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Abstract

The paper introduces a general strategy for identifying strong local minimizers of
variational functionals. It is based on the idea that any variation of the integral func-
tional can be evaluated directly in terms of the appropriate parameterized measures.
We demonstrate our approach on a problem of W

1,∞ sequential weak-* local minima—
a slight weakening of the classical notion of strong local minima. We obtain the first
quasiconvexity-based set of sufficient conditions for W

1,∞ sequential weak-* local min-
ima.

1 Introduction

In this paper we consider the class of integral functionals of the form

E(y) =

∫

Ω

W (x,∇y(x))dx, (1.1)

where Ω is a smooth (i.e. of class C1) and bounded domain in R
d and the Lagrangian

W : Ω × R
m×d → R is assumed to be a continuous function. The symbol R

m×d is used to
denote the space of all m × d real matrices. The functional (1.1) is defined on the set of
admissible functions

A = {y ∈ W 1,∞(Ω; Rm) : y(x) = g(x), x ∈ ∂Ω1}, (1.2)

where ∂Ω1 and ∂Ω2 = ∂Ω \ ∂Ω1 are smooth (i.e. of class C1) relatively open subsets of ∂Ω,
and g ∈ C1(∂Ω1; R

m). We omit the dependence of W on y to simplify our analysis and
because such dependence does not introduce conceptually new difficulties (within the context
of our discussion). The omission of dependence of W on x, however, does not lead to similar
simplifications, as the dependence on x will reappear in our analysis even if W does not
depend on x explicitly.

A fundamental problem in Calculus of Variations and its applications is the problem of
finding local minimizers (see [3, Problem 9], for example). The notion of the local minimizer,
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in contrast to the global one, depends in an essential way on the topology on the space A of
functions on which the variational functional is defined. We assume that the topology on A
comes from a topological vector space topology τ on W 1,∞(Ω; Rm), since we want standard
linear operations to be continuous. Let

Var(A) = {φ ∈ W 1,∞(Ω; Rm) : φ|∂Ω1 = 0} (1.3)

be the space of variations. Observe that y + φ ∈ A for all y ∈ A and all φ ∈ Var(A).

Definition 1.1 The sequence {φn : n ≥ 1} ⊂ Var(A) is called a τ-variation if φn → 0 in
τ .

Definition 1.2 We say that y ∈ A is a τ-local minimum, if for every τ -variation {φn :
n ≥ 1} ⊂ Var(A) there exists N ≥ 1 such that E(y) ≤ E(y + φn) for all n ≥ N .

The classical notions of strong and weak local minima are examples of τ -local minima, where τ
is the L∞ and W 1,∞ topologies on W 1,∞(Ω; Rm) respectively. Clearly, the weaker the topology
τ , the stronger the notion of the local minimum. This is reflected in the terminology. The
notion of strong local minimum is stronger than the notion of the weak one.

Definition 1.3 A variation is called strong or weak if it is an L∞ variation or a W 1,∞

variation respectively.

If the topology τ is non-metrizable, like the W 1,∞ weak-* topology considered in this
paper, then the sequence-based definition is different from the one based on open sets. In
this paper we will use the sequence-based Definition 1.2.

The problem of strong local minima is fairly well-understood in the classical Calculus of
Variations, d = 1 (Weierstrass) or m = 1 (Hestenes [16]). The present paper will focus on
the case d > 1 and m > 1, where many fundamental problems still remain open largely
because the existing methods are not as effective in this case as they are in the classical
cases. In this paper we bring the analytical machinery developed for the “Direct Method” in
Calculus of Variations, by Tonelli [35] and others for the purpose of proving existence of global
minimizers, to bear on the problem of local minimizers. We propose a general strategy that is
capable of delivering quasiconvexity-based sufficient conditions for strong local minima. We
demonstrate how our strategy works in a simplified setting of smooth (i.e. C1) extremals
y(x) and stronger (i.e. W 1,∞ sequential weak-*) topology τ . Strengthening topology τ from
L∞ to W 1,∞ sequential weak-* means that we restrict possible variations {φn} to sequences
that converge to zero uniformly, while remaining bounded in W 1,∞(Ω; Rm). In other words,
the W 1,∞ weak-* variations are the sequences that converge to zero W 1,∞ weak-*. From this
point on the word “variation” will mean W 1,∞ weak-* variation.

We remark that without the C1-continuity of extremals, our results are false, as stated, as
was shown in [22, Corollary 7.3] for the quasiconvex integrands and in [31] for the polyconvex
ones. This indicates that other conditions besides the ones stated here need to be imposed
on an extremal for it to be a strong local minimizer. We expect that our approach will still
be useful even in that more general case.

2



It is natural to ask about examples of non-trivial C1-strong local minimizers. The rota-
tionally symmetric local minimizers constructed by Post and Sivaloganathan [28, Section 4]
on the annulus are of class C2. Recently, existence of non-trivial local minimizers have been
established in a broad range of examples [22, 26, 33] using the direct method of Calculus of
Variations. The local minimizers in the above papers are not necessarily smooth, however.

Our analytical technique was inspired by the paper of Fonseca, Müller and Pedregal [12]
who showed how to understand the oscillation and concentration effects of a weakly convergent
sequence of gradients.

So far we did not require that the Lagrangian W (x,F ) be smooth. We do not want
to make a global smoothness assumption on W in order not to rule out examples where
the Lagrangian is piecewise smooth. For example, in the mathematical theory of composite
materials or optimal design the Lagrangian is given as a minimum of finitely many quadratic
functions [20]. In fact, we do not need the Lagrangian W to be smooth everywhere. Let

R = {F ∈ R
m×d : F = ∇y(x) for some x ∈ Ω}. (1.4)

In other words, R is the range of ∇y(x). We assume that W is of class C2 on R, meaning
that there exists an open set O such that R ⊂ O and the functions W (x,F ), WF (x,F ),
and WFF (x,F ) are continuous on Ω × O. Throughout the paper we will use the subscript
notation to denote the vectors, matrices and higher order tensors of partial derivatives.

2 The strategy for identifying strong local minima

One of the fundamental problems of Calculus of Variations is to find sufficient conditions for
strong local minima. This problem (for d > 1 and m > 1) is quite old and there are many
sets of sufficient conditions that have already been found [6, 8, 23, 32, 36]. However, none of
them is in any sense close to the necessary conditions that are formulated using the notion of
quasiconvexity. Only in [39] Zhang was able to show that smooth solutions of Euler-Lagrange
equations for uniformly quasiconvex functionals are locally minimizing. In recent years it
became clear, that the the quasiconvexity condition is the correct multi-dimensional analog
of the classical Weierstrass condition (positivity of the Weierstrass excess function) [4]. The
quasiconvexity condition was first introduced by Morrey [25], who showed that this condition
is necessary and sufficient for W 1,∞ sequential weak-* lower semicontinuity of the variational
integrals (1.1).

In this paper we present the first set of quasiconvexity based sufficient conditions for W 1,∞

sequential weak-* local minima. Our strategy is the result of the insights achieved in [15],
where the necessary conditions for strong local minima are examined in greater generality.
In this paper we will only need the observation made in [15] that the limit

δE = lim
n→∞

∆E(φn)

‖∇φn‖2
2

, (2.1)

where

∆E(φn) =

∫

Ω

(W (x,∇y(x) + ∇φn(x)) − W (x,∇y(x)))dx,
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is always finite for an extremal y(x) (i.e. solution of the Euler-Lagrange equation (3.1)
below). Moreover, the requirement of non-negativity of δE for specific variations φn produces
all known necessary conditions for a C1 extremal y(x) to be a strong local minimizer. In
(2.1) and throughout the paper ‖A‖p denotes the Lp norm of the Frobenius norm |A(x)| of
the matrix field A(x).

We remark that the choice of the denominator in (2.1) is not arbitrary. It expresses the
correct size scale of the increment of the functional under the variation φn. Now, we are
ready to describe our strategy for identifying strong local minima.

The strategy:

Step 1. Make specific variations for which δE can be computed explicitly. Obtain necessary
conditions for y ∈ A to be a strong local minimizer from the inequality δE ≥ 0.

