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Abstract

For modeling coherent phase transformations, and for applications to structural op-

timization, it is of interest to identify microstructures with minimal energy or maximal

stiffness. S. Vigdergauz has shown the existence of a particularly simple microstruc-

ture with extremal elastic behavior, in the context of two-phase composites made from

∗This work was done while Y. G. was a student at the Courant Institute.
†The work of R. V. K. was partially supported by ARO contract DAAL 03-92-G-0011 and NSF grants

DMS-9404376 and DMS-9402763.

1



isotropic components in two space dimensions. This “Vigdergauz microstructure” con-

sists of a periodic array of appropriately shaped inclusions. We provide an alternative

discussion of this microstructure and its properties. Our treatment includes an explicit

formula for the shape of the inclusion, and an analysis of various limits. We also dis-

cuss the significance of this microstructure (i) for minimizing the maximum stress in a

composite, and (ii) as a large volume fraction analog of Michell trusses in the theory

of structural optimization.

1 Introduction.

This paper is devoted to the “Vigdergauz microstructure”, a special elastic composite in two

space dimensions whose microscopic behavior is in a certain sense elastically extremal. This

composite is spatially periodic, consisting of properly shaped elastic inclusions embedded

in an elastic matrix. We call it extremal because it minimizes the overall energy at a

given strain ξ, among all composites made from the same components in the same volume

fractions.

To explain why this microstructure is interesting, we note that extremal composites

have recently received a lot of attention. One reason lies in applications to structural op-

timization, see e.g. (Allaire and Kohn, 1993c; Bendsøe and Kikuchi, 1988; Gibiansky and

Cherkaev, 1984; Jog, Haber and Bendsøe, 1992; Kohn and Strang, 1986; Lurie and Cherkaev,

1986; Murat and Tartar, 1985). Another lies in theoretical developments in the analysis of

composites, see e.g. (Allaire and Kohn, 1993b; Francfort and Murat, 1986; Gibiansky and

Cherkaev, 1987; Milton, 1990; Milton, 2002; Milton and Kohn, 1988; Tartar, 1985). A third

motivation is the idea that the shapes of coherent precipitates may be explained by elas-

tic energy minimization, see e.g. (Kaganova and Roitburd, 1987; Kardonski and Roitburd,

1972; Khachaturyan, 1983; Larché and Cahn, 1994; Lu, 1993; Pineau, 1976; Thompson, Su

and Voorhees, 1994).

As a result of recent progress, we now know a rather general algorithm for computing

examples of elastically extremal two-component composites (Allaire and Kohn, 1993b; Avel-

laneda, 1987; Kohn and Lipton, 1988; Milton, 1990). This algorithm works in principle in

three space dimensions, and with anisotropic component materials. It produces the ex-

treme value of the elastic energy, and examples of extremal microstructures obtained by a

construction known as “sequential lamination”.
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It is well-known that extremal microgeometries are generally not unique. To take a

familiar example, the Hashin-Shtrikman bounds on the effective bulk modulus (Hashin and

Shtrikman, 1963) are realized both by sequential lamination (Francfort and Murat, 1986)

and by the concentric sphere construction (Hashin, 1962). This degeneracy is by no means

restricted to the case of the bulk modulus bound, see e.g. (Grabovsky and Kohn, 1995).

Thus it is natural to consider other examples of extremal microstructures, particularly ones

that are in some sense simple.

Hence our interest in the Vigdergauz microstructure: it achieves the same extremal

behavior as the other known constructions (“second-rank lamination” and the “confocal el-

lipse construction”), but it is in some sense simpler and more ordered. This microstructure

was first discovered by S. Vigdergauz in a series of papers (Vigdergauz, 1976)–(Vigdergauz,

1994). His first paper (Vigdergauz, 1976) simply sought a finite number of “equally strong”

holes in an elastic plate. He reduced the task of finding such holes to that of solving a

particular integral equation, which he then solved numerically. Subsequently Vigdergauz

extended his calculations to periodic arrays of elastic inclusions as well as holes (Vigder-

gauz, 1986; Vigdergauz, 1989a; Vigdergauz, 1994). In (Vigdergauz, 1994) he also computed

the energy of the microstructure explicitly, and observed that the value coincides with the

optimal bounds derived by Gibiansky and Cherkaev (1984).

The purpose of the present article is to give an alternative treatment of the Vigdergauz

microstructure, and to explore its properties in more detail. We take a different starting

point, namely the “optimality conditions” for elastic energy minimization as derived in

(Grabovsky, 1996). This leads, through the use of Kolosov-Muskhelishvili potentials, to a

problem in complex variables for the shape of the inclusions. The problem is very similar to

that addressed by Cherepanov (1974). Using his ideas we derive an explicit representation

for the shape of the inclusions in terms of elliptic functions. We recover almost all of the

Vigdergauz’s results, with arguments that are somewhat simpler, and a representation of the

answer that is much more explicit. However we do not have an explicit formula for the full

Hooke’s law tensor associated to this composite. Such a formula is asserted in (Vigdergauz,

1994) but we were not able to understand that part of the paper.

The Vigdergauz microstructure consists of a spatially periodic array of inclusions of a

particular shape. The shape of the inclusions depends on the average strain ξ (or more

precisely, on its eigenvalues). When the deviatoric part of ξ becomes much larger than its
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hydrostatic part, this microstructure ceases to exist. The condition for its existence, equation

(3.23) below, is easy to understand from the viewpoint of energy minimization: it defines one

of the regimes in the optimal energy bound as derived in (Allaire and Kohn, 1993a, formula

(1.4)). When the existence condition (3.23) breaks down one enters another regime, where

the optimal geometries must have a different topological structure (see (Grabovsky, 1996)

for a more detailed discussion). The condition (3.23) appears in the work of Vigdergauz,

too; there it was derived from the positivity of a Green’s function for an elliptic operator.

