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Abstract

In this paper we settle a conjecture of Ball that uniform quasiconvexity and uniform
positivity of the second variation are sufficient for a C1 extremal to be a strong local
minimizer. Our result holds for a class of variational functionals with a power law
behavior at infinity. The proof is based on the decomposition of an arbitrary variation
of the dependent variable into its purely strong and weak parts. We show that these
two parts act on the functional independently. The action of the weak part can be
described in terms of the second variation, whose uniform positivity prevents the weak
part from decreasing the functional. The strong part “localizes”, i.e. its action can
be represented as a superposition of “Weierstrass needles”, which cannot decrease the
functional either, due to the uniform quasiconvexity conditions.
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1 Introduction

The search for sufficient conditions for a smooth extremal of the variational functional to be
a strong local minimizer is an old problem. It has been solved completely by Weierstrass
for the case of one independent variable and by Hestenes [24] for the case of one dependent
variable (see also [37]). We will refer to these cases as “scalar” variational problems.

Motivated by non-linear elasticity, we are interested in “vectorial” variational problems,
where the unknown function is a vector field. This problem has been extensively studied,
mostly by the methods of field theory (see e.g. [8, 11, 33, 53]). If in the scalar case the
field theory approach yields sufficient conditions for strong local minima that are very close
to the necessary conditions, this is not so in the vectorial case. The reason was pointed out
by Ball in [3]. The field theory uses translations by null-Lagrangians (see e.g. [9, 18, 54]),
and is thus associated with polyconvexity, while Ball’s conjecture [3, Section 6.2] calls for
quasiconvexity-based sufficient conditions.

Among non-field theory approaches we are aware of only two: Levi’s “expansion method”
[34] (see also [41]) and Hestenes’s normalized or directional convergence method [24]. Both
approaches estimate the normalized variation of the functional corresponding to a given strong
variation. As far as we know these methods have not been applied to vectorial problems.1 In
[48] Taheri extended Hestenes’s method to treat the problem of Lr-local minima and remarked
that the results hold in the vectorial case as well. However, the resulting sufficiency theorem
is based on convexity rather than quasiconvexity, thus leaving Ball’s conjecture open.

1In [24] Hestenes mentions that Reid has announced a sufficiency theorem for multiple integrals using
Levi’s expansion method. However, we were not able to find the published version.
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Zhang [55] has succeeded in proving the “local” quasiconvexity-based sufficiency theorem
(i.e. a sufficiency theorem that holds for domains that are contained in a sufficiently small
ball). In [21] the authors have proved a quasiconvexity-based sufficiency theorem without
restrictions on the size of the domain, but allowing only those strong variations that have
uniformly bounded gradients. In this paper we prove Ball’s conjecture by extending the
results of [21] to all strong variations. The extension of the analysis of [21] is not always
straightforward, requiring additional uniform continuity of the Lagrangian, as well as the
standard growth conditions. Our result reduces, in the scalar case, to a theorem that is very
close to the classical theorem of Weierstrass. The difference is in the growth and regularity of
the Lagrangian at infinity that we need and that are unnecessary in the Weierstrass theory.

Following both Levi and Hestenes, we consider a normalized variation of the functional,
choosing Levi’s simpler normalization, rather than Hestenes’s more sophisticated one. The
choice of normalization was suggested to us by the joint work (in preparation) of one of
the authors (Y.G.) with Lev Truskinovsky, whose insights played an important role for this
work. Our treatment of the normalized variation of the functional can be regarded as a
refinement of the work of Hestenes [24] and Taheri [48], where convexity in the form of
the Weierstrass condition simplified some aspects of their analysis. We also believe that our
approach is more transparent because it provides an explicit expression for the variation of the
functional corresponding to a given variation of the dependent variable. The Decomposition
Theorem (see [17, 31]) permits us to understand an arbitrary variation as a superposition
of a purely weak variation and a number of “Weierstrass needles”. This approach clarifies
the reason for the sufficiency of strengthened necessary conditions, including quasiconvexity.
Using analytical techniques from [17], we show that the purely weak and strong parts of
the variation act on the Lagrangian independently. We then show that both parts of the
variation contribute a non-negative increment to the functional, the weak part—because of the
positivity of the second variation, the strong part—because of the quasiconvexity conditions.

This strategy has been explained in [21] in a somewhat simplified setting, where the
Lagrangian did not depend on the dependent variable explicitly and where variations were
assumed to have bounded gradients. The goal was to present ideas rather than to prove the
most general results. In this paper we apply the method of [21] to settle Ball’s conjecture
for Lagrangians having power growth at infinity. Even though the analysis in this paper is
largely parallel to the one in [21], we have to deal with quite a few technical issues related
to unbounded gradients of variations and a more general form of the Lagrangian. We do not
assume familiarity with [21] and keep the exposition self-contained.

The requirement of C1-smoothness of extremals is very important. For non-smooth ex-
tremals of Sobolev class W 1,p, our sufficiency theorem is false, as shown in [32, Corollary 7.3]
for quasiconvex integrands and in [47] for polyconvex ones. In fact, when W (F ) is discon-
tinuous in F there is a simpler polyconvex example in [49, Theorem 3.11]. If the gradient
of the extremal vector field has a jump discontinuity then there may be additional necessary
conditions [23, Section 4].

Curiously, there is a dearth of examples of non-global strong local minima. There is even
a uniqueness theorem for strictly quasiconvex functions due to Knops and Stuart [28] (see
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also [50]) that states that all smooth enough strong local minimizers in star-shaped domains
with affine Dirichlet boundary conditions must coincide with the affine function determined
by the boundary conditions. There is an example in [40, Section 4] that constructs a truly
local minimizer of class C2 in a circular annulus, but their Lagrangian comes from a model of
hyperelasticity and hence, does not satisfy our smoothness assumptions.2 In [32], Kristensen
and Taheri modified the example in [40] to make the Lagrangian satisfy the appropriate
growth conditions, but the local minimizers whose existence they prove by a Γ-convergence
based argument similar to [29], are not known to be of class C1. Examples of strong local
minimizers that are not global were also given in [29, 51], but the C1 smoothness in these
examples is unknown as well. The theorem proved in this paper can change this situation,
as it provides a recipe for verifying whether or not a specific smooth solution of the Euler-
Lagrange equations is a strong local minimizer. In Section 6 we propose a class of examples,
where both the global and local minimizers are affine functions. We show that the example of
Kohn and Sternberg [29] belongs to this class. Another example of this type will be analyzed
in far greater detail in [22]. In the context of our class of examples there is also a direct way
(unpublished work of Ball and James, see also [4]), based on incompatibility and transition
layer estimate, of proving that the affine functions, alluded to above, are strong local (or even
Lp) minimizers.

