0+

I2(ε̂)

(ln ε̂)2
= lim

ε̂→0+

ε̂I ′2(ε̂)

2 ln ε̂
=

2

π2
.

The theorem is now proved. �

According to Theorem 4.6,

ψε(1)

‖ψε‖
∼

√
2

π
ε| ln ε|3/2 =: E0(ε),

‖ψε‖2
‖ψε‖

∼ ε
√
| ln ε| =: E1(ε).

This shows that both E0(ε) and E1(ε) are continuous, monotone increasing functions on
[0, e−3/2), satisfying E0(0) = E1(0) = 0. In order to use formula (4.15) for the exact
asymptotics of ∆1

∗(ǫ), we need to verify property (4.16). This is somewhat tedious. Let
r(ε) → 1, as ε → 0+ be arbitrary. To make calculations more compact, we define δ =
δ(ε) = r(ε)E1(ε). Then,

ρ(ε) =
E0(ε)

E0(E
−1
1 (E1(ε)r(ε)))

=
ε| ln ε|3/2

E−1
1 (δ)| lnE−1

1 (δ)|3/2 =
ε| ln ε|3/2

δ| lnE−1
1 (δ)| =

| ln ε|
r(ε)| lnE−1

1 (δ)| ,
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where we have used the relation E−1
1 (δ)| lnE−1

1 (δ)|1/2 = E1(E
−1
1 (δ)) = δ together with the

formula for δ(ε). Next, we write

| ln ε| = | ln r(ε)E1(ε)− ln(r(ε)
√
| ln ε|)| = | ln δ(ε)|r̃(ε),

where

r̃(ε) =

∣∣∣∣∣1−
ln(r(ε)

√
| ln ε|)

ln(r(ε)ε
√
| ln ε|)

∣∣∣∣∣→ 1, as ε→ 0+.

Thus,

ρ(ε) =
r̃(ε)| ln δ|

r(ε)| lnE−1
1 (δ)| .

It remained to observe that δ(ε) → 0+, as ε → 0+ and therefore, η(ε) = E−1
1 (δ(ε)) → 0+.

Hence,

lim
ε→0+

ρ(ε) = lim
ε→0+

r̃(ε)

r(ε)
· lim
δ→0+

| ln δ|
| lnE−1

1 (δ)| = lim
η→0+

| lnE1(η)|
| ln η| = 1.

Formula (4.15) is now applicable, and we compute, using E−1
1 (ǫ)| lnE−1

1 (ǫ)|1/2 = ǫ,

∆1
∗(ǫ) ∼

√
2

π
E−1

1 (ǫ)| lnE−1
1 (ǫ)|3/2 =

√
2

π
ǫ| ln ǫ| | lnE

−1
1 (ǫ)|

| ln ǫ| ∼
√
2

π
ǫ| ln ǫ|

since

lim
ǫ→0+

| lnE−1
1 (ǫ)|

| ln ǫ| = lim
η→0+

| ln η|
| lnE1(η)|

= 1.

In particular, we can conclude that

γ∗(1) = lim
ǫ→0+

ln∆1
∗(ǫ)

ln ε
= 1 = lim

x0→1+
γ∗(x0).

This completes the proof of Theorem 4.1 for x0 = 1.

5. A continuous family of Hilbert space norms

Our task now is to connect the explicit exponent γ∗(x0), given by (4.32) to the desired
exponent γ(x0) coming from the (f, g)-problem (2.4). This is done by introducing a family
of norms that help us to bridge the gap between the the L2(0, 1) norm and the H2(R) norm
on the convex cone C2. In reference to f ∈ C2, we will use the notation

(5.1) (Fp[f ])(z) =
f(z1/p)

z
p−1
2p (z1/p + 1)

, p ≥ 1,

where the principal branch of zα is always chosen. For all p ≥ 1 and f ∈ C2 the functions
Fp[f ] are analytic on the complex right half-plane R. We then define the family of spaces

(5.2) Hp = {f ∈ H(R) : Fp[f ] ∈ H}, p ≥ 1,

equipped with norms ‖f‖Hp = ‖Fp[f ]‖.
Theorem 5.1. C2 ⊂ Hp, for every p > 1, and there exists a constant Cp > 0, such that

(5.3) ‖f‖Hp ≤ Cp‖f‖2,
for every f ∈ C2.
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Proof. The fact that the functions fδt = e−xt belong to Hp follows from the observations
that for each fixed y > 0 and q ∈ [0, 1] the functions

ν1(x) = ℜe [(x+ iy)q] , ν2(x) = |(x+ iy)q|, ν3(x) = |(x+ iy)q + 1|2, q ∈ [0, 1]

are monotone increasing in x ∈ (0,+∞). This is evident from the polar representation
of x + iy = r(x)eiθ(x) and the observation that r(x) is an increasing function of x, while
θ(x) ∈ (0, π/2) is a decreasing one. Then

ν1(x) = r(x)q cos(qθ(x)), ν2(x) = r(x)q, ν3(x) = r(x)2q + 1 + 2r(x)q cos(qθ(x))

are obviously increasing functions since qθ(x) ∈ [0, π/2] for all x ≥ 0 and q ∈ [0, 1]. Thus,

|(Fp[fδt ])(x+ iy)|2 = e−2tν1(x)

ν2(x)ν3(x)
≤ e−2tν1(0)

ν2(0)ν3(0)
= |(Fp[fδt ])(iy)|2.

It is also easy to see that
∫ ∞

0

|(Fp[fδt ])(iy)|2dy =

∫ ∞

0

e−2tapy1/p

y
p−1
p (y2/p + 1 + y1/pap)

= p

∫ ∞

0

e−2tapu

u2 + 1 + 2apu
du <∞,

where ap = cos(π/(2p)). We conclude that

(5.4) f(x) =
N∑

j=1

cje
−xtj ∈ Hp

for all p ≥ 1.
Now, let σ be a positive measure, such that fσ ∈ Hp ∩ C2. Let us show that (5.3) holds

for all such functions fσ. Indeed, for any fσ ∈ Hp ∩ C2, we have (see (2.7))

‖fσ‖Hp =
1√
π
‖(Fp[fσ])(iy)‖L2(0,∞).