Step 2. Prove that if y(x) satisfies the necessary conditions from Step 1, then δE ≥ 0 for all
variations {φn}.

Step 3. Characterize those variations {φn} for which δE = 0.

Step 4. Formulate the weakest additional conditions, that together with the necessary con-
ditions obtained on Step 1, prevent ∆E(φn) from becoming negative for large n for
variations, for which δE = 0.

In Step 1, the necessary conditions for C1 functions y(x) are well-known by now. They consist
of the Euler-Lagrange equation, non-negativity of second variation and the quasiconvexity
conditions in the interior and on the free boundary [4]. For more general Lipschitz extremals
y(x) other necessary conditions may appear (see [15] for a discussion of why this happens).
Step 2 is the focus of the present paper. Step 4 should naturally follow from the analysis of
Step 3. At this moment Step 3 is still open. We avoid the delicate analysis entailed by Step
3 by imposing extra conditions that prevent any non-zero variation to satisfy δE = 0.

3 Reformulation of the problem

Our first observation is that the Euler-Lagrange equation

{
∇ · WF (x,F (x)) = 0, x ∈ Ω,

WF (x,F (x))n(x) = 0, x ∈ ∂Ω2,
(3.1)

where n(x) is the outer unit normal to ∂Ω at x ∈ ∂Ω, can be completely decoupled from the
other necessary conditions for strong local minima. This is done by replacing the functional
increment ∆E(φn) by

∆′E(φn) =

∫

Ω

W ◦(x,∇φn(x))dx, (3.2)
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where
W ◦(x,F ) = W (x,F (x) + F ) − W (x,F (x))− (WF (x,F (x)),F ) (3.3)

is related to the Weierstrass excess function. In the formula above and throughout the paper
we use the notation F (x) = ∇y(x) and the inner product notation (·, ·) corresponding to
the dot product on R

d and the Frobenius inner product (A,B) = Tr (ABT ) on R
m×d.

We conclude, therefore, that the role of the Euler-Lagrange equation (3.1) is to establish
equivalence between ∆′E(φn)—a quantity that our analysis applies to, and the functional
increment ∆E(φn)—a quantity with variational meaning. We can view the transition from
∆E to ∆′E as a transformation

Π : (W (x,F ),y(x)) 7→ (W ◦(x,F ), 0). (3.4)

We note, that regardless of the choice of y(x), the function 0 satisfies the Euler-Lagrange
equation for the Lagrangian W ◦. Moreover, it is clear, that y(x) is a τ -local minimum for the
Lagrangian W if and only if y(x) solves the Euler-Lagrange equation (3.1) and 0 is a τ -local
minimum for the functional with Lagrangian W ◦, since the functional increment ∆E for W ◦

is exactly ∆′E for W . Thus, the projection Π given by (3.4), (it is easy to verify that Π is
indeed a projection) allows us to decouple the Euler-Lagrange equation from all the other
conditions that one would require to guarantee that y(x) is a local minimizer. The range of
Π is a set of continuous functions W ◦(x,F ) that are twice continously differentiable on some
neighborhood of F = 0 and vanish with its first derivative at F = 0. It will be convenient
for us to represent W ◦ in the form that shows the quadratic term in its Taylor expansion
around F = 0 explicitly, because it appears in the formula for the second variation.

W ◦(x,F ) =
1

2
(L(x)F ,F ) + |F |2U(x,F ), (3.5)

where
L(x) = W ◦

FF (x, 0) = WFF (x,F (x)) (3.6)

and

U(x,F ) =
1

|F |2

(
W ◦(x,F ) −

1

2
(L(x)F ,F )

)

is a continuous function on Ω × R
m×d that vanishes on Ω × {0}.

Replacing ∆E with ∆′E and W with W ◦, we reduce the problem of local minima to the
determination of the sign of δ′E given by

δ′E = lim
n→∞

∆′E(φn)

‖∇φn‖2
2

= lim
n→∞

1

‖∇φn‖2
2

∫

Ω

W ◦(x,∇φn)dx. (3.7)

We reiterate that δ′E = δE for all variationsφn if and only if y(x) satisfies the Euler-Lagrange
equation (3.1). Substituting the representation (3.5) of W ◦ into (3.7), we obtain

δ′E = lim
n→∞

∫

Ω

(
U(x, αn∇ψn(x))|∇ψn(x)|2 +

1

2
(L(x)∇ψn(x),∇ψn(x))

)
dx, (3.8)
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where

αn = ‖∇φn‖2 and ψn(x) =
φn(x)

‖∇φn‖2

. (3.9)

The formula (3.8) will serve as a starting point of our analysis. In order to simplify notation
we will use a shorthand

F(x, α,G) =
W ◦(x, αG)

α2
= U(x, αG)|G|2 +

1

2
(L(x)G,G). (3.10)

Thus, in terms of F

δ′E = lim
n→∞

∫

Ω

F(x, αn,∇ψn)dx. (3.11)

Finally, we would like to note that our approach is in some sense dual to the classical
approach that studies the effect of a family of variations on a given integral functional.
Borrowing the idea of duality from Young [37, 38] (see also the papers [2, 34] that helped
bring the importance of Young measures for applications), we consider a given variation φn

and study its effect on a family of Lagrangians W (x,F ).
The formula (3.8) indicates that we prefer to regard a variation {φn} as a pair (αn,ψn),

where ∇ψn has L2-norm equal to 1 and αn∇ψn(x) is bounded in L∞. We can think of αn

as the “size” of the variation and of ψn as its “shape”.

4 Necessary conditions and sufficient conditions

We begin with a quick recap of the known necessary conditions for strong local minima for
y ∈ C1(Ω; Rm) (see, for example, [4]). We then show that necessary conditions imply non-
negativity of δ′E. Finally, we show that if we strengthen the non-strict inequalities appearing
in the necessary conditions below, we will obtain sufficient conditions for W 1,∞ sequential
weak-* local minimizers of class C1. (See Theorem 4.4 below.)

It is well-known that if we perturb y(x) using special weak variations

y(x) → y(x) + ǫφ(x), (4.1)

we obtain the Euler-Lagrange equation (3.1) and the condition of non-negativity of the second
variation

δ2E =

∫

Ω

(L(x)∇φ(x),∇φ(x))dx (4.2)

for all φ ∈ Var(A), where Var(A) is given by (1.3) and L(x) is given by (3.6).
Following [1, Theorem 3.1], if we perturb y(x) using the generalized “Weierstrass needle”

y(x) → y(x) + ǫφ

(
x− x0

ǫ

)
, (4.3)
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where φ(x) ∈ W 1,∞
0 (B(0, 1); Rm), we will get the two quasiconvexity conditions: the Morrey

quasiconvexity condition [25]
∫

B(0,1)

W (x0,F (x0) + ∇φ(x))dx ≥

∫

B(0,1)

W (x0,F (x0))dx, (4.4)

for all x0 ∈ Ω, and the quasiconvexity at the free boundary condition [4]
∫

B−

n(x0)
(0,1)

W (x0,F (x0) + ∇φ(x))dx ≥

∫

B−

n(x0)
(0,1)

W (x0,F (x0))dx, (4.5)

for all x0 ∈ ∂Ω2. Here B(x, r) denotes an open ball in R
d centered at x with radius r and

B−
n(0, 1) denotes the half-ball B−

n(0, 1) = {x ∈ B(0, 1), (x,n) < 0}, whose outer unit normal
at the “flat” part of its boundary is equal to n.

Morrey himself derived the quasiconvexity condition (4.4) as a necessary and sufficient
condition for W 1,∞ sequential weak-* lower semicontinuity of the integral functionals (1.1).
The necessity of (4.4) for strong local minimizers via the variation (4.3) is due to Ball [1],
even though the fact itself can be inferred from the arguments of Meyers [24], whose focus
was on lower semicontinuity of integral functionals involving higher derivatives of y. In fact,
the proof of Meyers’ Lemma 1 in [24] can be interpreted as a direct link between W 1,∞

sequential weak-* local minima and W 1,∞ sequential weak-* lower semicontinuity, explaining
why Morrey’s quasiconvexity appears naturally in both contexts.