In this paper we examine the behavior of the Vigdergauz microstructure in various lim-

its. We are able to do so because our representation of the microstructure is very explicit.

Remarkably, one can obtain such diverse structures as an optimal elliptical inclusion in an

infinite plane, a simply layered composite, and a rank-two laminate as limits of the Vigder-

gauz geometry. More precisely, in the dilute limit the Vigdergauz microstructure consists of

a periodic array of non-interacting optimal elliptical inclusions. As one approaches equality

in the existence condition (3.23) the inclusions become increasingly elongated, forming in

the limit a layered microstructure. And if we use a rectangle with sides L and 1/L as the

period lattice rather than a square, then the Vigdergauz microstructure becomes a rank-two

laminate in the limit L→ ∞.

Let us dwell a bit more on the dilute limit. It has been known since the work of Es-

helby that the strain in an isolated elliptical inclusion is constant. Several authors have

used this fact to predict the shapes and orientation of coherent precipitates in the dilute

limit, by assuming an elliptical geometry and optimizing over orientation and eccentricity

(Barnett, Lee, Aaronson and Russel, 1974; Kaganova and Roitburd, 1987; Kardonski and

Roitburd, 1972; Pineau, 1976) (see also (Socrate and Parks, 1993) for a critical review).

The Vigdergauz microstructure can be viewed as a large volume fraction analogue. It has

constant strain in the inclusion, provided that the average strain takes the specified value ξ.

Curiously, the strain in the inclusion is always isotropic even when ξ is anisotropic. (See

(Kohn and Lu, in preparation; Lu, 1993) for more on elastic energy minimization and the

shapes of coherent precipitates.)

Our treatment of the Vigdergauz microstructure is organized around the minimization

of elastic energy at fixed average strain ξ. It is equally natural to consider composites

which minimize the complementary energy at fixed average stress σ0. These are the most

rigid composites, so they arise quite naturally in problems of structural optimization, see
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e.g. (Allaire and Kohn, 1993c). The Vigdergauz microstructure can be used to solve this

problem too under certain conditions on σ0 (see equation (5.6) — the analogue of (3.23) for

complementary energy). The case when the “inclusions” are holes is particularly interesting.

Then the Vigdergauz microstructure provides a systematic and appealing way to pass from a

dilute array of elliptical holes (volume fraction≈ 0) to a Michell truss (volume fraction≈ 1),

while maintaining exact optimality at any intermediate volume fraction — but only if the

two principal stresses have the same sign, or equivalently if detσ0 > 0.

Questions of elastic energy aside, it is natural to think that the Vigdergauz microstructure

might minimize the “stress concentration” within some class of composites. Indeed, this is

probably what Vigdergauz had in mind when he first sought a periodic array of “equally

strong inclusions”, c.f. (Banichuk, 1977; Cherepanov, 1974; Eldiwany and Wheeler, 1986;

Vigdergauz, 1983; Wheeler and Kunin, 1982). We explore this issue in section 5.2.

It seems likely that there should be an extension of the Vigdergauz construction to

three space dimensions. However the methods of the present paper are entirely two dimen-

sional. This question remains open aside from some suggestive calculations by Vigdergauz

(1983; 1988; 1989b), where he gives necessary conditions for the existence of “equally-strong”

cavities and presents a numerical scheme for calculating their shapes.

Another natural extension would be to let the component Hooke’s laws be anisotropic.

We address this topic in (Grabovsky, 1996). The result is rather interesting. For certain

non-generic choices of the (now anisotropic) matrix material the Vigdergauz microstructure

extends. But for “most” anisotropic choices of the matrix material, there is no elastically

optimal analogue of the Vigdergauz construction. Thus an anisotropic perturbation of an

isotropic Hooke’s law can break the degeneracy (confocal ellipses vs. rank-two laminates vs.

Vigdergauz construction) that is present in the isotropic case.

2 The problem and some notation.

Let us consider a unit square Q in R2. Assume that it is “made” of two elastic isotropic

materials with Hooke’s laws C1 and C2. Then at any point x ∈ Q the Hooke’s law is given

by the 4th order tensor

C(x) = C1χ1(x) + C2χ2(x).
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where χ1(x) and χ2(x) are the indicator functions of the sets occupied by materials 1 and

2 respectively, with

χ1(x) + χ2(x) = 1.

Each material is characterized by a bulk modulus ki and a shear modulus µi. The Hooke’s

law Ci is then defined by

Ciη = 2µi

(

η − 1

2
(Trη)I

)

+ ki(Trη)I (2.1)

for any symmetric 2× 2 matrix η, where I is the identity matrix. Without loss of generality

we may assume that µ1 > µ2.

In linear elasticity the stress and strain tensors σ(x) and e(x) are related via the Hooke’s

law:

σ(x) = C(x)e(x) (2.2)

and the strain is

eij =
1

2

( ∂vi

∂xj
+
∂vj

∂xi

)

,

where v is the vector of displacements. The equilibrium equation is

∇ · σ(x) = 0. (2.3)

We are interested in spatially periodic composites; therefore the equations of elasticity (2.2)

and (2.3) must be solved on the period cell Q, with periodic boundary conditions. To be

precise, for any 2 × 2 symmetric matrix ξ we look for a Q-periodic strain field with average

value ξ:

–

∫

Q

e(x)dx = ξ, (2.4)

where –

∫

Q

denotes the average value over Q. Such a field is uniquely determined.