Then, in order to establish (5.3), we need to prove the inequality

(5.5) ‖(Fp[fσ])(iy)‖L2(0,∞) ≤
√
πCp‖fσ‖2.

To prove (5.5), we estimate

(5.6)
∣∣fσ
(
(iy)1/p

)∣∣ ≤
∫ ∞

0

e−apy
1/ptdσ(t) = fσ

(
apy

1/p
)
.

We conclude that

‖(Fp[fσ])(iy)‖2L2(0,∞) ≤
∫ ∞

0

∣∣fσ
(
apy

1/p
)∣∣2

y
p−1
p |i1/py1/p + 1|2

dy.

Making a change of variables u = apy
1/p, we obtain

‖(Fp[fσ])(iy)‖2L2(0,∞) ≤
p

ap

∫ ∞

0

|fσ(u)|2

(u+ 1)2 + u2 tan2
(
π
2p

)du.

Writing
∫ ∞

0

|fσ(u)|2

(u+ 1)2 + u2 tan2
(
π
2p

)du =
∞∑

n=0

∫ n+1

n

|fσ(u)|2

(u+ 1)2 + u2 tan2
(
π
2p

)du,
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and estimating
1

(u+ 1)2 + u2 tan2
(
π
2p

) ≤ 1

(n+ 1)2 + n2 tan2
(
π
2p

) ,

when u ∈ [n, n+ 1], we obtain the bound

‖(Fp[fσ])(iy)‖2L2(0,∞) ≤
p

ap

∞∑

n=0

∫ 1

0
|fσ(x+ n)|2dx

(n+ 1)2 + n2 tan2
(
π
2p

) .

Finally, using the fact that 0 ≤ fσ(x+ n) ≤ fσ(x) for any CMF fσ, we conclude that

‖(Fp[fσ])(iy)‖2L2(0,∞) ≤
p‖fσ‖22
ap

∞∑

n=0

1

(n+ 1)2 + n2 tan2
(
π
2p

) .

If we replace n+ 1 by n in the bound above for n > 0, we obtain a simpler formula for the
constant Cp:

C2
p =

p

πap
+
πpap
6

, ap = cos

(
π

2p

)
.

To finish the proof of the theorem, we need the following density lemma.

Lemma 5.2. Suppose f ∈ C2. Then there exists a sequence of functions fn ∈ C2 of the
form (5.4), such that fn → f in L2(0, 1).

Proof. Let K be the closure in L2(0, 1) of the set of positive finite linear combinations of
functions fδt(x) = e−xt. Then, K is a closed, convex subset of L2(0, 1). Suppose, there
exists f0 ∈ C2\K. Then, by the Hahn-Banach separation theorem there exists g0 ∈ L2(0, 1),
such that for all t ≥ 0

∫ 1

0

e−xtg0(x)dx ≥ 0 >

∫ 1

0

f0(x)g0(x)dx.

If σ0 is the spectral measure of f0 ∈ C2, then integrating the left inequality above with
respect to σ0, we obtain ∫ 1

0

f0(x)g0(x)dx ≥ 0,

which contradicts the right inequality. We conclude that K = C2. �

Now, if f ∈ C2 and fn = fσn is as in the lemma, then by Lemma 3.3 ‖σn‖∗ ≤ ‖fn‖2.
Thus, we can extract a weak-* convergent subsequence in X∗, not relabeled, so that σn

∗
⇀σ,

where X is defined in (3.6). It follows that along this subsequence fσn(z) → fσ(z) for all
z ∈ R since e−zt ∈ X. Thus, since fσn → f in L2(0, 1), then fσ = f , and consequently
(Fp[fn])(z) → (Fp[f ])(z) pointwise on R. In addition, by the already proved inequality
(5.3) for functions (5.4), we have ‖Fp[fn]‖ = ‖fn‖Hp ≤ Cp‖fn‖2. Hence, there exists a
further subsequence, not relabeled, along which Fp[fn] ⇀ F in H2(R). But, since H2(R)
is a reproducing kernel Hilbert space, weak convergence implies pointwise convergence,
showing that Fp[f ] = F ∈ H. We conclude that f ∈ Hp, and the theorem is now proved. �

We emphasize that inequality (5.3) is valid only for all f ∈ C2. It does not hold for
f ∈ X = C2 − C2. In fact, our next theorem establishes the reverse inequality.
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Theorem 5.3. For every p ≥ 1

(5.7) ‖f‖2 ≤ 2

√
2π

p
‖f‖Hp

for every f ∈ X (every f ∈ X ∩ H1, if p = 1).

Proof. To prove this theorem, we use the analyticity of (Fp[f ])(z) in the right half-plane.
Let ΓL be the boundary of the rectangle [0, 1] × [0, L] traversed in the positive direction.
We first observe that similarly to (5.6), we can estimate

|fσ((x+ iL)1/p)| ≤ f|σ|
(
L1/pap

)
≤ f|σ|(ap).

We conclude that

lim
L→∞

∫ 1

0

|(Fp[fσ])(x+ iL)|2dx = 0,

and using the Cauchy theorem
∫
ΓL
(Fp[fσ])(z)

2dz = 0, we obtain the formula

‖Fp[fσ]‖22 =
∫ 1

0

(Fp[fσ])(x)
2dx =

∫ ∞

0

(Fp[fσ])(iy)
2idy −

∫ ∞

0

(Fp[fσ])(1 + iy)2idy.

By the symmetry of CMFs, we have (Fp[fσ])(z) = (Fp[fσ])(z). Therefore, we obtain the
inequality

‖Fp[fσ]‖22 ≤
1

2

∫

R

|(Fp[fσ])(iy)|2dy +
1

2

∫

R

|(Fp[fσ])(1 + iy)|2dy

≤
∫

R

|(Fp[fσ])(iy)|2dy = 2π‖fσ‖2Hp
,

where we used the property of Hardy functions that
∫
R
|F (x + iy)|2dy is a non-increasing

function of x. Finally, changing variable u = x1/p, we estimate

‖Fp[fσ]‖22 =
∫ 1

0

(Fp[fσ])(x)
2dx = p

∫ 1

0

fσ(u)
2

(u+ 1)2
du ≥ p

4
‖fσ‖22.