Our idea was to replace the original Lagrangian W with the “reduced Lagrangian” W ◦(x,F ),
given by (3.3). Therefore, we rewrite the quasiconvexity conditions (4.4)–(4.5) in terms of the
“reduced Lagrangian” W ◦(x,F ), given by (3.3). Observe, that the Morrey quasiconvexity
condition (4.4) can be written as

∫

B(0,1)

W ◦(x0,∇φ(x))dx ≥ 0 (4.6)

for all φ ∈ W 1,∞
0 (B(0, 1); Rm), because, clearly

∫

B(0,1)

(WF (x0,F (x0)),∇φ(x))dx = 0.

If d = 1 or m = 1, condition (4.6) reduces to the Weierstrass condition W ◦(x,F ) ≥ 0 for
all x and F . Similarly to (4.6), quasiconvexity at the free boundary condition (4.5) can be
written as ∫

B−

n(x0)
(0,1)

W ◦(x0,∇φ(x))dx ≥ 0 (4.7)

for all φ ∈ W 1,∞
0 (B(0, 1); Rm), because

∫

B−

n(x0)
(0,1)

(WF (x0,F (x0)),∇φ(x))dx = 0. (4.8)
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The vanishing of the integral in (4.8) occurs because of the boundary condition in (3.1). We,
however, will regard inequalities (4.6) and (4.7) as primary conditions that reduce to (4.4)
and (4.5) in case y(x) satisfies the Euler-Lagrange equation. (Of course, (4.4) and (4.6) are
unconditionally equivalent.)

We summarize our discussion of necessary conditions for W 1,∞ sequential weak-* local
minima above in the form of a theorem for reference purposes.

Theorem 4.1 (Necessary conditions) Let y ∈ A be a W 1,∞ sequential weak-* local min-
imizer then

(i) y(x) is a weak solution of the Euler-Lagrange equation (3.1).

(ii) The second variation (4.2) is nonnegative for all φ ∈ Var(A).

(iii) Quasiconvexity inequalities (4.6) and (4.7) hold for all φ ∈ W 1,∞
0 (B(0, 1); Rm).

The following theorem corresponds to Step 2 in our “Strategy” on page 4 and is the basis
for the sufficient conditions for smooth W 1,∞ sequential weak-* local minimizers.

Theorem 4.2 Let y ∈ C1(Ω; Rm) satisfy conditions (ii) and (iii) of Theorem 4.1. Then
δ′E ≥ 0 for any variation {φn : n ≥ 1} ⊂ Var(A).

Corollary 4.3 Let y ∈ C1(Ω; Rm) ∩ A satisfy conditions (i)–(iii) of Theorem 4.1. Then
δE ≥ 0 for any variation {φn : n ≥ 1} ⊂ Var(A).

The theorem says that on the size scale determined by ‖∇φn‖
2
2 the variation {φn} cannot

decrease the value of the functional. In order to resolve the question of W 1,∞ sequential weak-
* local minima, one needs to understand the set of variations resulting in δ′E = 0. We will call
such variations “neutral”. At the moment it is still an open problem to characterize all neutral
variations, but, as we show in Theorem 4.4, a natural strengthening of necessary conditions
(ii)–(iii) in Theorem 4.1 will be sufficient to eliminate all neutral variations altogether. We
remark, however, that in the presence of jump discontinuities of F (x) the set of neutral
variations is never empty [15]. Hence, without our assumption of smoothness of the extremal
y(x) the sufficient conditions in Theorem 4.4 below cannot possibly be satisfied.

Theorem 4.4 (Sufficient conditions) Let y ∈ C1(Ω; Rm) ∩ A solve the Euler-Lagrange
equation (3.1) weakly. Assume that there exists β > 0 such that

(ii)’ The second variation is uniformly positive

δ2E =

∫

Ω

(L(x)∇φ(x),∇φ(x))dx ≥ β

∫

Ω

|∇φ(x)|2dx

for all φ ∈ Var(A).

(iii)’ (Uniform quasiconvexity)
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(a) for all x0 ∈ Ω

∫

B(0,1)

W ◦(x0,∇φ(x))dx ≥ β

∫

B(0,1)

|∇φ(x)|2dx (4.9)

for all φ ∈ W 1,∞
0 (B(0, 1); Rm).

(b) for all x0 ∈ ∂Ω2

∫

B−

n(x0)
(0,1)

W ◦(x0,∇φ(x))dx ≥ β

∫

B−

n(x0)
(0,1)

|∇φ(x)|2dx (4.10)

for all φ ∈ W 1,∞
0 (B(0, 1); Rm).

Then δE ≥ β for any variation {φn}. In particular y(x) is a W 1,∞ sequential weak-* local
minimizer of E.

Theorem 4.4 is an immediate corollary of Theorem 4.2, as shown in the following proof.

Proof: Let
W̃ (x,F ) = W (x,F ) − β|F |2.

Then
W̃ ◦(x,F ) = W ◦(x,F ) − β|F |2.

Observe that conditions (ii)’, (iii)’(a) and (iii)’(b) can be rewritten as conditions (ii) and (iii)

of Theorem 4.1 for W̃ ◦(x,F ). Then, by Theorem 4.2 applied to W̃ and y(x)

δ′Ẽ = lim
n→∞

1

‖∇φn‖2
2

∫

Ω

W̃ ◦(x,∇φn)dx ≥ 0.

But δ′Ẽ = δ′E − β. Thus, since y(x) solves (3.1),

δE = δ′E = β + δ′Ẽ ≥ β > 0.

It follows that for every variation {φn} the functional increment ∆E(φn) is non-negative for
all n large enough, and so y(x) is a W 1,∞ sequential weak-* local minimizer.

The remaining part of the paper is devoted to the proof of Theorem 4.2. The proof is
split into several parts. All but the last of the parts can be regarded as analytical tools, since
they are independent of the assumptions of Theorem 4.2.

In Section 5 we prove a representation formula that emerges from our idea to examine
the effect of a given variation on a whole space of Lagrangians W . In Sections 6 and 7
we discuss two related recent developments in Analysis, that concern the “oscillations” and
“concentrations” behavior of a sequence of gradients of vector fields. A gradient has a very
rigid geometric structure. The fundamental question is the following: if we permit a sequence
of gradients to be unbounded (in L∞) on a “small” set, would we be able to relax some of
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that geometric rigidity on the complement of that “small” set? It turns out that the answer
is negative. Geometric rigidity appears to be very robust. Indeed, Chacon’s biting lemma
(see for example [5]) says that the bounded or oscillating part of the sequence generates a
Young measure that retains all the rigidity of gradient structure, according to [18, 19]. In this
paper we need to make careful accounting not only of the Young measure part, but also of
the “bitten-off” part. This is accomplished by means of the Decomposition Lemma [12, 21]
(see Lemma 6.1 in Section 6) and the Orthogonality principle of Section 7 (which we gleaned
from one of the technical steps in [12]). These two results say that a sequence of gradients
that are unbounded in L∞ (but bounded in Lp) can be decomposed into non-interacting,
or “orthogonal” parts, one of which is responsible only for the oscillations, while the other
is responsible only for the concentrations. At the same time both components retain rigid
gradient structure of the original sequence. The concentration part “lives” in some sense on
a set of zero Lebesgue measure,1 and can be represented as a “superposition” of variations of
the type (4.3). In order to make the last idea rigorous we adapt the Localization Principle—a
standard technique in the study of Young measures [27, Section 8.2]—to our setting. The tools
developed so far deal with actions of variations on Lagrangians. As such, they do not require
any of the necessary conditions for local minima to be satisfied. In Section 9 we combine the
tools from the preceeding sections and the necessary conditions (ii) and (iii) of Theorem 4.1
to complete the proof of Theorem 4.2. We must mention that the same sequence of steps
as in this paper: the representation formula, the decomposition lemma, the orthogonality
principle and the localization principle, was used in [12] to characterize the weak-* limits of
a non-linear transformation of the sequence of gradients.