The elastic strain energy is given by

W = (σ∗, ξ), (2.5)

where σ∗ is the average stress:

σ∗ = –

∫

Q

σ(x)dx. (2.6)
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Figure 1: Structure of the period cell.

Obviously the energy W depends on the microstructure. The problem we address is that

of finding microstructures which minimize the energy W , when the volume fractions of the

component materials are fixed, i.e. when the microgeometry is constrained by

–

∫

Q

χ1(x)dx = θ. (2.7)

In other words, we look for a characteristic function χ1(x) (taking only the values 0 and 1)

solving the following minimization problem

QWθ(ξ) = inf
<χ1>=θ

inf
<e(v)>=ξ

–

∫

Q

(C(x)e(v), e(v))dx. (2.8)

Specifically, in this paper we look for an optimal microgeometry which is a Q-periodic

array of simply connected inclusions with smooth boundary. See Figure 1.

From now on we will restrict ourselves to a single period cell, except when we specifically

refer to the two dimensional Q-periodic array. Our strategy is exactly as in the paper

(Grabovsky and Kohn, 1995), henceforth referred to as Part I. We begin with the optimality

conditions and apply them to the complex variable formulation of the problem. Here we have

a periodic problem, while Part I considers a problem with affine boundary condition, but

the optimality conditions for the two cases are the same (see Grabovsky, 1996). Therefore

the identification of the Kolosov-Muskhelishvili potentials proceeds exactly as in Part I,

(equations (3.6), (3.7), (3.8)):

φ1 = k1ε0z, ψ1 = 0 (2.9)
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φ2(z) =
1

2
dk2z (2.10)

ψ2(z) = cz̄, z ∈ Γ (2.11)

where the constants ε0, d and c are given by equations (2.6), (2.7) and (3.9) of Part I. Thus

φ1, ψ1 and φ2 are fully determined in Q. The potential ψ2 remains unknown, as does the

shape of the interface Γ. These will be determined in section 3.

We note in passing that it is not strictly necessary to use the full set of optimality con-

ditions as in Part I. One can actually arrive at (2.9)–(2.11) by starting from the apparently

weaker hypothesis that the strain in the inclusion is a constant multiple of the identity. But

the argument is long and very tedious, whereas the passage from the full set of optimality

conditions to (2.9)–(2.11) is very easy.

Now we use the periodicity to obtain a translation law for the potentials φ2 and ψ2.

From the double periodicity of e(v) and v(x) − ξx we find, using the method of (Mikhlin,

1964, p. 251), that the complex potentials φ2 and ψ2 are single valued, and

φ2 = φ0(z) + βz + γz̄

ψ2 = ψ0(z) − z̄Φ2(z) + Λγ̄z + Λβ̄z̄ − 2µ2ξz











(2.12)

where Λ = 1 + 2µ2/k2; φ0, ψ0 are Q-periodic functions (they do not have to be analytic);

and β, γ are constants to be determined. The expression ξz in (2.12) is understood in the

sense of complex variables, i.e.

ξz =
1

2
(zTrξ − z̄(ξ22 − ξ11 − 2iξ12)).

Now comparing the first line of (2.12) with (2.10) we find that

β =
1

2
dk2, γ = 0.

Applying this and (2.10) to the second formula in (2.12) we obtain

ψ2(z) = ψ0(z) + θ1cz̄ + bz, (2.13)

where ψ0 is Q-periodic as before, and b and c are defined in Part I, (equations (3.9), (3.11)).

We note that we haven’t used the average strain condition (2.4). However one can check

that (2.9), (2.10), (2.11) and (2.13) are consistent with (2.4). The calculations involved are
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not completely trivial. The key is to use the formulas

ℑm[
1

k

∮

Γ

φ(z)dz] =
2

k2
β − Trξ

[
1

µ

∮

Γ

(zΦ(z) + ψ(z))dz] =
2iΛ

µ2
γ



















(2.14)

where β and γ are the same as in (2.12) and square brackets denote the jump across the

interface (e.g. [φ] = φ2 − φ1). Incidentally, the formulas (2.14) do not depend on the

optimality conditions: they are valid for any smooth, connected inclusion in Q determining

a spatially periodic composite.

We also note the following formula for the average stress σ∗:

σ∗
11 + σ∗

22 = 2β(Λ + 1) − 2µ2Trξ

σ∗
22 − σ∗

11 + 2iσ∗
12 = 2µ2(ξ22 − ξ11 + 2iξ12) + 2γ̄(Λ + 1)











(2.15)

This is obtained from (2.6) by representing the local stress σ(x) in terms of the complex

potentials, then evaluating the integral. Therefore the energy W defined in (2.5) is given by

W = (Λ + 1)(ℜe[γ(ξ22 − ξ11 + 2iξ12)] + βTrξ) − 4µ2 det ξ. (2.16)

Substituting the values of β and γ in (2.16) we obtain an expression that coincides with the

minimum value of the energy derived in (Allaire and Kohn, 1993a, formula (1.4)).

3 Solution of the reduced problem.

In this section we find the remaining unknown complex potential ψ2 and the shape of the

inclusion explicitly. Here as in Part I we apply the method of Cherepanov (1974). We recall

that the remaining unknown potential ψ2 satisfies (2.11) and (2.13):

ψ2(z) = cz̄, z ∈ Γ

ψ2(z) = ψ0(z) + θ1cz̄ + bz.