2 Preliminaries

We consider the class of integral functionals of the form

E(y) =

∫

Ω

W (x,y(x),∇y(x))dx, (2.1)

where Ω is a smooth (i.e. C1) open and bounded domain in R
d and y ∈ C1(Ω; Rm). The

Lagrangian W : Ω× R
m × M → R is assumed to be a continuous function, where M denotes

the space of all m × d matrices. Let ∂Ω1 be a relatively open subset of ∂Ω. We consider the
functional E(y) on the set of admissible functions

A = {y ∈ C1(Ω; Rm) : y(x) = g(x), x ∈ ∂Ω1},

where g is of class C1 on some open set in R
d, containing ∂Ω1. Obviously, if y ∈ A, then

y(x) = g(x) for all x ∈ ∂Ω1. Hence, we may assume, without loss of generality, that ∂Ω1

is the interior of ∂Ω1, relative to ∂Ω. We define ∂Ω2 = ∂Ω \ ∂Ω1. Then ∂Ω2 is a relatively
open subset of ∂Ω and ∂Ω = ∂Ω1 ∪ ∂Ω2. Indeed, if x0 ∈ ∂Ω \ ∂Ω2, then x0 has an open
neighborhood in ∂Ω that does not intersect ∂Ω2. But then, this neighborhood must belong
to the interior of ∂Ω1, i.e. to ∂Ω1.

2In [21] the singularity of the Lagrangian in [40] was overlooked and this example was erroneously claimed
as fitting our theory.
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Definition 2.1. We say that y0 ∈ A is a weak local minimizer, if there exists an ǫ > 0 such
that E(y0) ≤ E(y) for all y ∈ A that satisfy |y0(x)−y(x)| < ǫ and |F0(x)−∇y(x)| < ǫ for
all x ∈ Ω, where

F0(x) = ∇y0(x). (2.2)

Definition 2.2. We say that y0 ∈ A is a strong local minimizer, if there exists an ǫ > 0
such that E(y0) ≤ E(y) for all y ∈ A that satisfy |y0(x) − y(x)| < ǫ for all x ∈ Ω.

Let
R = {(y0(x),F0(x)) : x ∈ Ω}.

We assume that in addition to continuity of W (x,y,F ),

(H1) the partial derivatives of W (x,y,F ) of first and second order in (y,F ) exist and are
continuous on Ω×O, where O is an open and bounded neighborhood of R in R

m ×M.

We do not want to assume that W is globally of class C2 to permit applications of our theory
to continuous, piecewise smooth functions W , commonly encountered in the mathematical
theory of composite materials or optimal design, [30].

Let
Var(A) = {φ ∈ C1(Ω; Rm) : φ(x) = 0, x ∈ ∂Ω1}.

We call Var(A) the space of variations because for any {y1,y2} ⊂ A we have y1−y2 ∈ Var(A).

Definition 2.3. We say that a sequence {φn} ⊂ Var(A) is a strong variation if φn → 0, as
n → ∞, uniformly in x ∈ Ω.

For our purposes it will be convenient to rephrase the definition of strong local minimizers
in terms of strong variations. The function y0 ∈ A is a strong local minimizer if and only if
for every strong variation {φn} there exists N > 0, such that

E(y0 + φn) ≥ E(y0) (2.3)

for any n ≥ N . The sequence-based formulation of a strong local minimum is equivalent to
Definition 2.2, since the uniform topology of C(Ω; Rm) is metrizable.

The assumption (H1) guarantees that if y0(x) ∈ A is a strong (or weak) local minimizer,
then the Euler-Lagrange equation has to be satisfied in the weak form:

∫

Ω

{(Wy(x),φ(x)) + (WF (x),∇φ(x))}dx = 0 (2.4)

for all φ ∈ Var(A), where we use the convention that a single x argument indicates that
the Lagrangian or its derivatives are evaluated at (x,y0(x),F0(x)). We use the subscript
notation to denote derivatives: Wy represents a vector of length m with components ∂W/∂yi

and WF represents an m × d matrix of partial derivatives with components ∂W/∂Fij. The
inner product notation (· , ·) refers to the dot product on R

d or the Frobenius inner product
(A,B) = Tr (ABT ) on M.
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If y0(x) satisfies (2.4) then the functional increment ∆E(φn) = E(y0 + φn) − E(y0) can
be written as

∆E(φn) = ∆′E(φn) =

∫

Ω

W ∗(x,φn(x),∇φn)dx,

for every strong variation {φn}, where

W ∗(x,φ,H) = W (x,y0(x) + φ,F0(x) + H) − W (x) − (Wy(x),φ) − (WF (x),H). (2.5)

Let us define

U(x,φ,H) =





0, if φ = 0 and H = 0,

W ∗(x,φ,H) − δ2W (x,φ,H)

|φ|2 + |H|2 , otherwise,
(2.6)

where

δ2W (x,φ,H) =
1

2
((Wyy(x)φ,φ) + 2(WFy(x)φ,H) + (L(x)H ,H)) (2.7)

is the second variation integrand, and L(x) = WFF (x). In (2.7) LH and WFyφ are matrices
in M with components

(LH)kl =
m∑

i=1

d∑

j=1

∂2W

∂Fkl∂Fij

Hij, (WFyφ)kl =
m∑

i=1

∂2W

∂Fkl∂yi

φi, k = 1, . . . ,m, l = 1, . . . , d.

Hence, following [21], we may represent W ∗(x,φ,H) as

W ∗(x,φ,H) = U(x,φ,H)(|φ|2 + |H|2) + δ2W (x,φ,H).

The assumption (H1) implies that the function U(x,φ,H) is continuous on Ω × R
m × M.

Our goal is to study the sign of ∆E(φn) for n sufficiently large. The difficulty is that for
a large class of variations the limit of ∆E({φn}), as n → ∞, is zero. The idea borrowed from
[22] (c.f. [24, 34, 48]) is to consider the limiting values of the normalized increment

δ′E({φn}) = lim
n→∞

∆′E(φn)

‖φn‖2
1,2

.

Here we use the standard notation

‖φ‖1,p = (‖φ‖p
p + ‖∇φ‖p

p)
1/p, ‖φ‖p =

(∫

Ω

|φ|pdx

)1/p

,

for the norms in the Sobolev and Lebesgue spaces W 1,p and Lp, respectively, for all p ≥ 1.
Let αn = ‖φn‖1,2 and ψn(x) = φn(x)/αn. We think of αn as the “size” of the variation

and ψn as its “shape”. Then

δ′E({φn}) = lim
n→∞

∫

Ω

{
U(x, αnψn, αn∇ψn)(|ψn|2 + |∇ψn|2) + δ2W (x,ψn,∇ψn)

}
dx. (2.8)
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It will be convenient to use a more compact notation

δ′E({φn}) = lim
n→∞

∫

Ω

F(x, αn,ψn(x),∇ψn(x))dx, (2.9)

where

F(x, α,ψ,G) =
W ∗(x, αψ, αG)

α2
= U(x, αψ, αG)(|ψ|2 + |G|2) + δ2W (x,ψ,G). (2.10)

The quantity δ′E({φn}) is essentially the quantity studied by Levi [34]. Hestenes [24] (see
also [48]) considered a more sophisticated normalization, namely

lim
n→∞

∆E(φn)

R(∇φn)

where

R(f(x)) =

∫

Ω

{√
1 + |f(x)|2 − 1

}
dx.