�

Now, in reference to the ‖ · ‖Hp norm, we can define the φp-problem by analogy with the
φ-problem (2.6):

(5.8) ∆x0
p (ǫ) = sup

φ∈Ap
ǫ

φ(x0), Ap
ǫ = {φ ∈ Hp : ‖φ‖Hp ≤ 1, ‖φ‖2 ≤ ǫ}.

6. The relations between (f, g), φ and φp-problems

In this section, we are going to examine the relations between the (f, g), φ and φp
problems, given by (2.4), (2.6), and (5.8), respectively, with the goal of establishing (2.8),
thereby proving Theorem 2.1.

Let p > 1, and let ψ
(n)
ǫ ∈ Hp be a maximizing sequence in the φp-problem (5.8). Define

φ
(n)
ǫ = Fp[ψ

(n)
ǫ ] ∈ H. Then ‖φ(n)

ǫ ‖ = ‖ψ(n)
ǫ ‖Hp ≤ 1, while

‖φ(n)
ǫ ‖22 =

∫ 1

0

|ψ(n)
ǫ (x1/p)|2

x(p−1)/p(1 + x1/p)2
dx = p

∫ 1

0

|ψ(n)
ǫ (u)|2

(1 + u)2
du ≤ p‖ψ(n)

ǫ ‖22 ≤ pǫ2.
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Thus, φ
(n)
ǫ /

√
p is a valid test function for the φ-problem, for every n ≥ 1, where x0 was

replaced by xp0. Therefore,

(6.1) ∆
xp0∗ (ǫ) ≥ φ

(n)
ǫ (xp0)√
p

=
ψ

(n)
ǫ (x0)

√
px

(p−1)/2
0 (1 + x0)

→ ∆x0
p (ǫ)

√
px

(p−1)/2
0 (1 + x0)

, as n→ ∞.

Now, let (fǫ, gǫ) be the solution of the (f, g)-problem. Define φǫ(x) = ∆[fǫ, gǫ](x) (see (2.3)
for notation). Then, ‖φǫ‖2 ≤ ǫ, and by Theorem 5.1

‖φǫ‖Hp ≤
‖fǫ‖Hp + ‖gǫ‖Hp

‖fǫ‖2 + ‖gǫ‖2
≤ Cp.

Thus, φǫ/(Cp + 1) is a valid test function in the φp-problem for any p > 1. Therefore,

(6.2) ∆x0
p (ǫ) ≥ φǫ(x0)

Cp + 1
=

∆[fǫ, gǫ](x0)

Cp + 1
=

∆x0(ǫ)

Cp + 1
.

An essential benefit of using the Hardy norm ‖ · ‖ is that it permits a controlled split of
functions φ ∈ H into the difference of two CMFs. Here is the construction. By Lemma 3.1,
if φ ∈ H, then there is a unique σ ∈ L2(0,∞), such that

φ(z) =

∫ ∞

0

e−ztσ(t)dt, ℜz > 0.

Let σ+(t) = max{0, σ(t)}, σ−(t) = max{0,−σ(t)}. Then, we define

φ±(z) =

∫ ∞

0

e−ztσ±(t)dt, ℜz > 0.

In this construction ∫ ∞

0

σ+(t)σ−(t)dt = 0.

Therefore, by Plancherel’s identity
∫

R

φ+(iy)φ−(iy)dy = 0.

But then

‖φ‖2 = 1

2π

∫

R

|φ+(iy)− φ−(iy)|2dy = ‖φ+‖2 + ‖φ−‖2 ≥
1

4
(‖φ+‖+ ‖φ−‖)2,

which shows that

‖φ‖ ≤ ‖φ+‖+ ‖φ−‖ ≤ 2‖φ‖.
In order to complete the circle of inequalities, we take φǫ to be the solution of the φ-

problem and define f = φ+
ǫ , g = φ−

ǫ . We then have, using Lemma 3.2,

|∆[f, g](x0)| =
|φǫ(x0)|

‖φ+
ǫ ‖2 + ‖φ−

ǫ ‖2
≥ |φǫ(x0)|√

π(‖φ+
ǫ ‖+ ‖φ−

ǫ ‖)
≥ |φǫ(x0)|

2
√
π‖φǫ‖

≥ |φǫ(x0)|
2
√
π

=
∆x0

∗ (ǫ)

2
√
π
.

We also estimate

‖∆[f, g](x)‖2 =
‖φǫ‖2

‖φ+
ǫ ‖2 + ‖φ−

ǫ ‖2
≤ Cpǫ

‖φ+
ǫ ‖Hp + ‖φ−

ǫ ‖Hp

≤ Cpǫ

‖φǫ‖Hp

.

To complete the circle of inequalities, we need the following theorem.
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Theorem 6.1. For any x0 ≥ 1 and p > 1, there exists cp(x0) > 0, such that

(6.3) ‖φǫ‖Hp ≥ cp(x0)ǫ
1− 1

p

for all sufficiently small ǫ.

The proof is in Appendix C. It is based on the fact that the solution φǫ of the φ-problem,
given by (4.10) and (4.21), is expressed in terms of the explicitly known eigenfunctions
u(x;µ), given by (4.17), of the integral operator K.
We can now complete the circle of inequalities and prove (2.8). According to Theorem 6.1,

(φ+
ǫ , φ

−
ǫ ) is an admissible pair for the (f, g)-problem, where ǫ is replaced with (Cp/cp(x0))ǫ

1
p ,

permitting us to conclude that γ(x0)/p ≤ γ∗(x0), where

γ(x0) = lim
ǫ→0

ln∆x0(ǫ)

ln ǫ
, γ(x0) = lim

ǫ→0

ln∆x0(ǫ)

ln ǫ
.

Combining this inequality with inequalities (6.1) and (6.2), we get

(6.4) γ∗(x
p
0) ≤ γp(x0) ≤ γp(x0) ≤ γ(x0) ≤ pγ∗(x0),

where

γp(x0) = lim
ǫ→0

ln∆x0
p (ǫ)

ln ǫ
, γp(x0) = lim

ǫ→0

ln∆x0
p (ǫ)

ln ǫ
.