(3.1)

Conversely, any analytic function satisfying (3.1) provides, together with (2.9) and (2.10),

an optimal field in the matrix. We will show that (3.1) has a solution for a certain regime

of values of the average strain ξ.
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Figure 2: Conformal mapping

We begin by mapping the exterior of a periodic array of slits in the ζ plane onto region

2 in the z plane. More precisely, let z = w(ζ) map the periodic array of slits M of length 2e

(e ∈ (0, 1)) with the period cell Q′ = [0, 2) × [0, 2h) in the ζ plane to the Q-periodic array

of inclusions with smooth boundary in the z plane (see Figure 2). The map w must satisfy

the following conditions:

w(0) = 0; w(ζ + 2) = w(ζ) + 1; w(ζ + 2ih) = w(ζ) + i. (3.2)

At the endpoints of the slits w(ζ) = O(
√

ζ − ζM ) as ζ → ζM , where ζM is an endpoint of

a slit, on account of the smoothness of the boundary of the inclusion in the z plane.

Let us now substitute z = w(ζ) in the first equation of (3.1) and differentiate along the

slit. Using notation Ψ(ζ) = Ψ2(w(ζ)) we obtain:

Ψ(ζ)w′(ζ) = cw′(ζ), ζ ∈M. (3.3)

We can represent (3.3) using the following trick of Cherepanov: Consider two analytic

functions F and G chosen such that

F ′(ζ) = −Ψ(ζ)w′(ζ) + cw′(ζ), (3.4)

G′(ζ) = −Ψ(ζ)w′(ζ) − cw′(ζ). (3.5)
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Then (3.3) becomes

ℜeF ′(ζ) = 0, ζ ∈M,

ℑmG′(ζ) = 0, ζ ∈M.











(3.6)

Besides (3.6) the analytic functions F and G have the following properties: they are Q′

periodic, by (2.13); at the endpoints of the slits

F ′(ζ) = O(
1

√

ζ − ζM

) and G′(ζ) = O(
1

√

ζ − ζM

) as ζ → ζM ; (3.7)

also F ′ and G′ are single valued and have no other singularities. Once such functions are

found, using (3.4), (3.5) we can easily reconstruct w(ζ) and Ψ(ζ). The result is

w(ζ) =
1

2c
(F (ζ) −G(ζ)) + C0, (3.8)

where C0 is a constant of integration, determined by (3.2), and

Ψ(ζ) = −cF
′(ζ) +G′(ζ)

F ′(ζ) −G′(ζ)
. (3.9)

Now let’s construct the functions F and G. Let ℘(ζ) be the Weierstrass elliptic function

with the period cell Q′. We introduce the notation

℘(1) = e1, ℘(ih) = e3, ℘(1 + ih) = e2, ℘(1 − e+ ih) = ℘(1 + e+ ih) = λ,

where 2h is the height of a period cell in the ζ-plane and e is the half-length of the slit M

(see Figure 2). We remark that ej and λ are real and e1 > e2 > λ > e3 (Markushevich,

1985)see.

Let us consider the function:

v(ζ) =

√

℘(ζ) − e2
℘(ζ) − λ

. (3.10)

We claim that v(ζ) has the following properties:

1. v(ζ) is single valued analytic function in the exterior of the periodic array of slits M ;

2. v(ζ) is Q′ periodic;

3. v(ζ) = O( 1
√

ζ−ζ
M

) as ζ → ζM , and v is bounded everywhere else;

4. ℜe(v(ζ)) = 0 on M .
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To explain why, let us choose the branch of the square root such that
√

1 = 1, with the

branch cut along the negative real axis. Then the function v(ζ) has a branch cut wherever

℘(ζ) − e2
℘(ζ) − λ

< 0. (3.11)

This is equivalent to the condition that ℘(ζ) ∈ (λ, e2), which is satisfied only along the cut

M (this is how the function (3.10) was constructed). Thus properties 1 and 4 are proved.

Property 2 follows from the Q′ periodicity of ℘(ζ). And property 3 follows from the fact

that points ζM are simple points for ℘(ζ) (℘′(ζM ) 6= 0).

We look for the functions F ′ and G′ in the form

F ′ = r1v(ζ) + id1,

G′ = ir2v(ζ) + d2,

where rj , dj ∈ R are constants to be determined. It is easy to see that equations (3.6) are

satisfied, as is the condition (3.7). In order to recover F and G from the above formulas we

have to use the function

V (ζ) =

∫ ζ

0

v(z)dz. (3.12)

This function is single valued in the exterior of the periodic system of the slits because
∮

∂Q′
v(ζ)dζ = 0, since v(ζ) is doubly periodic. Let V (2) = 2t1, V (2ih) = 2it3, tj > 0. Then

according to (3.2) and (3.8) we obtain:

r1 = c
h− 1

t1h− t3
, r2 = 0,

d1 = 0, d2 = c
t3 − t1
t1h− t3

,

and therefore

w(ζ) =
1

2

h− 1

t1h− t3
V (ζ) +

1

2

t1 − t3
t1h− t3

ζ. (3.13)

Thus by (3.9)

ψ2(w(ζ)) =
1

2
c
t1 − t3
t1h− t3

ζ − 1

2
c
h− 1

t1h− t3
V (ζ) + const. (3.14)

Now using the translation law for the potential ψ2 (the second equation in (3.1)) we obtain:

θ1 + q =
2T − 1 − Th

Th− 1

θ1 − q =
2h− 1 − Th

Th− 1
,















(3.15)
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where

q =
b

c
, T =

t1
t3
.