The normalization R(∇φn) has the advantage of being quadratic in ∇φn, where ∇φn is
small, while having linear growth at infinity, in contrast to our normalization ‖φn‖2

1,2 that is
quadratic both at zero and at infinity.

3 Conditions at infinity

The most salient feature of strong variations is a complete absence of any control on the
behavior of ∇φn. It is easy to produce a strong variation whose gradients form an unbounded
sequence in any of the Lp spaces. For this reason we will need to specify the constraints on
the behavior of W (x,y,F ) as |F | → ∞, so that the approach of [21] can be made to work.
Observe that for the purposes of studying strong variations y0 7→ y0 +φn we may restrict the
variable y to a compact subset of R

m. For this reason, we do not need to require any growth
or regularity of W (x,y,F ) when |y| → ∞.

3.1 Regularity at infinity

Let Xp be the space of continuous functions W (x,y,F ) satisfying

|W (x,y,F )| ≤ C(y)(1 + |F |p), (3.1)

for all x ∈ Ω, y ∈ R
m and F ∈ M, where C(y) > 0 is a locally bounded3 function that

depends on W . The countable set of separating semi-norms

Pp
n(W ) = sup

F∈M

max
|y|≤n

max
x∈Ω

|W (x,y,F )|
1 + |F |p , n = 1, 2, . . . (3.2)

3i.e. bounded on any compact subset of R
m.
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makes Xp a metrizable (but not normable) locally convex topological vector space (see [42]).
Convergence of Wn to W in Xp is equivalent to the uniform convergence of Wn/(1 + |F |p) to
W/(1 + |F |p) on Ω ×K × M for any compact K ⊂ R

m.
Let Lp be a subspace in Xp that consists of all continuously differentiable4 functions

W ∈ Xp that, for all x ∈ Ω, y ∈ R
m and F ∈ M, satisfy

|WF (x,y,F )| ≤ C(y)(1 + |F |p−1), |Wy(x,y,F )| ≤ C(y)(1 + |F |p), (3.3)

where the function C(y) > 0 is locally bounded.5 The second inequality in (3.3) is not a
consequence of the first one and (3.1). Indeed,

W = |F |p sin
(
|y|2 ln(1 + |F |2)

)
, p > 1,

is continuously differentiable and satisfies both (3.1) and (3.3)1. However, (3.3)2 is false. In
this paper we assume that

(H2) p ≥ 2 and W ∈ Lp, where the closure is taken in the topology of Xp.

Theorem 3.1. The space Lp consists of all functions W ∈ Xp that enjoy the following
uniform continuity property. For every r > 0 and ǫ > 0 there exists δ > 0 so that for every
x ∈ Ω, {y,y′} ⊂ R

m, and {F ,F ′} ⊂ M, such that |y| < r, |y′| < r, |y − y′| < δ and

|F − F ′|
1 + |F | + |F ′| < δ,

we have ∣∣∣∣
W (x,y,F )

1 + |F |p − W (x,y′,F ′)

1 + |F ′|p
∣∣∣∣ < ǫ.

The proof is given in Appendix A. Theorem 3.1 implies that W (F ) = |F |p sin(|F |2) belongs
to Xp, but not to Lp. As a practical matter, in order to prove that W ∈ Lp, it may be more
convenient to verify (3.3), if W ∈ C1(Ω × R

m × M). Theorem 3.1 also implies that if the
function W (x,y,F ) is just continuous and satisfies

lim
|F |→∞

W (x,y,F )

1 + |F |p = 0

uniformly on compact subsets of Ω × R
m, then W ∈ Lp. Another helpful observation is that

Lp is an algebra with respect to the multiplication6

W1 ∗p W2 =
W1W2

1 + |F |p
4Everywhere in this paper continuous differentiability means that derivatives in y and F exist and are

continuous functions on Ω × R
m × M.

5We will use the same notation C(y) for different locally bounded functions. All constants and locally
bounded functions depend on W here and elsewhere in the paper, unless explicitly stated otherwise.

6It is just the usual multiplication of normalized functions W/(1 + |F |p).
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and the usual vector space structure. Therefore, the function W (F ) = |F |p + |F |p−1 sin(|F |2)
belongs to Lp, but not to Lp. We remark that if W = W (F ) ∈ Xp is assumed to be globally
quasiconvex (a condition we do not impose in this paper), then W must necessarily belong
to Lp, [35, formula (2.9)] (see also [19, p. 120, formula (7)]).

We will use the following simple consequence of the definition of Lp.

Lemma 3.2. Suppose that W ∈ Lp and satisfies condition (H1). Then

|W ∗(x,φ1,H1) − W ∗(x,φ2,H2)| ≤ C(φ1,φ2)(Ap−1|H1 − H2| + Ap|φ1 − φ2|), (3.4)

where W ∗ is given by (2.5), C(φ1,φ2) is locally bounded on R
2m and

Ap = Ap(φ1,H1,φ2,H2) = |φ1| + |φ2| + |H1| + |H2| + |H1|p + |H2|p.
The proof of the lemma is based on the following simple bounding device.

Lemma 3.3. Suppose f ∈ C(RN). Suppose that b0 and b∞ are non-negative continuous
functions on R

N and are such that |f(a)| ≤ b0(a), when |a| is sufficiently small, while
|f(a)| ≤ b∞(a), when |a| is sufficiently large. Assume also that b0(a) and b∞(a) do not
vanish anywhere on R

N \ {0}. Then there exists a constant C > 0, such that

|f(a)| ≤ C(b0(a) + b∞(a))

for all a ∈ R
N .

Proof of Lemma 3.2. By Lagrange’s mean value theorem

W ∗(φ1,H1) − W ∗(φ2,H2) = (W ∗
φ(ξ,η),φ1 − φ2) + (W ∗

H(ξ,η),H1 − H2),

where the explicit dependence on x has been suppressed and

ξ = tφ1 + (1 − t)φ2, η = tH1 + (1 − t)H2,

for some t ∈ [0, 1] that depends on φ1, φ2, H1, H2 and x. According to (3.3), we have

|W ∗
φ(ξ,η)| ≤ C(ξ)(1 + |η|p), |W ∗

H(ξ,η)| ≤ C(ξ)(1 + |η|p−1).