The explicit form of γ∗(x0), given by (4.32) implies that γ∗(x0) is a continuous function of
x0. Then, passing to the limit as p→ 1+ in (6.4), we obtain the existence of the limits

lim
p→1+

γp(x0) = lim
p→1+

γp(x0) = γ∗(x0).

Inequality (6.2) then implies that

γp(x0) ≤ γ(x0) ≤ γ(x0) ≤ pγ∗(x0).

Passing to the limit in this inequality as p→ 1+ proves the existence of the limit

γ(x0) = lim
ǫ→0

ln∆x0(ǫ)

ln ǫ
,

as well as the desired equality (2.8).

7. The local problem

Suppose f0 ∈ C2 is given, as well as x0 ≥ 1. Let

Kǫ[f0] = {f ∈ C2 : ‖f − f0‖2 ≤ ǫ}.
We note that Kǫ[f0] is a convex set. The goal is to compute

(7.1) Mǫ(x0; f0) = max
f∈Kǫ[f0]

f(x0), mǫ(x0; f0) = min
f∈Kǫ[f0]

f(x0).

While the Kuhn-Tucker theorem is applicable to the local problem (7.1) and leads to
optimality conditions that are easy to check numerically, they are not very useful as a
guide for finding the extremals in (7.1).
For this reason, we forgo the details of the Kuhn-Tucker-based analysis and opt instead

for the direct variational approach due to Caprini [3, 4, 5], which is narrower in scope than
Kuhn-Tucker, but leads directly to a natural algorithm for computing the extremals in (7.1)
approximately. The method is applicable for the minimization of general positive definite
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quadratic functionals, and necessitates the dual reformulation of the variational problems
(7.1). Given f0 ∈ C2 and δ ∈ (−δ−, δ+), for some small δ± > 0, we seek to solve

(7.2) min
f∈C2

f(x0)−f0(x0)=δ

‖f − f0‖22.

Suppose that fσ∗ satisfies the constraint fσ∗(x0)− f0(x0) = δ and minimizes the functional
J [σ] = ‖fσ − f0‖22. The Caprini method is based on the following representation of the
variation ∆J = J [σ]− J [σ∗] ≥ 0:

(7.3) ∆J = ‖fσ − f0‖22 − ‖fσ∗ − f0‖22 = 2

∫ ∞

0

C(t)d∆σ(t) + ‖f∆σ‖22,

where ∆σ = σ − σ∗, and

(7.4) C(t) = (Λfσ∗)(t)− (Λf0)(t) =

∫ 1

0

e−xt(fσ∗(x)− f0(x))dx

is the Caprini function.

Theorem 7.1. The minimizer σ∗ in (7.2) exists and is unique and has either a finite
support or a countable support {tn : n ≥ 1} with

(7.5)
∞∑

n=1

1

tn
<∞.

In either case

(7.6) C(t) ≥ e−x0t

f0(x0) + δ

∫ 1

0

fσ∗(x)(fσ∗(x)− f0(x))dx, t ≥ 0,

with equality at all t = tn in the support of σ∗. Conversely, if σ∗ is a positive measure, whose
support {tn : n ≥ 1} satisfies (7.5), and is such that (7.6) holds, then it is a minimizer in
(7.2), provided σ∗ 6= σ0, where fσ0 = f0.

Proof. To prove existence, we let σn be a minimizing sequence. Then the boundedness of
‖fσn‖2 implies the boundedness of ‖σn‖∗, according to Lemma 3.3. Hence, we can extract

a subsequence, not relabeled, such that fσn ⇀ f∗ in L2(0, 1) and σn
∗
⇀ σ∗ in X∗, where X

is given by (3.6). Then fσn(x) → fσ∗(x) for all x > 0 since e−xt ∈ X for all x > 0. We
conclude that f∗ = fσ∗ , and that fσ∗(x0) − f0(x0) = δ. The weak lower semicontinuity of
the L2(0, 1) norm implies that

‖f∗ − f0‖2 ≤ lim
n→∞

‖fσn − f0‖2 = min
f∈C2

f(x0)−f0(x0)=δ

‖f − f0‖22.

The uniqueness of the minimizer follows from the convexity of the constraint and the strict
uniform convexity of the L2(0, 1) norm.
Now, let σ∗ be the minimizer in (7.2). Assume first that σ∗ has a point mass at t∗. Then,

we remove ǫδt∗(t) from σ∗, while placing the mass ǫex0(t0−t∗) at t0, preserving the constraint.
In that case

∆J = 2ǫ(ex0(t0−t∗)C(t0)− C(t∗)) +O(ǫ2) ≥ 0,

and therefore, ex0t0C(t0) ≥ ex0t∗C(t∗). Hence, any point mass t∗ in the support of σ∗ must
be a point of global minimum of ex0tC(t) on [0,+∞). If t∗ is in the support of σ∗, but is
not a point mass, then m(ǫ) = σ∗((t∗ − ǫ)+, t∗ + ǫ)) → 0, as ǫ→ 0, while m(ǫ) > 0 for any
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ǫ > 0. In that case, we remove σ∗|((t∗− ǫ)+, t∗+ ǫ) from σ∗ and place the appropriate mass
m(ǫ)ex0(t0−t∗) at t0, so as to maintain the constraint. This time, we obtain

∆J = m(ǫ)(ex0(t0−t∗)C(t0)− C(t∗)) + o(m(ǫ)).

Once again, we conclude that t∗ must be a point of global minimum of ex0tC(t). Since
ex0tC(t) is an entire function of t, as is evident from (7.4), the support of σ∗ must be
discrete. If the support of σ∗ is infinite

(7.7) σ∗ =
∞∑

n=1

anδtn(t), an > 0,

and does not satisfy (7.5), then, by the Müntz-Szasz theorem [15], the set of functions utn

are dense in C0([0, 1]). But then the functions e−xtn are dense in C0(0,∞). In that case
the equation

(7.8) ex0tnC(tn) = m
def
= min

t≥0
ex0tC(t)

would imply that
∫ 1

0

g(x)(f∗(x)− f0(x))dx = g(x0)m, ∀g ∈ C0(0,∞),

where f∗ is a shorthand for fσ∗ . This easily leads to a contradiction if, for example, we take
a delta-like sequence gn(x) converging to δa(x) for an arbitrary a ∈ (0, 1).
Now, equation (7.8) written as C(tn) = e−x0tnm implies

∫ 1

0

f∗(x)(f∗(x)− f0(x))dx = f∗(x0)m,

giving a formula for m,

(7.9) m =
1

f∗(x0)

∫ 1

0

f∗(x)(f∗(x)− f0(x))dx.