Notice that (3.15) implies that q is real, hence so is b. From the formula for b ((3.11) Part I)

we see that ξ12 = 0. This means that the sides of the period cell have to be oriented along

the eigendirections of the average strain tensor ξ. Solving the system (3.15) for h and T we

obtain:

h =
θ2 + q

1 + θ1 + q
, (3.16)

T =
θ2 − q

1 + θ1 − q
. (3.17)

(The other pair of solutions h = 1 and T = 1 is not feasible because it leads to a slit of

length zero. However, we will see that h → 1 and T → 1 in the limiting case when the

volume fraction of the inclusion tends to zero.) Finally substituting (3.16) and (3.17) into

(3.13) we obtain:

w(ζ) =
1 + θ1 − q

4t3

∫ ζ

0

√

℘(z) − e2
℘(z) − λ

dz +
1 + θ1 + q

4
ζ (3.18)

ψ2(w(ζ)) =
c(1 + θ1) + b

4
ζ − c(1 + θ1) − b

4t3
V (ζ) + const. (3.19)

Now we have to determine parameter e (the half-length of the slit) or, equivalently, the

parameter λ (the value of ℘(ζ) at the endpoints of the slit):

λ = ℘(1 + e+ ih) = ℘(1 − e+ ih).

We notice that by the definition of T

T (λ) =
t1(λ)

t3(λ)
=

∫ 2

0

√

℘(x)−e2

℘(x)−λ dx

∫ 2h

0

√

℘(ix)−e2

℘(ix)−λ dx
. (3.20)

It is easy to check that in the above formula the numerator is an increasing function of λ, and

the denominator is a decreasing function function of λ. Thus T (λ) is an increasing function

of λ. It increases from 0 to 1/h as λ increases from e3 to e2. Indeed, when λ = e3 the

numerator in (3.20) is finite, while the integral in the denominator diverges since ℘′(ih) = 0,

(Markushevich, 1985). When λ = e2 then T (λ) is clearly 1/h. Therefore in order to be able

to solve for λ we need

0 < T <
1

h
. (3.21)
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By (3.16), (3.17), this condition implies

|q| < θ2; (3.22)

substituting the value of q in the above inequality we find the alternative formulation

|ξ22 − ξ11| < θ2
|k1 − k2| · |ξ11 + ξ22|
µ2 + θ1k2 + θ2k1

. (3.23)

The problem is solved.

Notice that (3.23) coincides with the definition of the third regime in energy bounds in

(Allaire and Kohn, 1993a). We have seen this condition before, in Part I, as the condition

for the existence of the confocal ellipse construction.

4 Analysis of the solution.

First of all we want to know qualitatively the shape of the optimal inclusion. Of course it

depends on some parameters like volume fraction, average strain and material properties.

But for all admissible values of the parameters it has rectangular symmetry due to the

symmetry of ℘(ζ) with respect to the center of the period cell. Therefore, it is sufficient to

study only one quarter of the inclusion. From the conformal mapping (3.18) we can obtain

one quarter of the interface Γ in the parametric form: x = ℜe[w(t+ ih)], y = ℑm[w(t+ ih)],

t ∈ [1− e, 1]. Using (3.11), which holds on the slit, we can write an explicit parametrization

of Γ:


















x = x0 + p1t

y = y0 + p2

∫ t

1−e

√

℘(s+ ih) − e2
λ− ℘(s+ ih)

ds

(4.1)

where t ∈ [1 − e, 1] and

p1 =
1 + θ1 + q

4

p2 =
1 + θ1 − q

4t3
.

Eliminating t from this expression and ignoring x0 and y0 we obtain:

y(x) = p2

∫ x/p1

1−e

√

℘(s+ ih) − e2
λ− ℘(s+ ih)

ds. (4.2)
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Figure 3: Vigdergauz inclusion in the period cell.

Notice that the coefficients p1 and p2 are positive real numbers, so, x ∈ [(1 − e)p1, p1]. In

order to study the shape of the inclusion let us look at the derivative of y(x):

y′(x) =
p2

p1

√

℘(ih+ x/p1) − e2
λ− ℘(ih+ x/p1)

.

It is easy to see that this function is positive, monotone decreasing and becomes 0 only

when x = p1, (Markushevich, 1985). Therefore y(x) is a monotone increasing and concave

function. Thus the whole interface consists of four identical quarters (4.2) glued smoothly

together (ζ = 1 + ih is a double point of ℘(ζ)), each of them being a graph of a monotone

convex (concave) function. Figure 3 shows a “generic” Vigdergauz inclusion, drawn using

the program Mathematica (for more explanation see the Appendix).

4.1 Low volume fraction limit.

Now let’s study what happens to the shape of the inclusions as the volume fraction becomes

small while all other parameters are fixed. Our goal is to show that the shape becomes

asymptotically an ellipse. When θ1 → 0 we have q → q0, where

q0 =
µ2 + k1

k1 − k2
· ξ22 − ξ11

Trξ
.
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e
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e
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Figure 4: The sketch of the graph of f(x) = ℘(i+ x).

Also

h = 1 − h0θ1 + o(θ1),

T = 1 − T0θ1 + o(θ1),

where

h0 =
2

1 + q0
; T0 =

2

1 − q0
.