If (ξ,η) is small then there exists a constant C0 such that |W ∗
φ(ξ,η)| ≤ C0(|ξ| + |η|), since

W ∗ is quadratic at (0,0). If (ξ,η) is large enough then |η|p + 2|ξ| ≥ 1. But then 1 + |η|p ≤
2(|ξ| + |η|p) and

|W ∗
φ(ξ,η)| ≤ C(ξ)(1 + |η|p) ≤ 2C(ξ)(|ξ| + |η|p).

Hence, for all ξ and η we have, using Lemma 3.3,

|W ∗
φ(ξ,η)| ≤ C(ξ)(|ξ| + |η| + |η|p).

Similarly,
|W ∗

H(ξ,η)| ≤ C(ξ)(|ξ| + |η| + |η|p−1).

Finally, we observe that

|ξ| + |η| + |η|p ≤ Ap(φ1,H1,φ2,H2),

which finishes the proof of the lemma.
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Remark 3.4. If C(ξ) is a locally bounded function then there exists a continuous function
C0(ξ) such that C(ξ) ≤ C0(ξ).

Proof. Let
m(r) = max

|ξ|≤r
C(ξ).

Then m(r) is a non-decreasing function. Let M(r) be a continuous, piecewise linear function
interpolating the values M(n) = m(n + 1), n = 0, 1, . . .. Then, M(r) is also a non-decreasing
function and if n ≤ r < n + 1, then M(r) ≥ M(n) = m(n + 1) ≥ m(r). Let C0(ξ) = M(|ξ|).
Then C0(ξ) is continuous and C0(ξ) = M(|ξ|) ≥ m(|ξ|) ≥ C(ξ).

Remark 3.4 could be applied to the argument in the proof of Lemma 3.2 that formally
requires that the function C(ξ) be continuous. It will also be useful to us later on.

In view of our growth conditions (H2), we find it convenient to rewrite the integrand
F(x, α,ψ,G) in the expression (2.9) for δ′E(φn) in terms of the bounded (if φ is bounded)
and continuous function

B(x,φ,H) =
U(x,φ,H)

1 + |H|p−2
=

W ∗(x,φ,H) − δ2W (x,φ,H)

(|φ|2 + |H|2)(1 + |H|p−2)
. (3.5)

F(x, α,ψ,G) = B(x, αφ, αG)Φ(α,ψ,G) + δ2W (x,ψ,G), (3.6)

where
Φ(α,ψ,G) = (1 + |αG|p−2)(|ψ|2 + |G|2). (3.7)

Lemma 3.5. Suppose W ∈ Xp satisfies (H1). Then there exists a locally bounded function
C(φ) such that for all (x,φ,H) ∈ Ω × R

m × M

|B(x,φ,H)| ≤ C(φ). (3.8)

Proof. The growth condition (3.1) implies that

|W ∗(x,φ,H)| ≤ C(φ)(1 + |H|p + |H|)

If either |φ| or |H| is large then

1 + |H| ≤ |φ|2 + |H|2.

Thus,
1 + |H|p + |H| ≤ (1 + |H|p−2)(|φ|2 + |H|2).

Condition (H1) implies that if |φ| and |H| are sufficiently small there exists a constant C0

such that
|W ∗(x,φ,H)| ≤ C0(|φ|2 + |H|2).

Lemma 3.3 then implies that

|W ∗(x,φ,H)| ≤ C(φ)(1 + |H|p−2)(|φ|2 + |H|2) (3.9)
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for all (x,φ,H) ∈ Ω × R
m × M and possibly different locally bounded function C(φ) > 0.

Finally observe that for all (x,φ,H) ∈ Ω × R
m × M we have

|δ2W (x,φ,H)| ≤ C(|φ|2 + |H|2) ≤ C(|φ|2 + |H|2)(1 + |H|p−2)

for some constant C > 0. The estimate (3.8) follows from the definition (3.5) of B(x,φ,H).

Corollary 3.6. The estimate (3.8) or, even better, (3.9) implies that

|F(x, α,ψ,G)| ≤ C(αψ)Φ(α,ψ,G), (3.10)

for some locally bounded function C(φ), where Φ is given by (3.7).

Lemma 3.7 (Approximation Lemma). Suppose W satisfies hypotheses (H1) and (H2). Then
there exists a sequence {Wn} ⊂ Lp such that Wn → W in Xp, as n → ∞, Wn = W on an
open neighborhood of R and Bn → B in X0, where Bn is given by (3.5) with W replaced by
Wn.

Proof. Let W̃n ∈ Lp be such that W̃n → W in Xp. Let Rη = R + B(0, η), where B(x0, r)
denotes Euclidean ball of radius r, centered at x0. There exists η > 0 such that Rη ⊂ O
(the open neighborhood of R where W is twice continuously differentiable in the sense of
footnote 4 on page 8). Let ρ(y,F ) be a smooth function which is equal to 0 on Rη/2 and 1
on the complement of O. Then the functions

Wn(x,y,F ) = ρ(y,F )W̃n(x,y,F ) + (1 − ρ(y,F ))W (x,y,F )

are continuously differentiable and belong to Lp, for each n ≥ 1. We also have W = Wn on
Ω ×Rη/2 and Wn → W in Xp.

Let Bn be given by (3.5) with W replaced by Wn. Let us show that Bn → B in X0. If
|(φ,H)| < η/2, then we have Bn(x,φ,H) = B(x,φ,H) for all x ∈ Ω. If |(φ,H)| ≥ η/2,
then we have

|Bn(x,φ,H) − B(x,φ,H)| ≤ 4

η2

|Ŵn(x,φ,H) − Ŵ (x,φ,H)|
1 + |H|p ,

where

Ŵn(x,φ,H) = Wn(x,y0(x)+φ,F0(x)+H), Ŵ (x,φ,H) = W (x,y0(x)+φ,F0(x)+H).

For any N > 0 we have

P0
N(Bn − B) ≤ 4

η2
P

p
N(Ŵn − Ŵ ),

where P
p
N(W ), N = 1, 2, . . . is a family of semi-norms defined by (3.2). This finishes the

proof of the lemma, since clearly, Ŵn(x,φ,H) converges to Ŵ (x,φ,H) in Xp.
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3.2 Coercivity

In addition to growth and regularity conditions we impose coercivity conditions. At the very
least we need that W be bounded from below and that

∫

Ω

W (x,y(x),∇y(x))dx ≥ c2(r)‖y‖p
1,p − c1(r), (3.11)

for all y ∈ A such that |y(x)| ≤ r for all x ∈ Ω. The functions c1(r) > 0 and c2(r) > 0 are
required to be locally bounded. Unfortunately, this is not quite enough for our purposes.

(H3) We assume that W is bounded from below. If p = 2, we assume that (3.11) is satisfied.
If p > 2, we require that for every φ ∈ Var(A), ‖φ‖∞ ≤ r

∫

Ω

W ∗(x,φ(x),∇φ(x))dx ≥ c1(r)‖φ‖p
1,p − c2(r)‖φ‖2

1,2 (3.12)

for some locally bounded c1(r) > 0 and c2(r) > 0, where W ∗ is given by (2.5).