The constraint f∗(x0)−f0(x0) = δ, can then be incorporated into the optimality conditions
by replacing f∗(x0) by f0(x0) + δ in (7.9), obtaining (7.6).
To see that (7.6) with equality provision is sufficient for optimality, we integrate (7.6)

with respect to σ∗, and obtain f0(x0) + δ = f∗(x0), taking (7.4) into account, unless

(7.10)

∫ 1

0

f∗(x)(f∗(x)− f0(x))dx = 0.

However, if (7.10) holds, then (7.6) reads C(t) ≥ 0. Integrating this inequality with respect
to σ0, such that f0 = fσ0 , we obtain

(7.11)

∫ 1

0

f0(x)(f∗(x)− f0(x))dx ≥ 0.

Subtracting (7.11) from (7.10), we obtain ‖f0 − f∗‖ ≤ 0, which implies that f∗ = f0 and
hence, σ∗ = σ0. This shows that (7.6) implies f∗(x0)− f0(x0) = δ, provided σ∗ 6= σ0.
Now, if σ is any competitor measure, satisfying the constraint, then equation (7.3) be-

comes

∆J = 2

(∫ ∞

0

C(t)dσ(t)− f∗(x0)m

)
+ ‖f∆σ‖22,
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where

m =
1

f0(x0) + δ

∫ 1

0

fσ∗(x)(fσ∗(x)− f0(x))dx.

Discarding ‖f∆σ‖22 and using inequality (7.6), we obtain

∆J ≥ 2

(
m

∫ ∞

0

e−x0tdσ(t)− f∗(x0)m

)
= 2m(fσ(x0)− f∗(x0)) = 0

since, due to the constraint, we must have fσ(x0) = f∗(x0) for any competitor measure.
�

To illustrate the optimality conditions, let us consider an example with f0(x) = e−x. In
this case, the solutions of (7.2) can be computed explicitly. The forms of these solutions
were, in fact, suggested by first solving these problems numerically with an algorithm
based on formula (7.3). If δ > 0, then f∗(x) = f+

∗ (x) = a + be−xτ for appropriately
chosen a > 0, b > 0 and τ > 1. If δ ∈ (−e−x0 , 0), then f∗(x) = f−

∗ (x) = ae−xτ for
appropriately chosen a > 0 and τ > 1. If δ > 0, the optimality condition (7.6) gives

equations Ĉ(0) = Ĉ(τ) = 0, and Ĉ ′(τ) = 0, where Ĉ(t) = C(t) −me−x0t. Together with
the constraint, f∗(x0) = f0(x0) + δ, this results in 4 equations for the 4 unknowns a, b, τ

and m. Similarly, if δ < 0, the optimality condition (7.6) gives equations Ĉ(τ) = 0, and

Ĉ ′(τ) = 0, which together with the constraint, results in 3 equations for the 3 unknowns
a, τ and m. The resulting system of equations is linear in (a, b,m) for δ > 0 and in (a,m)
for δ < 0, so that these parameters can be easily eliminated, leading to a single algebraic
equation for τ . This equation is very complicated to be displayed here, but it can be easily
investigated either numerically or by means of a computer algebra system and shown to
have a unique solution τ(x0, δ), for all x0 ≥ 1 and δ ∈ (−e−x0 , 0), if δ < 0, and δ ∈ (0,+∞),
if δ > 0. When ǫ is small, we find

Mǫ(x0; e
−x) = E+(x0)ǫ+O(ǫ2), mǫ(x0; e

−x) = E−(x0)ǫ+O(ǫ2),

where E+(x0) is an increasing function of x0 from

E+(1) =

√
− e4 − 8e3 + 14e2 + 8e− 19

(e2 − 2e− 1)(3e2 − 10e+ 5)
≈ 2.67788263

to

E+(∞) =

√
− e2 + 2e− 1

3e2 − 10e+ 5
≈ 27.488747597.

The function E−(x0) behaves in a more complicated manner. It increases from

E−(1) = 2

√
e2 − 1

e4 − 6e2 + 1
≈ 1.5

to its maximal value E−((e + 2)/(e + 1)) ≈ 1.566 and then decreases to 0 as x0 increases

from (e + 2)/(e + 1) to +∞, In fact, Ê−(x0) = x−1
0 ex0E−(x0) is a monotone increasing

function from eE−(1) ≈ 4.1 to

Ê−(∞) = 2e

√
2(e2 − 1)

(e2 − 1)2 − 4e2
≈ 5.8.
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Figure 1. Solutions of the local worst case extrapolation problems (7.2)
with f0(x) = e−x, x0 = 2, ǫ = 0.01, and their respective certificates of
optimality.

The plots of f±
∗ (x) and f0(x) together with their respective certificates of optimality Ĉ(t) =

C(t)−me−x0t are shown in Fig. 1.
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Appendix A. Kuhn-Tucker in topological vector spaces

Let X be a locally convex topological vector space. Let F ⊂ X∗ ⊕ R be any subset.
Define

(A.1) K = {x ∈ X : f(x) ≤ α ∀(f, α) ∈ F}.
Then K ⊂ X is both closed and convex. Let h ∈ X∗ be a given functional. The maximiza-
tion problem

(A.2) m = sup
x∈K

h(x)

is called the linear programming problem. If the set K is empty the value of m is set to
−∞ by convention.

Let F̂ denote the smallest closed (in weak-* topology of X∗⊕R) convex cone containing
F . We remark that

K = {x ∈ X : f(x) ≤ α ∀(f, α) ∈ F̂}.
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We also define
K∗ = {(f, α) ∈ X∗ ⊕ R : f(x) ≤ α ∀x ∈ K}.