5 The representation formula

Theorem 5.1 Let ψn be a bounded sequence in the Sobolev space W 1,2(Ω; Rm). Suppose αn

is a sequence of positive numbers such that φn(x) = αnψn(x) is bounded in W 1,∞(Ω; Rm).
Let

R = sup
n≥1

‖∇φn(x)‖∞. (5.1)

Then there exist a subsequence, not relabeled, a nonnegative Radon measure π on Ω, and
families of probability measures {µx}x∈Ω supported on the ball B(0, R) in R

m×d and {λx}x∈Ω

supported on the unit sphere S in R
m×d with the property that

F(x, αn,∇ψn)
∗
⇀ I(x, µx, λx)dπ (5.2)

in the sense of measures, where F(x, α,G) is given by (3.10) and

I(x, µx, λx) =

∫

B(0,R)

U(x,F )dµx(F ) +
1

2

∫

S
(L(x)F ,F )dλx(F ). (5.3)

1We will show by an example that this is actually false. However, this image does help on an intuitive
level.
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In particular, |∇ψn|
2 ∗
⇀ dπ.

Note that in this theorem we do not assume that αn = ‖∇φn‖2.

Proof: For each n ≥ 1, consider a measure dπn = |∇ψn(x)|2dx on Ω and a map
Φn : Ω → Ω × B(0, R), given by

Φn(x) = (x,∇φn(x)).

Let the measure Mn on Ω × B(0, R) be the push-forward of dπn by Φn. Then, for any
continuous function U(x,F ), we have
∫

Ω×B(0,R)

U(x,F )dMn(x,F ) =

∫

Ω

U(Φn(x))dπn(x) =

∫

Ω

U(x,∇φn(x))|∇ψn(x)|2dx.

From this formula it is clear that Mn is a sequence of non-negative measures and that there
exist some constant C > 0 such that for all n,

Mn(Ω × B(0, R)) =

∫

Ω

|∇ψn(x)|2dx ≤ C,

since ∇ψn(x) is bounded in L2. That is, Mn is a bounded sequence of measures in M(Ω ×
B(0, R)), where M(Ω × B(0, R)) is the dual of C(Ω × B(0, R)). Then, by the Banach-
Alaoglu theorem we can find a subsequence, not relabeled, and a nonnegative measure M on
Ω×B(0, R) such that Mn

∗
⇀M in the sense of measures. Let π be the projection of M onto Ω.

Then by the Slicing Decomposition Lemma, [11], there exists a family of probability measures
µ = {µx}x∈Ω on B(0, R) such that M = µx⊗π in the sense that for all U(x,F ) ∈ C(Ω×R

m×d)
we have ∫

Ω×B(0,R)

U(x,F )dM(x,F ) =

∫

Ω

∫

B(0,R)

U(x,F )dµx(F )dπ(x)

Therefore,

lim
n→∞

∫

Ω

U(x, αn∇ψn(x))|∇ψn(x)|2dx =

∫

Ω

∫

B(0,R)

U(x,F )dµx(F )dπ(x). (5.4)

Setting U(x,F ) = ξ(x), for ξ(x) ∈ C(Ω) we have

lim
n→∞

∫

Ω

ξ(x)|∇ψn(x)|2dx =

∫

Ω

ξ(x)dπ(x),

implying that πn
∗
⇀ π in the sense of measures.

Consider now the sequence of matrix-valued measures dβn = |∇ψn(x)|∇ψn(x)dx with

the polar decomposition (see [11]) dβn = β̂n(x)dπn(x), where

β̂n(x) =
∇ψn(x)

|∇ψn(x)|
.

11



Applying the Varifold limit theorem [11] to dβn, we obtain a family of probability measures
λx on the unit sphere S in R

m×d such that for any f ∈ C(Ω × S)

f(x, β̂n(x))dπn
∗
⇀

[∫

S
f(x,F )dλx(F )

]
dπ (5.5)

in the sense of measures. If we choose f(x,F ) = (L(x)F ,F ), where L(x) is given by (3.6),
we will obtain, according to (5.5), that

(L(x)∇ψn(x),∇ψn(x))
∗
⇀

[∫

S
(L(x)F ,F )dλx(F )

]
dπ.

Combining that with (5.4) and recalling (3.10) we obtain (5.2).

6 The decomposition lemma

The decomposition lemma can be found in [12, 21] in great generality. Here we are going to
formulate a slightly more restricted version but with an extra statement that we need and
that is easy to obtain from the proof, but not from the statement of the Lemma in [12]. For
that reason we will have to revisit the relevant parts of the proof of the Lemma given in [12].

Lemma 6.1 (Decomposition Lemma) Suppose the sequence {ψn : n ≥ 1} ⊂ Var(A) is
bounded in W 1,2(Ω; Rm). Then there exist a subsequence n(j) and sequences vj, with mean
zero, and zj in W 1,∞(Ω; Rm) such that ψn(j) = zj+vj, |∇zj|

2 is equiintegrable, vj ⇀ 0 weakly
in W 1,2(Ω; Rm). Moreover there exists a sequence of subsets Rj of Ω, such that |Rj| → 0 as
j → ∞ and

zj(x) = ψn(j)(x) and ∇zj(x) = ∇ψn(j)(x) for all x ∈ Ω \ Rj .

In addition, if for some sequence αn of positive numbers the sequence of functions αn∇ψn is
bounded in L∞(Ω; Rm×d), then so are the sequences αn(j)∇zj and αn(j)∇vj.

After the proof of the Lemma we will restrict our attention to the subsequence n(j). For this
reason, the symbols αn, ψn, zn and vn will refer to αn(j), ψn(j), zj and vj respectively.

Proof: We split the proof into two parts. In the first part of the proof we are going to
recap the construction of sequences zn and vn in [12]. In the second part we are going to use
the details of that construction to prove the last statement in the Lemma.

Part I. Recall that we have assumed that Ω is a smooth domain. According to [13,
Theorem 7.25] there exists an extension operator

X : W 1,p(Ω; Rm) → W 1,p(Rd; Rm), 1 ≤ p ≤ ∞

and a constant C > 0 independent of p, such that for all ψ ∈ W 1,p(Ω; Rm)

‖Xψ‖W 1,p(Rd;Rm) ≤ C‖ψ‖W 1,p(Ω;Rm). (6.1)

12



Letψn ∈ Var(A) be a bounded sequence in W 1,2(Ω; Rm). We identifyψn with its extension
Xψn. Then the sequence of maximal functions {M(∇ψn)} is bounded in L2(Rd) (see [30,
Theorem 1(c), p. 5]) and the sequence αnM(∇ψn) is bounded in L∞. Let υ = {υx}x∈Ω be
the Young measure generated by a subsequence {M(∇ψn(k))}. Consider the truncation maps
Tj : R → R given by

Tj(s) =





s, |s| ≤ j

js

|s|
, |s| > j.

For each j the function Tj(s) is bounded and therefore, the sequence {|Tj(M(∇ψn(k)))|
2 : k ≥

1} is equiintegrable. It follows from [27, Theorem 6.2] that for each j

|Tj(M(∇ψn(k)))|
2 ⇀

∫

R

|Tj(s)|
2dυx(s), as k → ∞

weakly in L1(Ω). Let

f(x) =

∫

R

|s|2dυx(s).

Then, according to the theory of Young measures [27, Theorem 6.11], f ∈ L1(Ω). Notice that
|Tj(s)| ≤ |s|. Therefore, by the dominated convergence theorem, we have

∫

R

|Tj(s)|
2dυx(s) ⇀ f(x) as j → ∞

weakly in L1(Ω). It turns out that it is possible to choose a subsequence k(j) such that

|Tj(M(∇ψn(k(j))))|
2 ⇀ f(x) as j → ∞ (6.2)

weakly in L1(Ω) (the proof is given in [12]2). To simplify notation, let n(j) denote n(k(j)).
Set

R′
j = {x ∈ Ω : M(∇ψn(j))(x) ≥ j}.