Therefore from (3.20) we see that λ approaches e2 and thus, t3 approaches 1, while the half

length of the slit e→ 0+. Then we obtain

p1 → p◦1 =
h0

2(h0 + T0)
;

p2 → p◦2 =
T0

2(h0 + T0)
.

Let f(x) = ℘(i + x), x ∈ [0, 1] (here ℘ is the Weierstrass’ elliptic function with periods

2 and 2i). The function f(x) is real, with a graph as shown schematically in Figure 4,

(Markushevich, 1985).

In the limit we have for a quarter of the interface boundary:

y(x) ≈ p◦2

∫ x/p◦

1

1−e

√

f(1) − f(s)

f(s) − f(1 − e)
ds
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Expanding f(s) in the power series near s = 1 and taking into account that f ′(1) = 0 and

f ′′(1) 6= 0 we obtain:

y(x) ≈ p◦2

∫ x/p◦

1

1−e

1 − s
√

e2 − (1 − s)2
ds.

Evaluating the integral gives

y(x) ≈ p◦2

√

e2 − (1 − x

p◦1
)2,

or, equivalently
y2

(ep◦2)
2

+
(x− p◦1)

2

(ep◦1)
2

= 1.

Thus in the small volume fraction limit y(x) represents an ellipse with the eccentricity

p◦1
p◦2

=
h0

T0
.

The fact that the ellipse is an optimal shape in the small volume fraction limit is known as

a matter of theory, (Lipton, 1993). The orientation and eccentricity of such an optimal ellipse

is uniquely defined by the value of the average strain (Barnett et al., 1974; Kaganova and

Roitburd, 1987; Kardonski and Roitburd, 1972; Kinoshita and Mura, 1971; Lee, Barnett and

Aaronson, 1977; Pineau, 1976). The above calculation recovers those parameters precisely,

by realizing the optimal ellipse as a limit of microstructures that are optimal for any volume

fraction.

4.2 Limiting rank-1 laminate.

Now let’s consider a different asymptotic limit, namely what happens as we approach equal-

ity in the solvability condition (3.23). Our goal is to show that the inclusions become

elongated, approaching in the limit a layered microstructure. Assume, to fix ideas, that q is

positive, so the limit of interest is q → θ2. In this case h → θ2, T → 0. Therefore λ → e3

(see the comment after (3.20)) and thus t3 → ∞. Therefore p1 → 1/2, p2 → 0. Now from

(4.2) it easy to see that

y(x1) − y(x2) = p2

∫ x1/p1

x2/p1

√

℘(s+ ih) − e2
λ− ℘(s+ ih)

ds

and the integral is bounded as long as the distance between xi/p1 and 1 − e is uniformly

positive. Since p2 → 0, we see that y(x) → const. Thus we obtain horizontal layers. Figure 5
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Figure 5: Evolution of Vigdergauz microstructure.

shows how the interface approaches horizontal layers as ξ changes, while other parameters

are held fixed.

If one approaches the other side of the region defined by (3.23), i.e. q → −θ2, then one

would obtain vertical layers. This statement is obvious in real space because our period

cell has square symmetry. On the other hand our formulas do not possess this symmetry

since we have chosen a horizontal slit to be mapped into the unknown interface. The corre-

sponding calculations require much more effort. It is possible to eliminate this asymmetry

by expressing the function (4.2) in parametric form using elliptic integrals of the first kind

(see the Appendix, formula (6.4)).

4.3 Limiting rank-2 laminate

So far in this article we have used a square as the period cell. However, the period cell does

not have to be a square. It can just as well be a rectangle, with any aspect ratio. Let us

summarize briefly how the calculations change. If QL is a rectangle with sides L and 1/L

then equations (3.2), (3.13) and the formulas for ri and di must be adjusted appropriately.

It is not hard to see that if h1 and T1 are given by (3.16) and (3.17) respectively then the

18
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ε/L2

Figure 6: Limiting Second Rank Laminate.

corresponding quantities for a rectangular period cell QL are

TL = L2T1,

hL =
h1

L2
.

Since (3.21) depends only on the product Th we see that the existence condition (3.22)

remains the same. Finally the formula for the inclusion changes: the conformal map w is

now

wL(ζ) =
1 + θ1 − q

4Lt
(L)
3

VL(ζ) + L
1 + θ1 + q

4
ζ (4.3)

where VL is defined as in (3.12) but using the Weierstrass ℘ function with periods 2 and

2ihL.

As L → ∞, the Vigdergauz microstructure approaches a “sequentially laminated mi-

crostructure of rank 2”, the microstructure used in (Allaire and Kohn, 1993a) and (Gibian-

sky and Cherkaev, 1987) to prove the optimality of the energy bounds. (See e.g. (Francfort

and Murat, 1986; Milton, 1986) for further discussion of sequentially laminated microstruc-

tures.) To see this we should use a different scaling. We can do so because what is important

is the aspect ratios, not the actual sizes. Thus without loss of generality we may assume

that the macro-scale corresponds to lengths of order 1. The longer side of the period cell

should be of length ε. Then the shorter side must be of length ε/L2 to make the period cell
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have aspect ratio L2. When L→ ∞ we have three different length scales 1, ε and ε/L2. In

the limit the Vigdergauz microstructure looks like a doubly periodic array of platelets (see

Figure 6). This is exactly what is called a rank two laminate.

It is natural to ask if similar microstructures exist with a non-rectangular period cell.

This question remains open.