Obviously, F̂ ⊂ K∗. It is easy to give an example where K∗ 6= F̂ . Let X = R and

F = {(1, 0)}, so that K = {x ∈ R : x ≤ 0} and F̂ = {(f, 0) ∈ R
2 : f ≥ 0}. But

K∗ = {(f, α) ∈ R
2 : fx ≤ α ∀x ≤ 0} = {(f, α) ∈ R

2 : f ≥ 0, α ≥ 0}.
Our goal is to obtain a dual formulation of (A.2). We observe that if m < +∞, then

(h,m) ∈ K∗, while (h,m− ǫ) 6∈ K∗ for any ǫ > 0. Thus, m is the smallest of the numbers
α, such that (h, α) ∈ K∗. For this reason, we introduce the following notation. For any
subset S ⊂ X∗ × R and any f ∈ X∗, we define

Sf = {α ∈ R : (f, α) ∈ S}.
Our remark can then be stated that m < +∞ if and only if K∗

h 6= ∅, in which case
m = minK∗

h. The dual set K∗ is a maximal set of inequalities defining K, while the

set F̂ ⊂ K∗ describes the weak-* closure of the set of inequalities obtained by positive
linear combinations of finite subsets of inequalities in (A.1). The remarkable fact of the

Kuhn-Tucker theorem is that even though F̂ can be a lot smaller than K∗, as our example
showed, it still contains all the bottom extremal points of K∗.

Theorem A.1. Suppose that the set K, given by (A.1), is non-empty. Let F̂ be the
smallest weak-* closed convex cone containing F . Let m be given by (A.2). Then

(A.3) m = min F̂h,

where we have indicated that the minimum is achieved, if F̂h 6= ∅.
We remark that requiring K 6= ∅ is essential. For example, we can take X = R

2 and
F = {(e1, 0), (−e1,−1)}, corresponding to constraints x1 ≤ 0 and −x1 ≤ −1, which are
inconsistent, so that K = ∅. We compute

F̂ = {((λ1 − λ2)e1,−λ2) : λ1 ≥ 0, λ2 ≥ 0}.
For h = e2 the set of pairs (e2, α) ∈ F̂ is empty resulting in the minimum in (A.3) to be
+∞, while the supremum over the empty set is −∞.

Proof. We have already observed that

sup
x∈K

h(x) < +∞ ⇐⇒ K∗
h 6= ∅.

Therefore, if K∗
h = ∅ then F̂h = ∅ since F̂ ⊂ K∗. Thus, if m = +∞, then formula (A.3) is

valid. It only remains to consider the case m < +∞, whereby (h,m) ∈ K∗. The theorem

below asserts that (h,m) ∈ F̂ , and therefore, that m has to be equal to the right-hand side
of (A.3) since (h,m− ǫ) 6∈ K∗ for every ǫ > 0. �

Theorem A.2. Under assumptions of Theorem A.1 assume additionally that m < +∞.

Then (h,m) ∈ F̂ .

Proof. If (h,m) 6∈ F̂ then, by the Hahn-Banach convex separation theorem there exists
ξ0 ∈ X, µ0 ∈ R, γ ∈ R, such that

(A.4) h(ξ0) + µ0m < γ ≤ f(ξ0) + µ0α, ∀(f, α) ∈ F̂ .
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Here, we used the fact that the set of all linear continuous functionals on X∗, equipped
with its weak-* topology is parametrized by X, i.e. for any F ∈ (X∗,weak-*)∗ there exists
a unique x ∈ X, such that F (f) = f(x) for all f ∈ X∗.

We first observe that if there exists (f0, α0) ∈ F̂ , such that f0(ξ0) + µ0α0 < 0 then the

second inequality in (A.4) cannot hold since (λf0, λα0) ∈ F̂ for any λ > 0. However, if
f0(ξ0) + µ0α0 ≥ 0 then λf0(ξ0) + µ0λα0 can be made as close to 0 as one wishes. It follows
that γ = 0. We thus restate (A.4) in a more convenient form:

(A.5) h(ξ0) + µ0m < 0, f(ξ0) + µ0α ≥ 0, ∀(f, α) ∈ F̂ .
We need to consider 3 possibilities for µ0.

(1) µ0 > 0. In this case

f

(
− ξ0
µ0

)
≤ α, ∀(f, α) ∈ F̂ .

which implies that −ξ0/µ0 ∈ K. But then, according to the first inequality in (A.5),

h

(
− ξ0
µ0

)
> m,

which contradicts the definition (A.2) of m.
(2) µ0 = 0. Since K 6= ∅ there exists u ∈ K. But then for any λ ≥ 0, we have

f(u− λξ0) ≤ α, ∀(f, α) ∈ F̂ .
This implies that u−λξ0 ∈ K. But h(u−λξ0) = h(u)−λh(ξ0), which can be made
arbitrarily large and positive by a choice of λ > 0 since h(ξ0) < 0. This contradicts
the assumption that m < +∞.

(3) µ0 < 0. For convenience of working with positive numbers, we set µ0 = −ν0, and
ν0 > 0. In that case, we have f(ξ0) ≥ ν0α for every (f, α) ∈ F̂ . Then for every
x ∈ K, we have for any t > 0

f(x− tξ0) ≤ (1− tν0)α.

Thus, for all x ∈ K and t ∈ (0, 1/ν0), we conclude that

y(x, t) =
x− tξ0
1− tν0

∈ K.

We will get a contradiction by showing that

sup
x∈K

0<t<ν−1
0

h(y(x, t)) > m.

We compute

h(y(x, t)) = m+
h(x)−m− t(h(ξ0)− ν0m)

1− tν0
.

By definition of the supremum there exist x0 ∈ K, such that

h(x0) > m+
h(ξ0)− ν0m

2ν0

since h(ξ0)− ν0m < 0. But then h(y(x0, (2ν0)
−1)) > m.
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The obtained contradictions imply that (h,m) ∈ F̂ , establishing (A.3). �

Appendix B. Asymptotics of u(z;µ) for large µ

To compute the asymptotics of u(z;µ), as µ → +∞ for z ∈ Ω = {z ∈ C : ℜz > 0, z 6∈
[0, 1]}, we first apply the Pfapf transformation [13, formula (1.8)], and obtain

u(z;µ) =
1

z
F

([
1

4
+
iµ

2
,
1

4
− iµ

2

]
, [1]; 1− 1

z2

)
.