Since Ω is bounded and M(∇ψn(j)) is bounded in L2(Ω), we have |R′
j| → 0 as j → ∞. In [9,

p. 255, Claim #2] it is proved that there exist Lipschitz functions zj such that

zj(x) = ψn(j)(x) for a.e. x ∈ R
d \ R′

j , and |∇zj(x)| ≤ Cj for a.e. x ∈ R
d.

Let
Rj = R′

j ∪ {x ∈ Ω : ∇zj(x) 6= ∇ψn(j)(x)}.

The sets Rj and R′
j differ by a set of Lebesgue measure zero by [9, Theorem 3 and Remark (ii),

Section 6.1.3]. Therefore, |Rj | → 0 as j → ∞.

2Since the space L
∞ is not separable, we cannot claim a priori that a limit of limit points of the sequence

is a limit point of the sequence in a weak topology of L
1.
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Part II. Observe that on Ω \ Rj we have the inequality

|∇zj(x)| = |∇ψn(j)(x)| ≤ |M(∇ψn(j))(x)| = |Tj(M(∇ψn(j))(x))|

while if x ∈ R′
j, then

|∇zj(x)| ≤ Cj = C|Tj(M(∇ψn(j))(x))|

We conclude that

|∇zj(x)| ≤ C|Tj(M(∇ψn(j))(x))| for a.e. x ∈ Ω, (6.3)

which, together with (6.2), yields the equiintegrability of {|∇zj |
2} and boundedness of αn(j)∇zj

in L∞.
Let, vj = ψn(j) − zj. Then, ∇vj is bounded in L2 because so are ∇ψn(j) and ∇zj (as

|∇zj |
2 is equiintegrable). Similarly, αn(j)∇vj is bounded in L∞, because so are αn(j)∇ψn(j)

and αn(j)∇zj . Let us show now that zj and therefore vj are bounded in L2. Indeed, Now,
let 〈zj〉 be the average of zj over Ω Then, by Poincaré inequality, zj − 〈zj〉 is bounded in L2.
But then,

〈zj〉χΩ\Rj
(x) = ψn(j)(x)χΩ\Rj

(x) − (zj(x) − 〈zj〉)χΩ\Rj
(x),

since on Ω \ Rj the functions ψn(j)(x) and zj(x) agree. It follows that the sequence of
constants 〈zj〉 is bounded. Therefore, zj = (zj − 〈zj〉) + 〈zj〉 is bounded in L2.

It remains to show that vj ⇀ 0 in W 1,2(Ω; Rm). Indeed, for any ϕ ∈ W 1,2(Ω; Rm) we
have∣∣∣∣

∫

Ω

(ϕ,vj(x))dx +

∫

Ω

(∇ϕ(x),∇vj(x))dx

∣∣∣∣

≤

(∫

Rj

|ϕ(x)|2dx

)1/2

‖vj‖L2 +

(∫

Rj

|∇ϕ(x)|2dx

)1/2

‖∇vj‖L2 → 0

as j → ∞, since the sequence vj is bounded in W 1,2(Ω; Rm), and |Rj | → 0. The lemma is
completely proved.

7 The orthogonality principle

The decomposition lemma allows us to represent a sequence of gradients that are bounded in
L2 as a sum of two sequences of gradients. One of them is square-equiintegrable and generates
the same Young measure as the original sequence, while the other sequence captures the
“concentration effect”. We are going to apply the decomposition lemma not to the variation
{φn} itself but to the rescaled sequence ψn given by (3.9). If αn → 0 then the intuitive
interpretation of the induced decomposition of φn will be a decomposition of φn into strong
(αnvn) and weak variations (αnzn), even if the Definition 1.3 is not exactly satisfied.

The orthogonality principle says that the two terms in the decomposition of a variation
do not interact (are “orthogonal”). A version of this lemma was used in [12] as one of the
steps in their characterization of the weak-* limits of sequences of non-linear transformations
of gradients.
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Lemma 7.1 (Orthogonality Principle)

F(x, αn,∇ψn) −F(x, αn,∇zn) − F(x, αn,∇vn) → 0 (7.1)

strongly in L1.

Before we prove this lemma, let us combine it with Theorem 5.1. According to Theorem 5.1
in Section 5, there exist measures M̃ = µ̃x ⊗ π̃ and Λ̃ = λ̃x ⊗ π̃ such that

F(x, αn,∇vn)
∗
⇀ I(x, µ̃x, λ̃x)dπ̃, (7.2)

where the functional I is given by (5.3).
We can actually say more about the term involving zn in (7.1). Let ν = {νx}x∈Ω be

the gradient Young measure generated by the sequence {∇ψn}. Observe that the sequence
{∇zn} generates the same Young measure as {∇ψn} because ∇zn(x) = ∇ψn(x) for x 6∈ Rn

and |Rn| → 0 (see [27, Lemma 6.3(i)]). Moreover since |∇zn|
2 is equiintegrable,

|∇zn|
2 ⇀ m(x) =

∫

Rm×d

|F |2dνx(F ) (7.3)

weakly in L1(Ω).

Lemma 7.2 Assume that αn → 0. Then there exists a subsequence (not relabeled) such that

F(x, αn,∇zn) ⇀ U(x, 0)m(x) +
1

2

∫

Rm×d

(L(x)F ,F )dνx(F )

weakly in L1(Ω).

By construction, U(x, 0) = 0. We have included this term in Lemma 7.2 in order to empha-
size that “for practical purposes” the values of the sequence αn∇zn(x) are uniformly small,
justifying our intuitive understanding of αnzn(x) as the “weak part” of the variation φn.
Furthermore, we see that the effect of the variation αnzn on the functional can be described
by a quantity that has an intimate relation to the second variation (4.2). This relation will
be made absolutely precise in Section 9 by means of [27, Lemma 8.3].

Using Lemma 7.2, (5.2) and (7.2) we can pass to the limit in (7.1) to obtain the decom-
position

I(x, µx, λx)dπ = I(x, µ̃x, λ̃x)dπ̃ + Y(x)dx, (7.4)

in the sense of measures, where

Y(x) =
1

2

∫

Rm×d

(L(x)F ,F )dνx(F ).

The representation (7.4) holds for any continuous function U(x,F ) on Ω×R
m×d and any

continuous fourth order tensor L(x) on Ω. Thus taking U = 0 and L(x) = I, the fourth order
identity tensor, in (7.4) we get the decomposition

dπ = dπ̃ +
1

2
m(x)dx, (7.5)
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where m(x) is defined in (7.3). The first term is generated by a sequence |∇vn|
2 which

is non-zero on the sets Rn of vanishing Lebesgue measure, while m(x) is generated by the
equiintegrable part |∇zn|

2 of |∇ψn|
2. It would then be reasonable to assume that the decom-

position (7.5) is a Lebesgue decomposition of the measure π into the absolutely continuous
and singular parts. Surprisingly, this is false, as is clear from the following example that is a
modification of the 1D example of Ball and Murat [5]. Consider a sequence of functions

ψn(x) = (fn(x1), 0, 0)

defined on Ω = [0, 1]3, where fn is a continuous function on [0, 1], such that

f ′
n(x) =





n√
2
, when x ∈

[
k

n + 1
−

1

n3
,

k

n + 1
+

1

n3

]
for k = 0, 1, 2, . . . , n

0, otherwise

(7.6)

Then |∇ψn|
2 = (f ′

n(x1))
2 ∗
⇀ dx in the sense of measures. Moreover the Young measure

generated by ∇ψn is δ0, and so m(x) = 0 for all x ∈ Ω.
We conclude this section with proofs of Lemmas 7.1 and 7.2.

Proof of Lemma 7.1: We split the proof into a sequence of steps.
Step 1. Let us write

F(x, αn,∇ψn) − F(x, αn,∇zn) −F(x, αn,∇vn) = In(x; U) + Jn(x),

where

In(x; U) = U(x, αn∇ψn)|∇ψn|
2 − U(x, αn∇vn)|∇vn|

2 − U(x, αn∇zn)|∇zn|
2

and

2Jn(x) = (L(x)∇ψn(x),∇ψn(x)) − (L(x)∇vn(x),∇vn(x)) − (L(x)∇zn(x),∇zn(x)).