5 Applications.

5.1 Structural optimization.

In problems of structural optimization one is usually interested in the most rigid possible

composite. Therefore, in this framework it is more interesting to minimize the compliance

rather than the elastic energy. We will show that the two minimization problems are different

but closely related (see (Allaire and Kohn, 1993c) or (Grabovsky, 1996) for more detailed

treatments).

We start with the dual variational principle for the compliance U :

U = inf
∇·σ=0

<σ>=σ0

–

∫

Q

(C−1(x)σ, σ)dx. (5.1)

The problem we consider in this section is to minimize the compliance U over all microstruc-

tures with fixed volume fractions, i.e. to evaluate

QUθ(σ0) = inf
<χ1>=θ

inf
∇·σ=0

<σ>=σ0

–

∫

Q

(C−1(x)σ, σ)dx. (5.2)

We will show that in two space dimensions the Vigdergauz microstructure achieves the

minimum value in (5.2), under certain restrictions on the average stress σ0. But now, as

one would expect, the more rigid material must be in the matrix and the softer material in

the inclusion.

In order to find a relation between (5.2) and our original problem (2.8) we represent the

stress field σ via the Airy stress potential φ:

σ = Rt
⊥∇∇φR⊥,

where

R⊥ =





0 1

−1 0



 .
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Since σ and ∇∇φ are linearly related we can express σ as

σ = R∇∇φ,

where R is a 4th order tensor with the symmetries of a Hooke’s law. Then we can rewrite

(5.1) as

inf
<∇∇φ>=ξ

–

∫

Q

(RtC−1(x)R∇∇φ,∇∇φ)dx, (5.3)

where

ξ = Rt
⊥σ0R⊥.

We can simplify (5.3) even further if we notice that for any isotropic Hooke’s law C and any

two symmetric matrices ξ and η

(CRξ,Rη) = (Cξ, η).

Thus (5.3) is equivalent to

inf
<e(∇φ)>=ξ

–

∫

Q

(C−1(x)e(∇φ), e(∇φ))dx. (5.4)

Here we used the fact that ∇∇φ is always a symmetric matrix. If instead of ∇φ in (5.4)

we allow any vector field to be admissible then we will enlarge the space of admissible test

fields and therefore

inf
<e(∇φ)>=ξ

–

∫

Q

(C−1(x)e(∇φ), e(∇φ))dx ≥ inf
<e(u)>=ξ

–

∫

Q

(C−1(x)e(u), e(u))dx. (5.5)

Thus we have found that the minimum of the compliance is bounded below by the minimum

of the strain energy with a different Hooke’s law, namely the inverse of the actual local

Hooke’s law tensor. It is interesting to ask when equality holds in (5.5). Obviously this is

the case if and only if the optimal field u for the right hand side of (5.5) is curl-free. If the

right hand side of (5.5) is optimized by the Vigdergauz microstructure, then the associated

field u is indeed curl-free, as can be seen from the optimality conditions presented in Part

I (formula (2.8)). Thus, the Vigdergauz microstructure achieves the minimum in (5.2)

whenever (3.23) is satisfied with σ0 in place of ξ, and k−1
i and µ−1

i in place of ki and µi:

|σ1 − σ2| < θ2
µ2|k2 − k1| · |σ1 + σ2|
k1k2 + µ2(θ1k1 + θ2k2)

, (5.6)

where σ1 and σ2 are the principal stresses of the average stress σ0.
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Now let us consider a particular case of interest: shape optimization. In other words we

take one of the materials to be void, so k1 = µ1 = 0. In this case the existence condition

(5.6) for the Vigdergauz construction becomes

detσ0 > 0. (5.7)

If this condition is satisfied then a periodic array of holes with the Vigdergauz shape will

minimize the complementary energy at average stress σ0.

Notice that when k1 = µ1 = 0, the volume fraction does not figure in the existence

condition (5.7). Therefore, we can study the “large volume fraction limit”. When θ1 ≈ 1

we remove almost all of the material, leaving a truss-like structure with optimal properties.

It is essentially a Michell truss, see e.g. (Hemp, 1973; Lagache, 1981; Prager and Rozvany,

1977; Rozvany, 1989). At intermediate volume fractions the microstructure can be thought

of as a Michell truss with thickened members and rounded corners.

5.2 The problem of minimal stress concentration.

In this section we show that the Vigdergauz construction, besides minimizing the elastic

energy, also solves a certain problem of minimizing the stress concentration.

Our objective is to find the shape of a simply connected inclusion of given area (whose

characteristic function we denote by χ) that minimizes the stress concentration throughout

the periodic composite with period cell Q:

inf
χ

sup
x∈Q

‖σ(x)‖,

where ‖σ‖ is the operator norm of matrix σ:

‖σ‖ = sup
|v|=1

|σv|.

To solve this problem we repeat the argument of Wheeler (1994). As in (Wheeler, 1994)

we assume that the two materials are well-ordered:

k1 > k2, µ1 > µ2.

The idea is to use maximum principle for the trace of the stress (Banichuk, 1977), which is

harmonic in an isotropic material. As usual, quantities with index 1 refer to the inclusion

phase while quantities with index 2 refer to the matrix phase.

22



If t denotes the tangent to the interface and n the normal then due to the continuity of

displacements and tractions across the interface we have:

(e1t, t) = (e2t, t)

σ1n = σ2n.