Clearly, (3.12) implies (3.11), if p > 2. If W = W (F ) and satisfies

W (F ) ≥ c1|F |p − c2 (3.13)

for all F ∈ M and some positive constants c1 and c2, then (3.12) will always be satisfied.
Let us show that (3.12) can be satisfied even if W does not satisfy (3.13) (the implication

(3.13)⇒(3.12) is proved along the same lines). Suppose that d = m, Ω is connected and
∂Ω1 6= ∅. Assume that

W = W (F ) ≥ c1|Fsym|p − c2, (3.14)

where Fsym = (F + F t)/2 is the symmetric part of the d× d matrix F . If p = 2 then Korn’s
inequality followed by the Poincaré inequality implies (3.11).

Assume that p > 2. It is easy to show that

W ∗(H) ≥ c1|Hsym|p − c2 − c3|H|

for all H and some constants cj > 0, j = 1, 2, 3. Since W ∗
H(0) = 0, the boundedness of W

from below implies that
W ∗(H) ≥ −c|H|2

for all H and some constant c > 0. Thus, when |H| ≥ 1,

W ∗(H) ≥ c1|Hsym|p − c2|H|2 − c3|H|2,

while, when |H| < 1, we have |Hsym| ≤ |H| < 1 and

W ∗(H) ≥ −c|H|2 ≥ |Hsym|2 − (c + 1)|H|2 ≥ |Hsym|p − (c + 1)|H|2.

It follows that
W ∗(H) ≥ β1|Hsym|p − β2|H|2 (3.15)
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for all H , β1 = min{1, c1} and β2 = max{c2 + c3, c + 1}. The inequality (3.12) follows from
the generalization of Korn’s inequality to Lp (see e.g. [52]).

We conclude this section with a remark of Carathéodory [9]. If W ∈ Lp, then enlarging
the set of admissible functions to

Ã = {y ∈ W 1,p(Ω; Rm) ∩ C(Ω; Rm) : y(x) = g(x), x ∈ ∂Ω1}

does not change the notions of strong or weak local minima. This is because A is dense in
Ã in the topology generated by the norm ‖∇y‖p + ‖y‖∞ and the functional E(y) is finite

and continuous on Ã with respect to the above topology. We will use this remark freely, by
comparing E(y0) to E(ỹ) with ỹ ∈ Ã without appealing to the density argument above every
time we need this.

4 Necessary conditions

Here for the sake of completeness we recall the well-known necessary conditions for y0 ∈ A
to be a strong local minimizer.

(i) The weak form of the Euler-Lagrange equation (2.4).

(ii) Non-negativity of the second variation:

δ2E(φ) =

∫

Ω

δ2W (x,φ(x),∇φ(x))dx ≥ 0, (4.1)

for all φ ∈ Var(A).

(iii) Quasiconvexity conditions. Following [22], we introduce the function

W ◦(x,H) = W ∗(x,0,H),

which is related to the Weierstrass E-function

W ◦(x,H) = E(x,y0(x),F0(x),F0(x) + H).

(a) Quasiconvexity in the interior [1, 36]. For every x0 ∈ Ω

∫

B

W ◦(x0,∇φ)dx ≥ 0, (4.2)

for all φ ∈ C∞
0 (B; Rm) (and therefore for all x0 ∈ Ω and all φ ∈ W 1,p

0 (B; Rm),
provided W is bounded from below and satisfies (3.1), [7, Proposition 2.4(i)]).
Here and below B denotes the open unit ball in R

d.
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(b) Quasiconvexity on the free boundary [6]. Let x0 ∈ ∂Ω2. Then
∫

B−

n(x0)

W ◦(x0,∇φ)dx ≥ 0, (4.3)

for all φ ∈ Vn(x0), where

Vn = {φ ∈ C∞(B−
n; Rm) : φ(x) = 0 on ∂B ∩ B−

n} (4.4)

and n(x0) is the outer unit normal to ∂Ω at x0 ∈ ∂Ω2. Here B−
n is the half of the

unit ball B that lies in the half-space {z ∈ R
d : (z,n) < 0}.

Condition (4.2) is a multi-dimensional version of the Weierstrass positivity condition, and
reduces to it, when d = 1. The quasiconvexity at the points on the free boundary, (4.3),
introduced in [6], follows from (4.2), when d = 1 or m = 1, but represents a genuinely new
condition for vector fields.

5 Sufficient conditions

In addition to the strengthened necessary conditions, our sufficiency theorem also requires a
uniform continuity condition.

(UC) For every ǫ > 0 there exists δ > 0 so that for every H ∈ M and {x′,x′′} ⊂ Ω, such that
|x′ − x′′| < δ, we have

|W (x′,y0(x
′),F0(x

′) + H) − W (x′′,y0(x
′′),F0(x

′′) + H)|
1 + |H|p < ǫ.

It is possible to “hide” this condition by imposing an extra regularity on W :

(H4) For every r > 0 and ǫ > 0 there exists δ > 0 so that for every F ∈ M, |y| < r and
{x′,x′′} ⊂ Ω, such that |x′ − x′′| < δ, we have

|W (x′,y,F ) − W (x′′,y,F )|
1 + |F |p < ǫ.

If W satisfies (H2) and (H4) then every y ∈ C1(Ω; Rm) will satisfy (UC). The function

W (x,y,F ) = |F |p|y|2 sin(|x|2 ln(1 + |F |2))

belongs to Lp, but does not satisfy (H4). However, the extremal y0 = 0 satisfies (UC). Yet,
in a sense, conditions (UC) and (H4) are not that far apart. If W = W (x,F ) ∈ Lp, then
(UC) is equivalent to (H4). Condition (UC) is not a consequence of other conditions because
the extremal y0 = 0 for the Lp function W (x,F ) = |F |p sin(|x|2 ln(1+ |F |2)) does not satisfy
(UC).
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Theorem 5.1. Assume that W satisfies conditions (H1)–(H3). Suppose that y0 ∈ A is such
that

(i) The weak form of the Euler-Lagrange equation (2.4) is satisfied,

and for some β > 0

(ii)
δ2E(φ) ≥ β‖φ‖2

1,2 (5.1)

for all φ ∈ Var(A);

(iii) (a) for all x0 ∈ Ω ∫

B

W ◦(x0,∇φ(x))dx ≥ β‖∇φ‖2
2 (5.2)

for all φ ∈ C∞
0 (B; Rm);

(b) for all x0 ∈ ∂Ω2, ∫

B−

n(x0)

W ◦(x0,∇φ(x))dx ≥ β‖∇φ‖2
2 (5.3)

for all φ ∈ Vn(x0), where Vn is given by (4.4);

(iv) y0 satisfies the uniform continuity condition (UC).