We note that The map g(z) = 1−z−2 maps Ω into Ω̂ = C\{w ∈ R : w(w−1) ≥ 0}, to which
the asymptotic expansion from [13, Theorem 3.2] applies. Substituting our parameters
into the expansion [13, (3.8)–(3.11)] and retaining only the leading term (n = 1 in the
expansion), we obtain

πiF

([
1

4
+
iµ

2
,
1

4
− iµ

2

]
, [1]; 1− 1

z2

)
∼

(
ξ

2

) 1
2
(
e(

iµ
2
− 1

4)πiK− 1
2

(
− iξµ

2

)
− e(

3
4
− iµ

2 )πiK− 1
2

(
iξµ

2

))
c0 +O(Φ1(µ, ξ)),

where

ξ = ln

(
1− 2

z2
− 2i

√(
1− 1

z2

)
1

z2

)
, c0 = −

√
z

(z2 − 1)1/4
.

Φ1(µ, ξ) = e−
πµ
2

√
|ξ|
µ

∣∣∣∣K− 1
2

(
− iµξ

2

)∣∣∣∣+ e
πµ
2

√
|ξ|
µ

∣∣∣∣K− 1
2

(
iµξ

2

)∣∣∣∣

+
e−

πµ
2

√
|ξ|µ

∣∣∣∣K 1
2

(
− iµξ

2

)∣∣∣∣+
e

πµ
2

√
|ξ|µ

∣∣∣∣K 1
2

(
iµξ

2

)∣∣∣∣ .

Here the transformation ζ = 1− 2z−2 maps

Ω = {z ∈ C : ℜz > 0, z 6∈ [0, 1]}
onto

G = C \ {ζ ∈ R : |ζ| ≥ 1}.
Then

ξ = ln(ζ − i
√
1− ζ2).

We observe that ζ = cosh ξ, and therefore, ξ(ζ) is injective on G. Thus, ∂∞ξ(G) = ξ(∂∞G).
Computing the images of (−∞,−1]± 0i and [1,+∞)± 0i and noting that ξ(∞) = ∞, we
conclude that ξ(ζ) maps G onto the strip −π < ℑξ < 0 bijectively. We also note that

cosh ξ = ζ = 1− 1

z2
,

which implies that
1

z2
= − sinh2

(
ξ

2

)
.
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Since z ∈ Ω lies in the right half-plane, while ℑξ ∈ (−π, 0), we conclude that

1

z
= i sinh

(
ξ

2

)
= sin

(
iξ

2

)
.

We can write this as

cos

(
π

2
− iξ

2

)
=

1

z
, −π < ℑξ < 0.

Since the map η = π/2 − iξ/2 maps the strip −π < ℑξ < 0 onto the strip ℜη ∈ (0, π/2),
we conclude that η = α(z), where α(z) was defined in (4.28) and, thus,

(B.1) ξ = i(2α(z)− π).

Using (B.1) and the formulas

K 1
2
(z) = K− 1

2
(z) =

√
π

2

e−z√
z
,

we obtain the error estimate

O(Φ1(µ, ξ)) = O

(
e

πµ
2
(1+ℑξ/π)

µ
√
µ

)
= O

( |eπµα(z)|
µ
√
µ

)
.

Since |ℑξ| < π, we conclude that the term e(
iµ
2
− 1

4)πiK− 1
2

(
− iξµ

2

)
is negligible, compared to

e(
3
4
− iµ

2 )πiK− 1
2

(
iξµ
2

)
. Therefore, we obtain the asymptotics

u(z;µ) ∼ eiπ/4√
2πµ

e
πµ
2 (1−

iξ
π )

(z2 − 1)1/4
√
z

√
ξ√
iξ

+O

( |eπµα(z)|
µ
√
µ

)
.

Since −π < ℑξ < 0, we conclude that
√
ξ√
iξ

= e−
iπ
4 .

Thus, for all z ∈ Ω

(B.2) u(z;µ) =
1√
2πµ

eπµα(z)

(z2 − 1)1/4
√
z
+O

( |eπµα(z)|
µ
√
µ

)
.

Appendix C. Estimate of ‖φǫ‖Hp

The goal of this section is to prove the lower bound (6.3) on ‖φǫ‖Hp . When x0 > 1, Part
(i) of Theorem 4.4 can be used to estimate ‖ψε‖Hp from below. If x0 = 1

(C.1) ψε(z) =

∫ ∞

0

u(z;µ)µ tanh(πµ)

2ε̂2 cosh(πµ) + 1
dµ.

Its asymptotics as ε→ 0+ is given by the following theorem.

Theorem C.1. Let z ∈ Ω = {z ∈ C : ℜz > 0, z 6∈ [0, 1]}, and ψε be the solution of the
integral equation (4.5) with x0 = 1. Then

(C.2) ψε(z) ∼
R(z)

√
| ln ε̂|

π sin(α(z))
ε̂

−2α(z)
π , ε̂ =

ε√
2π
.

where R(z) and α(z) are defined in (4.28).
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Proof. As we have argued before, the asymptotics of ψε(z) is determined by the asymptotics
of the integrand in (C.1), as µ → ∞. Thus, we would want to replace u(z;µ) by its
asymptotics (4.27), tanh(πµ) by 1, and 2 cosh(πµ) by eπµ. We therefore, rewrite (C.1) as

(C.3) ψε(z) =
R(z)√
2π

∫ ∞

0

√
µeα(z)µv(z;µ)

2ε̂2 cosh(πµ) + 1
dµ,

where

v(z;µ) =
u(z;µ)

u0(z;µ)
tanh(πµ),

and where u0(z;µ) is given by (4.30). Then, v(z; ·) ∈ C([0,∞)), due to the representation
(4.31), as argued in the proof of Theorem 4.4, and v(z;µ) → 1, as µ→ ∞, by Lemma 4.2.
Thus, there exists M(z) > 0, such that |v(z;µ)| ≤M(z), for any z ∈ Ω.
Let I(ε̂) denote the integral in (C.3). Changing variables µ′ = πµ+ 2 ln(ε̂), we obtain