Therefore to prove the lemma it suffices to show that In(x; U) → 0 and Jn(x) → 0 strongly
in L1.

Step 2. Assume that U is smooth. Let us show that In(x; U) → 0 strongly in L1 as
n → ∞. We have
∫

Ω

|In(x; U)|dx ≤

∫

Rn

∣∣U(x, αn∇ψn(x))|∇ψn(x)|2 − U(x, αn∇vn(x))|∇vn(x)|2
∣∣ dx

+

∫

Rn

|U(x, αn∇zn(x))||∇zn(x)|2dx.

Let
R = sup

n≥1
{max(‖αn∇ψn‖∞, ‖αn∇zn‖∞, ‖αn∇vn‖∞)} . (7.7)
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By mean value theorem, there exists C = C(R) > 0 such that

|U(x,A)|A|2 − U(x,B)|B|2| ≤ C(|A| + |B|)|A−B| (7.8)

for every x ∈ Ω, |A| ≤ R and |B| ≤ R. Applying the inequality (7.8) for A = αn∇ψn and
B = αn∇vn that are uniformly bounded (by Lemma 6.1 in case of αn∇vn), we obtain

∫

Ω

|In(x; U)|dx ≤ C

∫

Rn

{|∇ψn(x)||∇zn(x)| + |∇vn(x)||∇zn(x)| + |∇zn(x)|2}dx.

Applying the Cauchy-Schwarz inequality to the first two summands on the right hand side of
the above inequality we get

∫

Ω

|In(x; U)|dx ≤ C‖∇ψn‖L2

(∫

Rn

|∇zn(x)|2dx

)1/2

+ C‖∇vn‖L2

(∫

Rn

|∇zn(x)|2dx

)1/2

+ C

∫

Rn

|∇zn(x)|2dx.

Equiintegrability of zn and L2 boundedness of ∇ψn and ∇vn implies that ‖In(x; U)‖1 → 0.
Step 3. Here we show In(x; U) → 0 strongly in L1 as n → ∞ for all U continuous. Let

us approximate U by a smooth function. For ǫ > 0 there exists a smooth function V such
that ‖U − V ‖∞ < ǫ on Ω × B(0, R) . Then In(x; U) = In(x; V ) + In(x; U − V ) and

∫

Ω

|In(x; U − V )|dx ≤ ‖U − V ‖∞
(
‖∇ψn‖

2
2 + ‖∇vn‖

2
2 + ‖∇zn‖

2
2

)
.

Thus, we get the inequality

‖In(x; U)‖1 ≤ ‖In(x; V )‖1 + C‖U − V ‖∞,

from which it follows, by way of Step 2, that ‖In(x; U)‖1 → 0.
Step 4. The decomposition ψn = zn + vn gives

Jn(x) = (L(x)∇zn(x),∇vn(x)).

It follows that

∫

Ω

|Jn(x)|dx ≤ C

∫

Rn

|∇vn(x)||∇zn(x)|dx ≤ C‖∇vn‖2

(∫

Rn

|∇zn(x)|2
)1/2

→ 0

by the Cauchy-Schwarz inequality and the equiintegrability of |∇zn|
2. This completes the

proof of the Lemma.

Proof of Lemma 7.2: It suffices to prove that

U(x, αn∇zn(x))|∇zn(x)|2 ⇀ U(x, 0)m(x) (7.9)
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and
1

2
(L(x)∇zn(x),∇zn(x)) ⇀ Y(x) (7.10)

weakly in L1(Ω). The relation (7.10) follows directly from standard theory of Young measures
[27, Theorem 6.2]. In order to prove (7.9) we show that

Tn(x) = (U(x, αn∇zn(x)) − U(x, 0))|∇zn(x)|2 → 0 (7.11)

strongly in L1(Ω). Then (7.11) and the fact that |∇zn(x)|2 ⇀ m(x) weakly in L1(Ω) imply
the Lemma.

Let us prove (7.11) now. Observe that αn∇zn → 0 in L2, because ∇zn is bounded in L2

and αn → 0. Then we can find a subsequence, not relabeled, such that αn∇zn(x) → 0 for a.e.
x ∈ Ω. Thus, Tn(x) → 0 a.e. Since, αn∇zn(x) is uniformly bounded, Tn is equiintegrable,
and by Vitali’s convergence theorem3 [29, p. 133, exercise 10(b)] we prove (7.11). This finishes
the proof of Lemma 7.2.

8 The localization principle

The orthogonality principle reduces the computation of
∫
Ω
F(x, αn,∇ψn)dx to the compu-

tation of the same quantity for zn and vn. We saw in Section 7 that the zn part produces
the second variation of the functional in the same way that weak variations (4.1) do. We
thus, have a direct link between the requirement of positivity of second variation (4.2) and
the non-negativity of the functional increment corresponding to the variations αnzn (we will
make this precise in Section 9).

As we mentioned at the beginning of Section 7, the variation αnvn should be regarded
intuitively as a “strong part” of the variation φn. For that reason, we expect it to be connected
in some way to the quasiconvexity conditions (4.6)–(4.7). This, however, is not so clear.
The basic problem is that the variation αnvn seems to have a global character,4 while the
quasiconvexity conditions (4.6)–(4.7) are localized at a single point. This is exactly where the
localization principle comes in. It says that the effect of αnvn can be localized at a single point,
providing us with the necessary link to quasiconvexity conditions. Our localization principle
is very similar (on a technical level) to the localization principle for Young measures [27,
Theorem 8.4], and both can be regarded as versions of the Lebesgue differentiation theorem.
In our notation the localization principle can be stated as

I(x0, µ̃x0, λ̃x0) = lim
r→0

lim
n→∞

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

F(x0, αn,∇vn)dx (8.1)

for π̃ a.e. x0 ∈ Ω ∩ supp(π̃), where BΩ(x0, r) = B(x0, r) ∩ Ω. The problem with (8.1)
is that the maps vn do not necessarily have the proper boundary conditions to be used as

3In fact (7.11) follows from the generalized Vitali convergence theorem (see [14, Lemma 8.2])
4Even though vn “lives” on Rn with vanishing Lebesgue measure, we know nothing about the geometry

of the set Rn. Example (7.6) shows that the character of the variation αnvn can be global indeed.
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test functions φ in the quasiconvexity inequalities (4.6) and (4.7). In addition, as far as
the quasiconvexity at the boundary (4.7) is concerned, the domain BΩ(x0, r) (or its rescaled
version B−

r = (BΩ(x0, r) − x0)/r) is not quite the domain required in (4.7). In this section
we prove a bit more involved versions of (8.1) that remedy the above stated shortcomings.

Theorem 8.1 (Localization in the interior) Let x0 ∈ Ω∪∂Ω1. Let the cut-off functions
θr

k(x) ∈ C∞
0 (BΩ(x0, r)) be such that θr

k(x) → χBΩ(x0,r)(x), while remaining uniformly bounded
in L∞. Let vn ⇀ 0 weakly in W 1,2(Ω; Rm). Let αn be a sequence of positive numbers such

that αnvn is bounded in W 1,∞(Ω; Rm). Let M̃ = µ̃x ⊗ π̃ and Λ̃ = λ̃x ⊗ π̃ be the measures
corresponding to the pair (αn,vn) via Theorem 5.1. Then for π̃ a.e. x0 ∈ Ω ∪ ∂Ω1

lim
r→0

lim
k→∞

lim
n→∞

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

F(x0, αn,∇(θr
k(x)vn(x)))dx = I(x0, µ̃x0 , λ̃x0) (8.2)

In order to formulate the localization principle for the free boundary we have to take care not
only of the boundary conditions, but also of the geometry of the domain, that is required to
have a “flat” part of the boundary with the outer unit normal n(x0). We observe that for
smooth domains Ω the set

B−
r =

BΩ(x0, r) − x0

r
(8.3)

is “almost” the half-ball B−
n(x0)(0, 1). As r → 0 the set B−

r “converges” to B−
n(x0)(0, 1).