Then y0 is a strong local minimizer of the functional E(y).

It may seem that conditions (ii) and (iii) are stronger than their classical counterparts in
the d = 1 case (see e.g. [25]). However, for the class of Lagrangians satisfying (H2) and (H3)
the Weierstrass sufficient condition coincides with (iii)(a) and strict positivity of the second
variation coincides with (ii), at least when ∂Ω1 ∩ ∂Ω2 = ∅ (see [45]). Theorem 5.1 is a simple
corollary of Theorem 5.2 below (as in [21]).

Theorem 5.2. Assume that the Lagrangian W is as in Theorem 5.1. Let y0 ∈ C1(Ω; Rm)
satisfy the necessary conditions (4.1)–(4.3) and the uniform continuity condition (UC). Then
δ′E({φn}) ≥ 0 for any non-zero strong variation {φn}.

Proof of Theorem 5.1. Let Wβ = W − β(|F |2 + |y|2). Then

δ2Wβ(x,φ,H) = δ2W (x,φ,H) − β(|H|2 + |φ|2), W ◦
β (x,H) = W ◦(x,H) − β|H|2.

Also, y0(x) satisfies (UC) for W if and only if it satisfies (UC) for Wβ. We note that the
C1 function y0 in Theorem 5.2 is not required to satisfy the Euler-Lagrange equation, nor
is it required to belong to A. Hence, if y0(x) satisfies conditions of Theorem 5.1 then it
also satisfies conditions of Theorem 5.2 with W replaced by Wβ. Applying Theorem 5.2 to
Wβ, results in δ′Eβ({φn}) ≥ 0. We also observe that δ′Eβ({φn}) = δ′E({φn}) − β. Thus,
δ′E({φn}) = δ′Eβ({φn}) + β ≥ β.
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The proof of Theorem 5.2 follows the strategy developed in [21]. In Section 7 we use the
coercivity condition (H3) to reduce the problem to W 1,p local minima (see e.g. [3, 48] for
a definition). From that point on the coercivity condition (3.12) (or (3.11), if p = 2) is no
longer needed. In Section 8 we split the variation into the weak and the strong parts. In
Section 9 we show that the two parts act on the functional independently. In Section 10 we
use representation formulas to understand the action of the weak and the strong part of the
variation on the Lagrangian. In Section 11 we prove the localization principle that enables
us to link the action of the strong parts of the variation to the quasiconvexity conditions. In
Section 12, we recap the argument in [21] that shows how the necessary conditions (4.1)–(4.3)
imply the non-negativity of δ′E({φn}).

6 A class of examples

As an application of our sufficiency theorem we propose the following class of examples.
Assume that ∂Ω2 = ∂Ω (i.e. the whole boundary of Ω is free) and suppose that the function
W = W (F ), satisfying our growth and regularity conditions, has a local minimum F1 in
addition to the global minimum F0, with W (F1) > W (F0). Assume further that the Hessian
WFF (F1) is strictly positive definite. If F1 satisfies (5.3), for every unit vector n and all
φ ∈ Vn, then F1 also satisfies (5.2) and, according to Theorem 5.1, y(x) = F1x is a strong
local minimizer, which is not a global minimizer. We prove (5.3) by finding quadratic forms
Qn(H), such that for every H ∈ M and any unit vector n we have

W ◦(H) = W (F1 + H) − W (F1) − (WF (F1),H) ≥ Qn(H).

Proving (5.3) for Qn(H) is a feasible problem (see e.g. [44, Proposition 20.6.5] and [45]).
Below we give an example of W that shows that the situation described above is possible.
Another example will be considered in [22]. Curiously, this construction is impossible in the
scalar case, since the Weierstrass necessary condition for y(x) = F1x reduces to W (F1) ≤
W (F ) for all F .

Let m = d ≥ 2 and

W (F ) =
1

4d
|F − I|2|F + I|2 + λTrF , (6.1)

where I is the d × d identity matrix. This example was considered in [29], where Kohn
and Sternberg proved that there are non-trivial strong (even Lr) local minimizers “near”
F = ±I, when λ is sufficiently small. Also Ball and James (see [5]) have a way of using the
incompatibility of gradients (here the gradients of the two global minimizers are ±I at λ = 0)
and a transition layer estimate, to prove that the non-global local minimum of W (F ) is the
gradient of a homogeneous local minimizer in L1, when λ is sufficiently small. Below we use
Theorem 5.1 to exhibit Kohn-Sternberg local minimizers explicitly, when λ is not necessarily
small.

Our theory applies to W because it is of class C∞ and satisfies (3.3) and (3.13) with p = 4.
The equation WF (F ) = 0 shows that the local minima of W must have the form F = fI,
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where the real numbers f satisfy the cubic equation

f 3 − f + λ = 0. (6.2)

This equation has exactly 3 real roots provided λ lies between the local minimum and the local
maximum of f−f 3, i.e. when |λ| < 2/3

√
3. In that case, the largest and the smallest roots give

the local minima, while the middle root corresponds to the saddle point of W (F ). The largest
and the smallest roots always lie outside of the interval [−1/

√
3, 1/

√
3]. If λ ∈ (0, 2/3

√
3)

then the largest root gives the global minimum. If λ ∈ (−2/3
√

3, 0) then it is the smallest
root that gives the global minimum.

To verify (5.1) we compute

(WFF (fI)ξ, ξ) = (f2 + 1)|ξ|2 +
2

d
(f 2 − 1)(Trξ)2.

Recall that d|ξ|2 ≥ (Trξ)2 for any d × d matrix ξ. Then

(WFF (fI)ξ, ξ) ≥ 1

d
(3f 2 − 1)(Trξ)2 ≥ 0,

because 3f 2 > 1 for the largest and the smallest root of (6.2). If Trξ = 0, then

(WFF (fI)ξ, ξ) = (f2 + 1)|ξ|2 > 0,

provided ξ 6= 0. Hence, (5.1) is satisfied.
It remains to verify (5.3). We have

W ◦(x0,∇φ) =
1

4d
|∇φ|4 +

f

d
|∇φ|2∇ · φ +

f 2 + 1

2
|∇φ|2 +

f 2 − 1

d
(∇ · φ)2.

Let

q(x, y) =
x2

4d
+

f

d
xy.

Then

W ◦(x0,∇φ) = q(|∇φ|2,∇ · φ) +
f 2 + 1

2
|∇φ|2 +

f 2 − 1

d
(∇ · φ)2.

It is easy to verify that

q(x, y) ≥ −f 2

d
y2.

Hence,

W ◦(x0,∇φ) ≥ f 2 + 1

2
|∇φ|2 − (∇ · φ)2

d
.