Using the constitutive relations

σi = 2µi

(

ei −
1

2
(Trei)I

)

+ ki(Trei)I

we easily see that

Trσ2 =
k2µ2(k1 + µ1)

k1µ1(k2 + µ2)
Trσ1 +

2k2(µ1 − µ2)

µ1(k2 + µ2)
(σin, n)

everywhere on the interface. Taking absolute values and estimating

|Trσ1| ≤ 2‖σ‖∞

and

|(σin, n)| ≤ ‖σ‖∞,

where

‖σ‖∞ = sup
x∈Q

‖σ(x)‖,

we obtain

|Tre2| ≤
k1 + µ2

k1(k2 + µ2)
‖σ‖∞. (5.1)

We also have

|Tre1| =
1

2k1
|Trσ1| ≤

‖σ‖∞
k1

. (5.2)

To use these estimates we observe that

|Trξ| = |–
∫

Q

Tre(x)dx| ≤ θ1 sup
1

|Tre1| + θ2 sup
2

|Tre2| = θ1 sup
Γ

|Tre1| + θ2 sup
Γ

|Tre2|.

The last equality is due to the maximum principle and the fact that functions Tre1(x) and

Tre2(x) are harmonic on their respective domains. Now we can apply our estimates (5.1)

and (5.2):

‖σ‖∞ ≥ k1(k2 + µ2)

µ2 + θ1k2 + θ2k1
|Trξ| (5.3)
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This inequality is valid for any simply connected inclusion in the period cell with volume

fraction θ1.

It remains to show that the bound is attained by the Vigdergauz geometry. It is not

difficult to check that the norm of the stress for the Vigdergauz microstructure ‖σV (x)‖ is

constant on the boundary of the inclusion. We have already seen that the stress in the period

cell has trace which is constant in each phase, and it follows (e.g. using the representation

in terms of complex potentials) that the stress itself is harmonic. Thus by the maximum

principle for harmonic functions, the maximum value of ‖σV (x)‖ must occur on the interface

boundary. But on the boundary of the Vigdergauz inclusion, as one can easily verify directly,

‖σV ‖∞ attains our lower bound (5.3) if and only if k1 > k2. Thus our assertion is proved.

We remark that the above argument makes essential use of the hypothesis that the matrix

phase be connected. Without this hypothesis the result becomes false. For instance, a simple

calculation shows that rank-1 layering often produces a smaller stress concentration than

the Vigdergauz construction. This is the case, for example, if the average strain is isotropic

and the layers are orthogonal to one side of a square period cell.

6 Appendix: An alternative representation for the in-

clusion shape.

In section 3 we derived an explicit formula (3.18) for the shape of the inclusions in the

Vigdergauz construction. In fact (3.18) is rather inconvenient to use, both with respect to

analytic investigation and for obtaining numerical solutions. For this reason we were led to

seek an alternative formula.

We start with our initial parametrization (4.1):



















x = p1t

y = p2

∫ t

1−e

√

℘(s+ ih) − e2
λ− ℘(s+ ih)

ds,

where t ∈ [1 − e, 1]. It gives a quarter of Γ. From the theory of the Weierstrass ℘-function

(Markushevich, 1985), we know that ℘(ih+ s) is strictly monotone increasing from λ to e2

on [1 − e, 1]. Therefore we can reparametrize Γ using the new parameter ℘ = ℘(ih + t).
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After a routine but lengthy calculation we obtain:























x = −p1

∫ e2

℘

ds

2
√

(s− e1)(s− e2)(s− e3)

y = p2

∫ ℘

λ

ds

2
√

(s− e1)(λ− s)(s− e3)

. (6.1)

These integrals can be expressed in terms of incomplete elliptic integrals of the first kind,

(Abramowitz and Stegun, 1965). It is convenient to do so, because many software packages

are capable of evaluating such elliptic integrals. The resulting expression is























x = −p1F (

√

1 − e1 − e2
e2 − e3

· ℘− e3
e1 − ℘

| e2 − e3
e1 − e3

)

y = p2F (

√

e1 − e3
e1 − λ

· ℘− λ

℘− e3
| e1 − λ

e1 − e3
),

(6.2)

where

F (x | m) =

∫ x

0

dt
√

(1 − t2)(1 −mt2)
.

Let

m =
e2 − e3
e1 − e3

, mλ =
e1 − λ

e1 − e3
,

so that






















x(℘) = −p1F (

√

1 − 1 −m

m
· ℘− e3
e1 − ℘

| m)

y(℘) = p2F (

√

1

mλ
· ℘− λ

℘− e3
| mλ),

and let

t =
1 −m

m
· ℘− e3
e1 − ℘

.

Then it is easy to check that
1

mλ
· ℘− λ

℘− e3
= 1 − M

t
,

where

M =
1 −m

m
· 1 −mλ

mλ
. (6.3)

For one quarter of the interface the parameter t ranges from M to 1.
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It remains to recalculate the constants p1 and p2 in terms of the physical parameters.

Standard formulas (Abramowitz and Stegun, 1965)see e.g. provide the necessary informa-

tion. The parameters m and mλ can be found as unique solutions of the equations

K(1 −m)

K(m)
= h,

K(1 −mλ)

K(mλ)
= T,

where h and T are given by (3.16) and (3.17) and K(m) = F (1 | m) is the complete elliptic

integral of the first kind. Once m and mλ are known we can write the final parametrization

of the interface:


















x(t) = −1 + θ1 + q

4K(m)
F (

√
1 − t | m)

y(t) =
1 + θ1 − q

4K(mλ)
F (

√

1 − M

t
| mλ),

(6.4)

t ∈ [M, 1],

where M is given by (6.3) above. This is the parametrization we used to create Figures 3

and 5.
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