Formally, we say that there exists a family of diffeomorphisms fr : B−
n(x0)(0, 1) → B−

r such

that fr(x) → x in C1(B−
n(x0)(0, 1)) and f−1

r (y) → y in C1(B−
r ). The latter condition is

understood in the sense that

sup
y∈B−

r

|f−1
r (y) − y| → 0 and sup

y∈B−

r

|∇f−1
r (y) − I| → 0, as r → 0.

Let

vr
n(x) =

vn(x0 + rfr(x)) −Cr
n(x0)

r
(8.4)

be the blown-up version of vn defined on B−
n(x0)(0, 1), where the constants

Cr
n(x0) =

1

|B−
n(x0)(0, 1)|

∫

B−

n(x0)
(0,1)

vn(x0 + rfr(x))dx

are chosen such that vr
n(x) has zero mean over B−

n(x0)(0, 1).

Theorem 8.2 (Localization on the free boundary) Let x0 ∈ ∂Ω2 ∩ supp(π̃) and let vn

and αn be as in Theorem 8.1. Let vr
n be defined by (8.4) and let the cut-off functions θk(x) ∈

C∞
0 (B(0, 1)) be such that θk(x) → χB(0,1)(x), while remaining uniformly bounded in L∞. Let
ζr

n,k(x) = θk(x)vr
n(x). Then

lim
r→0

lim
k→∞

lim
n→∞

rd

π̃(BΩ(x0, r))

∫

B−

n(x0)
(0,1)

F(x0, αn,∇ζ
r
n,k(x))dx = I(x0, µ̃x0 , λ̃x0) (8.5)

for π̃-a.e x0 ∈ ∂Ω2.
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8.1 Proof of Theorem 8.1

Step 1. We begin by showing that the gradient of the cut-off functions θr
k does not influence

the limit in (8.2).

Lemma 8.3 For each fixed k and r

lim
n→∞

∫

BΩ(x0,r)

F(x0, αn,∇(θr
k(x)vn(x)))dx = lim

n→∞

∫

BΩ(x0,r)

F(x0, αn, θr
k(x)∇vn(x))dx.

Proof: Let

Tn,k,r(x) = F(x0, αn,∇(θr
k(x)vn(x))) −F(x0, αn, θ

r
k(x)∇vn(x)).

In order to prove the Lemma, we need to estimate Tn,k,r(x) and prove that
∫

BΩ(x0,r)

|Tn,k,r(x)|dx→ 0, as n → ∞. (8.6)

In order to establish (8.6) we use the same method as in the proof of the orthogonality
principle (Lemma 7.1). We first prove (8.6), assuming that U is a smooth function, in which
case we have

|F(x, α,G1) −F(x, α,G2)| ≤ C(M)|G1 −G2|(|G1| + |G2|) (8.7)

for some positive constant C(M), when |G1| ≤ M and |G2| ≤ M . Therefore,

|Tn,k,r(x)| ≤ C(k, r)|∇θr
k(x)||vn(x)|(|θr

k(x)||∇vn(x)| + |∇θr
k(x)||vn(x)|),

which implies that (8.6) holds, because vn ⇀ 0 in W 1,2. If U is continuous, then, approxi-
mating U by smooth functions uniformly, we get that for every ǫ > 0,

lim
n→∞

∫

BΩ(x0,r)

|Tn,k,r(x)|dx ≤ ǫ,

and the Lemma is proved.

Step 2. Next we compute the limit in Lemma 8.3 by means of Theorem 5.1 and show
that the limit in k → ∞ corresponds to taking θr

k(x) = χBΩ(x0,r)(x).

Lemma 8.4

lim
k→∞

lim
n→∞

∫

BΩ(x0,r)

F(x0, αn, θ
r
k(x)∇vn(x))dx =

∫

BΩ(x0,r)

Ĩ(x0,x)dπ̃(x) (8.8)

where

Ĩ(x0,x) =

∫

B(0,R)

U(x0,F )dµ̃x(F ) +
1

2

∫

S
(L(x0)F ,F )dλ̃x(F ), (8.9)

where R is given by (7.7).
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Proof: For each fixed x0 ∈ Ω ∪ ∂Ω1 and k ≥ 1 we define

Ũ (k,r)
x0

(x,F ) = θr
k(x)2U(x0, θ

r
k(x)F ), L̃

(k,r)
x0

(x) = θr
k(x)2

L(x0).

Then,
F(x0, αn, θr

k(x)∇vn) = F̃(x, αn,∇vn),

where F̃ is the functional F , given by (3.10) with U and L replaced by Ũ
(k,r)
x0 and L̃

(k,r)
x0

respectively. Applying Theorem 5.1, we obtain

lim
n→∞

∫

BΩ(x0,r)

F(x0, αn, θr
k(x)∇vn(x))dx

=

∫

BΩ(x0,r)

θr
k(x)2

(∫

B(0,R)

U(x0, θ
r
k(x)F )dµ̃x(F ) +

1

2

∫

S
(L(x0)F ,F )dλ̃x(F )

)
dπ̃(x).

By bounded convergence theorem, using the fact that θr
k(x) → χBΩ(x0,r)(x) we have

θr
k(x)2

(∫

B(0,R)

U(x0, θ
r
k(x)F )dµ̃x(F ) +

1

2

∫

S
(L(x0)F ,F )dλ̃x(F )

)
→ Ĩ(x0,x)χBΩ(x0,r)(x)

as k → ∞ for π̃-a.e x ∈ Ω. The conclusion of the lemma follows from another application of
bounded convergence theorem.

Step 3. In order to finish the proof of Theorem 8.1 we need to divide both sides of (8.8)
by π̃(BΩ(x0, r)) and take the limit as r → 0. The result is a corollary of the “vector-valued”

version of the Lebesgue differentiation theorem [10, Corollary 2.9.9]. Indeed, Ĩ(x0,x) is
continuous in x0 ∈ Ω for π̃ a.e. x ∈ Ω, and

∫

Ω

‖Ĩ(·,x)‖C(Ω)dπ̃(x) < ∞.

Then for any x′
0 ∈ Ω and for π̃ a.e. x0 ∈ Ω, we have

lim
r→0

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

Ĩ(x′
0,x)dπ̃(x) = Ĩ(x′

0,x0).

Setting x′
0 = x0 we obtain (8.2). Theorem 8.1 is proved.

8.2 Proof of Theorem 8.2

The proof basically follows the same sequence of steps as the proof of Theorem 8.1 with the
only difference that we have to take care not only of the cut-off functions θk but also of the
small deformations fr.

Step 1. As in the proof of Theorem 8.2, we first show that gradients of the cut-off
functions θk do not enter the limit (8.5).
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Lemma 8.5

lim
n→∞

∫

B−

n(x0)
(0,1)

F(x0, αn,∇ζ
r
n,k)dx = lim

n→∞

∫

B−

n(x0)
(0,1)

F(x0, αn, θk(x)∇vr
n(x))dx. (8.10)

The proof is very similar to the proof of Lemma 8.3 and is therefore omitted. The more
complex dependence of the integrand on r is irrelevant at this point because r is held fixed
here.

Step 2. As in the proof of Theorem 8.1 we use Theorem 5.1 to compute the limit as
n → ∞ and then pass to the limit as θk(x) → χB(0,1)(x). Let us change variables

x′ = x0 + rfr(x) (8.11)

in the right hand side in (8.10). Solving (8.11) for x we get

x = tr(x
′) = f−1

r ((x′ − x0)/r).

Then

lim
n→∞

∫

B−

n(x0)
(0,1)

F(x0, αn, θk(x)∇vr
n(x))dx =

lim
n→∞

∫

BΩ(x0,r)

F(x0, αn, θk(tr(x
′))∇vn(x′)Jr(x

′))
J−1

r (x′)

rd
dx′,

where
Jr(x

′) = (∇fr)(f
−1
r ((x′ − x0)/r))) (8.12)

and Jr(x
′) = detJr(x

′). Again, as in the proof of Theorem 8.1 we represent the expression

under the integral as the functional F constructed with Û
(k,r)
x0 and L̂

(k,r)
x0 replacing U and L,

where

Û (k,r)
x0

(x,F ) =
θk(tr(x)2

rdJr(x)
U(x0, θk(tr(x)FJr(x)))

|FJr(x)|2

|F |2

and

(L̂(k,r)
x0

(x)F ,F ) =
θk(tr(x))2

rdJr(x)
(L(x0)FJr(x),FJr(x)).