Next, we use [44, Proposition 20.6.5] (see also [45]) that we state here for the reader’s conve-
nience.
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Theorem 6.1. Let Q(H) = (λ− p)(Tr H)2 +µ|H|2 +(µ+ p)Tr (H2). Let H be a half space
H = {x ∈ R

d : (x,n) < 0}. Then
∫

H

Q(∇φ)dx ≥ 0

for all φ ∈ C∞
0 (Rd; Rd) if and only if ,

µ ≥ 0, λ + 2µ ≥ 0, −2µ ≤ p ≤ 2µ(λ + µ)

λ + 3µ
. (6.3)

The result of the theorem is independent of n in the definition of the half-space H because
the quadratic form Q(H) is isotropic. Clearly, if all the inequalities in (6.3) are strict then
there exists β > 0 such that

∫

H

Q(∇φ)dx ≥ β

∫

H

|∇φ|2dx

for all φ ∈ C∞
0 (Rd; Rd). Applying this corollary of Theorem 6.1 to

Q(H) =
f 2 + 1

2
|H|2 − 1

d
(Tr H)2

we conclude that (5.3) is satisfied, whenever f 2 > 3/d − 1. Hence, the application of Theo-
rem 5.1 results in

Theorem 6.2. Let λ ∈ (−2/3
√

3, 2/3
√

3) \ {0}. Let f1(λ) be the root of (6.2) such that
|f1(λ)| > 1. Let f2(λ) be a different root of (6.2) such that |f2(λ)| > 1/

√
3. Then, if d ≥ 3,

the function y1(x) = f1(λ)x, is the global minimizer of E(y) corresponding to (6.1), and the
function y2(x) = f2(λ)x is a strong local minimizer with E(f1x) < E(f2x). If d = 2, then
the statement is valid at least for all λ ∈ (−1/2

√
2, 1/2

√
2) \ {0}.

7 Reduction to the problem of W 1,p-local minima

First, observe that the coercivity condition (3.11) implies that a strong variation whose gra-
dients are unbounded in Lp, has the property that

lim
n→∞

∆E(φn) = +∞.

Hence, δ′E({φn}) ≥ 0. Thus, we may restrict our attention only to variations {φn} for which
φn ⇀ 0, as n → ∞, in the weak topology of W 1,p. Notice that

αn = ‖φn‖1,2 ≤ (2|Ω|) 1
2
− 1

p‖φn‖1,p = βn,

and hence, the sequence αn is bounded as well. Thus, without loss of generality, αn → α0 <
+∞, as n → ∞.
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Let us first consider the case, α0 > 0. We have

lim
n→∞

∫

Ω

W (x,y0(x) + φn(x),F0 + ∇φn)dx ≥ lim
n→∞

∫

Ω

QW (x,y0(x) + φn(x),F0 + ∇φn)dx,

where QW (x,y,F ) is the quasiconvexification of W (x,y,F ) in the F variable for fixed
(x,y), [10]. The boundedness from below of W and the growth condition (3.1) imply, via a
result of Marcellini [35]7, that the functional

φ 7→
∫

Ω

QW (x,φ,∇φ)dx

is W 1,p sequentially-weak lower semicontinuous, and thus,

lim
n→∞

∫

Ω

QW (x,y0(x) + φn(x),F0(x) + ∇φn(x))dx ≥
∫

Ω

QW (x,y0(x),F0(x))dx.

Finally, the quasiconvexity condition (4.2) can be stated as

QW (x,y0(x),F0(x)) = W (x,y0(x),F0(x))

for every x ∈ Ω (see [26]). Thus,

δ′E({φn}) =
1

α2
0

lim
n→∞

∫

Ω

{W (x,y0(x) + φn,F0(x) + ∇φn) − W (x,y0(x),F0(x))} dx ≥ 0.

Therefore, we should restrict our attention to the case αn → 0, as n → ∞. Suppose that
p > 2. The coercivity assumption (3.12) implies that

δ′E({φn}) ≥ c1 lim
n→∞

βp
n

α2
n

− c2.

Thus, we need to consider only those strong variations {φn} for which

lim
n→∞

αn = lim
n→∞

βn = 0, lim
n→∞

βp
n

α2
n

= γ < +∞ (7.1)

If p = 2, then αn = βn and (7.1) is trivially satisfied with γ = 1. We remark that the
coercivity condition (H3) was only needed to reduce the problem of strong local minima to
the problem of W 1,p-local minima, or more precisely, to (7.1).

7see Remark 3.4
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8 The Decomposition Theorem

The heart of our analysis is the Decomposition Theorem 8.1 (see also [17, 31]). We use it to
split the strong variation φn into the strong and the weak part and then show that the two
parts act independently. Here we have to deal with two different “size-shape” representations:
in addition to the representation φn = αnψn, that is relevant on the set where ∇φn is small
(see [21]), we also have the representation φn = βnζn. The latter representation is relevant
on sets where ∇φn is large and where the behavior of W at infinity comes into play.

At the first glance it seems that we would have to choose whether to apply the Decompo-
sition Lemma of [17] to the sequence ψn that is bounded in W 1,2, or to the sequence ζn that
is bounded in W 1,p. We will see that the decomposition rule in the Decomposition Lemma
in [17] does not depend on p, and thus, the relation ζn = rnψn between the two “shapes” ψn

and ζn carries over to their respective decompositions. Here rn = αn/βn ≤ 1.

Theorem 8.1 (Decomposition Theorem). Suppose that the sequence of functions ψn ∈
Var(A) is bounded in W 1,2(Ω; Rm) and the sequence rn ∈ (0, 1] is such that ζn = rnψn is
bounded in W 1,p(Ω; Rm), p ≥ 2. We also assume that rn = 1, if p = 2. Suppose the sequence
αn > 0 is such that αn → 0 and αnψn(x) → 0, as n → ∞, uniformly in x ∈ Ω. Then there
exist a subsequence n(j), sequences of functions zj and vj in W 1,∞(Ω; Rm), and subsets Rj

of Ω such that

(a) ψn(j)(x) = zj(x) + vj(x);

(b) for all x ∈ Ω \ Rj we have zj(x) = ψn(j)(x) and ∇zj(x) = ∇ψn(j)(x);

(c) the sequence {|zj|2 + |∇zj|2} is equi-integrable;

(d) vj ⇀ 0 weakly in W 1,2(Ω; Rm);

(e) |Rj| → 0 as j → ∞;

(f) αn(j)zj(x) → 0 and αn(j)vj(x) → 0 uniformly in x ∈ Ω, as j → ∞.

(g) zj(x) = vj(x) = 0 for all x ∈ ∂Ω1.