I(ε̂) =
1

π

√
−2 ln ε̂

π
ε̂

−2α(z)
π

∫ ∞

2 ln ε̂

√
µ′ − 2 ln ε̂

−2 ln ε̂


e

α(z)µ′

π v(z; µ
′

π
− 2 ln ε̂

π
)

eµ′ + e−µ′+4 ln ε̂ + 1


 dµ′

The estimate ∣∣∣∣∣∣

√
µ′ − 2 ln ε̂

−2 ln ε̂


e

α(z)µ′

π v(z; µ
′

π
− 2 ln ε̂

π
)

eµ′ + e−µ′+4 ln ε̂ + 1



∣∣∣∣∣∣
χ(2 ln ε̂,∞)(µ

′) ≤ Φ(µ′)

where Φ(µ′) is given by

Φ(µ′) =

{
M(z)e(

ℜα(z)
π

−1)µ′ µ′ < 0,

M(z)
√
µ′ + 1e(

ℜα(z)
π

−1)µ′ µ′ > 0,

shows that the Lebesgue dominated convergence theorem is applicable since ℜα(z) ∈
(0, π/2), by Lemma 4.5. Therefore,

ψε(z) ∼
R(z)

π2

√
| ln ε̂|ε̂−2α(z)

π

∫

R

e
α(z)µ′

π

eµ′ + 1
dµ′ =

R(z)
√

| ln ε̂|
π sin(α(z))

ε̂
−2α(z)

π .

The theorem is proved. �

In order to estimate ‖ψǫ‖Hp (for any x0 ≥ 1), we need a tighter bound on ℜα((iy)1/p),
when y > 0 and p > 1, which becomes optimal as p → 1+. Formula (4.28) show that
ℜα(iy + 0) = π/2, for any y > 0. In fact, we have the following estimate.

Lemma C.2. Let y > 0 and p > 1. Then ℜα((iy)1/p) ∈
(
π
2p
, π
2

)
.

Proof. We first observe that for any z ∈ Ω

α(z) = −i ln z + i ln(1− i
√
z2 − 1).

Indeed, it is easy to see that the right-hand side of the above formula is analytic in Ω and
agrees with arccos(1/z) for z > 1. The same is true for the left-hand side. Therefore, they
must agree everywhere in Ω. If z = (iy)1/p, then z2 = reiθp , where θp = π/p ∈ (0, π), and
r > 0. It is now easy to see that arg(z2−1), as a function of r, decreases from π at r = 0 to
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θp at r = +∞. Hence, arg(−i
√
z2 − 1) decreases from 0 at r = 0 to θp/2−π/2 at r = +∞.

Therefore, arg(1− i
√
z2 − 1) will also be between 0 and θp/2− π/2. Thus,

ℜα(z) = θp
2
− arg(1− i

√
z2 − 1) ∈

(
θp
2
,
π

2

)
.

�

Theorem C.3. For x0 ≥ 1 and p > 1, there is a constant sp(x0) > 0 such that

‖ψε‖Hp ≥ sp(x0)

{
ε−

2α(x0)
π

− 1
p , x0 > 1,

ε−
1
p

√
| ln ε|, x0 = 1.

for all sufficiently small ε > 0.

Proof. Let

ψx0ε (z) =





R(x0)R(z)
2π sin(πβ(z))

ε̂−2β(z), x0 > 1,

R(z)
√

| ln ε̂|
π sin(α(z))

ε̂
−2α(z)

π , x0 = 1,
β(z) =

α(x0) + α(z)

π
.

Then, Theorems 4.4(i) and C.1 say that ψε(z) ∼ ψx0ε (z) for any z ∈ Ω and any x0 ≥ 1. We
then write

‖ψε‖2Hp
=

1

π

∫ ∞

0

|ψε((iy)1/p)|2
Np(y)|ψx0ε ((iy)1/p)|2 |ψ

x0
ε ((iy)1/p)|2dy,

where Np(y) = y
p−1
p |1 + (iy)1/p|2. By Lemma C.2, we estimate

(C.4) |ψx0ε ((iy)1/p)| ≥ Ap(x0, y)K
x0
p (ε),

where

Ap(x0, y) =





R(x0)|R((iy)1/p)|(2π)
α(x0)

π + 1
2p

2π| sin(πβ((iy)1/p))| , x0 > 1,

|R((iy)1/p)|(2π)
1
2p

π| sin(πα((iy)1/p))| , x0 = 1,
Kx0
p (ε) =

{
ε−

2α(x0)
π

− 1
p , x0 > 1,

ε−
1
p

√
| ln ε|, x0 = 1.

Thus, we obtain the lower bound

‖ψε‖2Hp
≥ Kx0

p (ε)2

π

∫ ∞

0

|ψε((iy)1/p)|2
Np(y)|ψx0ε ((iy)1/p)|2Ap(x0, y)

2dy.

Now, by Fatou’s lemma, we have, taking into account ψε(z) ∼ ψx0ε (z), as ε→ 0+,

lim
ε→0

‖ψε‖2Hp

Kx0
p (ε)2

≥ 1

π

∫ ∞

0

Ap(x0, y)
2

Np(y)
dy =: 2sp(x0)

2 > 0.

It follows that for all sufficiently small ε > 0, we have ‖ψε‖Hp ≥ sp(x0)K
x0
p (ε). �

We now have everything we need to prove Theorem 6.1.

Proof of Theorem 6.1. We have, using (4.13)

(C.5) ‖φǫ‖Hp =
ǫ‖ψε‖Hp

‖ψε‖2
=

‖ψε‖Hp

‖ψε‖
.

It only remained to observe that Theorems 4.4(iii), 4.6(ii) can be written as

‖ψε‖ ∼ C0(x0)K
x0
p (ε)ε

1
p
−1,
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where

C0(x0) =

{
(2π)β(x0)/2

π

√
x0 arccos(1/x0)

2(x20−1)
, x0 > 1,

√
2
π
, x0 = 1.

Combining this with Theorem C.3 and applying to (C.5), we obtain that

‖φǫ‖Hp ≥
sp(x0)

2C(x0)
ε1−

1
p

for all sufficiently small ε > 0. Theorem 6.1 is now proved. �
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