We remark, that since U(x,F ) is continuous and U(x, 0) = 0, then the same is true for Û
(k,r)
x0 .

Thus, Theorem 5.1 is applicable and the limit as n → ∞ can be computed. The passage to
the limit as k → ∞ is no different than the same step in the proof of Theorem 8.1. Thus, we
obtain

lim
k→∞

lim
n→∞

∫

B−

n(x0)
(0,1)

F(x0, αn,∇ζr
n,k)dx =

1

rd

∫

BΩ(x0,r)

Ĩr(x0,x)

Jr(x)
dπ̃(x),

where

Ĩr(x0,x) =

∫

B(0,R)

U(x0,FJr(x))
|FJr(x)|2

|F |2
dµ̃x(F ) +

1

2

∫

S
(L(x0)FJr(x),FJr(x))dλ̃x(F )

Step 3. On this step, we will show that the deformation fr does not influence the limit
as r → 0.
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Lemma 8.6

lim
r→0

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

Ĩr(x0,x)

Jr(x)
dπ̃(x) = lim

r→0

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

Ĩ(x0,x)dπ̃(x),

where Ĩ(x0,x) is given by (8.9).

Proof: Observe that Jr(x) → I, as r → 0 uniformly in x ∈ BΩ(x0, r) in the sense that

lim
r→0

sup
x∈BΩ(x0,r)

|Jr(x) − I| = 0. (8.13)

Indeed, from (8.12) it is easy to see that

sup
x∈BΩ(x0,r)

|Jr(x) − I| = sup
x∈B−

n(x0)
(0,1)

|∇fr(x) − I| → 0,

as r → 0. It follows that Jr(x) → 1, as r → 0 uniformly in x ∈ BΩ(x0, r). We also have that

lim
r→0

sup
x∈BΩ(x0,r)

∣∣∣∣∣
Ĩr(x0,x)

Jr(x)
− Ĩ(x0,x)

∣∣∣∣∣ = 0, (8.14)

due to (8.13) and the fact that the measures µ̃x and λ̃x are supported on compact sets. The
Lemma now follows from (8.14) and the estimate

1

π̃(BΩ(x0, r))

∫

BΩ(x0,r)

∣∣∣∣∣
Ĩr(x0,x)

Jr(x)
− Ĩ(x0,x)

∣∣∣∣∣ dπ̃(x) ≤ sup
x∈BΩ(x0,r)

∣∣∣∣∣
Ĩr(x0,x)

Jr(x)
− Ĩ(x0,x)

∣∣∣∣∣ .

Step 4. The right hand side in Lemma 8.6 is already computed in Step 3 in the proof of
Theorem 8.1. This finishes the proof of Theorem 8.2.

9 Proof of Theorem 4.2

Observe that so far we have been developing analytical tools, that is theorems that do not
involve any of the necessary conditions for local minima listed in Theorem 4.1. In this section
we will combine the tools with the inequalities from Theorem 4.1 to prove Theorem 4.2.

Step 1. We restrict our analysis to a subsequence (not relabeled) such that αn, defined
in (3.9), converges to α0 ≥ 0. Suppose first that α0 > 0. Then we claim that δ′E ≥ 0. The
justification of the claim is based on the following simple corollary of Morrey’s sequential
weak-* lower semicontinuity theorem.
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Lemma 9.1 Assume that for every F ∈ R, given by (1.4), the function W is quasiconvex at

F . Let φn
∗
⇀ 0 in W 1,∞ weak-*. Then

lim
n→∞

∫

Ω

(W (x,F (x) + ∇φn) − W (x,F (x)))dx ≥ 0.

Proof: Let QW denote the quasiconvexification of W , [7]. Then,

W (x,F (x) + ∇φn) ≥ QW (x,F (x) + ∇φn)

for every x ∈ Ω. According to Morrey, [25], QW is sequential weak-* lower semi-continuous
and therefore,

lim
n→∞

∫

Ω

W (x,F (x) + ∇φn)dx ≥

∫

Ω

QW (x,F (x))dx.

But F (x) ∈ R for all x ∈ Ω, by definition (1.4) of R, and by our assumption (4.6), we have

QW (x,F (x)) = W (x,F (x))

for all x ∈ Ω (see [17]). The lemma follows.

Observe that

lim
n→∞

∫

Ω

(WF (x,F (x)),∇φn)dx = 0,

since ∇φn(x)
∗
⇀ 0 in L∞ weak-*. Thus, Lemma 9.1 implies that δ′E ≥ 0.

Step 2. A more interesting (and complicated) case is when α0 = 0. In this case we have

δ′E =

∫

Ω

I(x, µx, λx)dπ(x). (9.1)

and a decomposition (7.4) holds. Thus,

δ′E =

∫

Ω

I(x, µ̃x, λ̃x)dπ̃(x) +
1

2

∫

Ω

∫

Rm×d

(L(x)F ,F )dνx(F )dx. (9.2)

To complete the proof of the Theorem we show that
∫

Ω

∫

Rm×d

(L(x)F ,F )dνx(F )dx ≥ 0 (9.3)

and
I(x0, µ̃x0 , λ̃x0) ≥ 0 for π̃− a.e. x0 ∈ Ω. (9.4)

Step 3. We first prove (9.3). Observe that since ‖∇ψn‖2 = 1 and ψn|∂Ω1 = 0, there
exists ψ0 ∈ W 1,2(Ω; Rm) satisfying ψ0|∂Ω1 = 0 and a subsequence {ψn}, not relabeled, such
that ψn ⇀ ψ0 weakly in W 1,2(Ω; Rm). Since vn ⇀ 0 weakly in W 1,2(Ω; Rm), we have
zn ⇀ ψ0 weakly in W 1,2(Ω; Rm). By [27, Lemma 8.3], we can find a sequence z̃n such that
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z̃n − ψ0 ∈ W 1,2
0 (Ω; Rm) and ∇zn and ∇z̃n generate the same Young measure ν = {νx}x∈Ω.

It follows that z̃n satisfies z̃n|∂Ω1 = 0. Thus, z̃n ∈ Var(A) and

∫

Ω

(L(x)∇z̃n(x),∇z̃n(x))dx ≥ 0

for all n, according to the condition (ii) of Theorem 4.1. Taking limit as n → ∞ in the above
inequality we obtain (9.3).

Step 4. On this step we prove the inequality (9.4). For all x0 ∈ Ω∪∂Ω1 we have that the
functions θr

k(x)vn(x) vanish on ∂BΩ(x0, r) and therefore, according to the inequality (4.6)
we have ∫

BΩ(x0,r)

F(x0, αn,∇(θr
k(x)vn(x)))dx ≥ 0

for all n, k and r. Theorem 8.1 then tells us that I(x0, µ̃x0, λ̃x0) ≥ 0 for π̃ almost all
x0 ∈ Ω ∪ ∂Ω1.

For all x0 ∈ ∂Ω2, we use functions ζr
n,k(x) from the formulation of Theorem 8.2. These

functions are defined on the half-ball B−
n(x0)(0, 1) and vanish on the “round” part of the

boundary of the half-ball. Therefore, according to the inequality (4.7) we have,

∫

B−

n(x0)
(0,1)

F(x0, αn,∇ζr
n,k(x))dx ≥ 0

for all n, k and r. Theorem 8.2 then tells us that I(x0, µ̃x0 , λ̃x0) ≥ 0 for π̃ almost all x0 ∈ ∂Ω2.
Thus, we have proved the inequality (9.4) for π̃ a.e. x0 ∈ Ω. This completes the proof of
Theorem 4.2.
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