Let tj(x) = rn(j)vj(x) and sj(x) = rn(j)zj(x). Then

(a′) ζn(j)(x) = sj(x) + tj(x);

(b′) for all x ∈ Ω \ Rj we have sj(x) = ζn(j)(x) and ∇sj(x) = ∇ζn(j)(x);

(c′) the sequence {|sj|p + |∇sj|p} is equi-integrable;

(d′) tj ⇀ 0 weakly in W 1,p(Ω; Rm).
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We will refer to αn(j)zj as the weak part of the variation {φn} and to αn(j)vj as the strong
part. The statements (a)–(e) constitute the standard Decomposition Lemma of Fonseca,
Müller and Pedregal [17]. We will repeat a part of the arguments in [17] both for the sake of
completeness and because we will need it to prove the remaining statements in the theorem.

Proof. Step 1. The proof of the Decomposition Theorem is based on the following property
of Sobolev functions (see [17, Lemma 4.1]).

Lemma 8.2. Suppose ψ ∈ W 1,p(Rd; Rm). Then ψ(x) is Lipschitz continuous on {x ∈
R

d : (M |∇ψ|)(x) ≤ λ} with Lipschitz constant Lλ, where L depends only on the dimension
d.

Here M is the maximal function operator

(Mh)(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|h(a)|da

for any locally integrable function h. The proof of Lemma 8.2 is given in [14, p. 253, Claim #2].
For us it is the bound on the Lipschitz constant that is the essential content of Lemma 8.2.

The use of maximal functions requires us to extend ψn and ζn from Ω to all of R
d. Let

us recall the construction of the extension operator

X : W 1,p(Ω; Rm) → W 1,p(Rd; Rm)

for a C1 domain Ω, [20, Theorem 7.25]. First, if the domain Ω is a half-space xd > 0, we
define

X0u =

{
u(x), if xd > 0,

u(x′,−xd) if xd < 0,

where x′ = (x1, . . . , xd−1). For a general C1 domain Ω there exist a finite collection of open
sets Ωj, j = 1, . . . , N that cover ∂Ω, and the corresponding C1 diffeomorphisms Ψj : Ωj → B,
such that Ψj(Ωj ∩ Ω) = B+ and Ψj(Ωj ∩ ∂Ω) = ∂B+ ∩ B, [20, Section 6.2], where B is the
unit ball in R

d and B+ = {x ∈ B : xd > 0}. Let an open set Ω0 be such that Ω0 ⊂ Ω
and Ω0, Ω1, . . . , ΩN is a cover of Ω. Let ηj ∈ C∞

0 (Ωj), j = 0, 1, . . . , N be the corresponding
decomposition of unity. Then

Xu = uη0 +
N∑

j=1

X0[(ηju) ◦ Ψ−1
j ] ◦ Ψj.

It is easy to see that

‖Xu‖L∞(Rd) ≤
(

N∑

j=0

‖ηj‖∞
)
‖u‖L∞(Ω)

for any u ∈ L∞(Ω; Rm), and

‖Xu‖W 1,p(Rd;Rm) ≤ C‖u‖W 1,p(Ω;Rm), (8.1)
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for any u ∈ W 1,p(Ω; Rm), where the constant C depends on N , Ψj and ηj, but not on p.
An important consequence of the construction of the extension operator X above is that

the relation ζn(x) = rnψn(x) that holds for all x ∈ Ω will also hold for the extensions Xψn

and Xζn, since X is one and the same linear operator for all p. For this reason, we will not
distinguish notationally between ψn and Xψn (or ζn and Xζn).

Step 2. For a > 0 consider the truncation map Ta : R → R given by

Ta(s) =





s, if |s| ≤ a;

as

|s| , if |s| > a.

Let gn(x) = |ζn(x)| + |∇ζn(x)|. We claim that it is possible to extract a subsequence,
n(k), such that |Tk(Mgn(k))|p is equi-integrable. Similarly, considering the sequence hk(x) =
|ψn(k)(x)|+ |∇ψn(k)(x)|, we can extract a further subsequence, k(j), such that |Tj(Mhn(j))|2
is equi-integrable. Here, in a slight abuse of notation, we wrote n(j) instead of n(k(j)). The
proof of the above assertion can be found in [17, Section 4]. We repeat it here for the sake of
completeness. We first observe that the sequence {Mgn} is bounded in Lp, because {ζn} is
bounded in W 1,p, see [46]. We may then extract a subsequence, not relabeled, so that {Mgn}
generates the Young measure ηx with integrable p-th moment, [2] (see also [39, Chapter 6]):

mp(x) =

∫ ∞

0

spdηx(s) ∈ L1(Rd). (8.2)

The functions Tk(s) are bounded and continuous for each k > 0. Therefore, for every b ∈
L∞(Rd) we have, via the Young measure representation theorem, [39, Theorem 6.2],

lim
n→∞

∫

Rd

b(x)|Tk(Mgn)|pdx =

∫

Rd

b(x)

(∫ ∞

0

|Tk(s)|pdηx(s)

)
dx. (8.3)

The sequence of non-negative functions Tk(s) is monotone increasing on [0, +∞). Therefore,
for a.e. x ∈ R

d

lim
k→∞

∫ ∞

0

|Tk(s)|pdηx(s) = mp(x).

We also have |Tk(s)| ≤ |s|. Therefore, due to (8.2), by the Lebesgue dominated convergence
theorem we obtain

lim
k→∞

lim
n→∞

∫

Rd

b(x)|Tk(Mgn)|pdx =

∫

Rd

b(x)mp(x)dx.

Let us first take b(x) = 1. For each k ∈ N, let n(k) > n(k − 1) be such that

∣∣∣∣ lim
n→∞

∫

Rd

|Tk(Mgn)|pdx −
∫

Rd

|Tk(Mgm)|pdx

∣∣∣∣ <
1

k
,
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for each m ≥ n(k). Setting m = n(k) and taking a limit as k → ∞ we get

lim
k→∞

∫

Rd

|Tk(Mgn(k))|pdx =

∫

Rd

mp(x)dx. (8.4)

Let us show that

|Tk(Mgn(k))|p ⇀ mp(x) weakly in L1(Rd), as k → ∞, (8.5)

proving the assertion that |Tk(Mgn(k))|p is equi-integrable. Let b ∈ L∞(Rd) and k > l be
positive integers. Then Tk(s) ≥ Tl(s) ≥ 0 for any s ≥ 0 and so,

b(x)(|Tk(Mgn(k))|p − |Tl(Mgn(k))|p) ≤ ‖b‖∞(|Tk(Mgn(k))|p − |Tl(Mgn(k))|p).

Therefore,

∫

Rd

b|Tk(Mgn(k))|pdx ≤ ‖b‖∞
∫

Rd

|Tk(Mgn(k))|pdx −
∫

Rd

(‖b‖∞ − b)|Tl(Mgn(k))|pdx.

Taking a limit, as k → ∞, and using (8.4) and (8.3) for the first and second terms on the
right-hand side, respectively, we obtain

lim
k→∞

∫

Rd

b(x)|Tk(Mgn(k))|pdx ≤ ‖b‖∞
∫

Rd

mp(x)dx −
∫

Rd

(‖b‖∞ − b)

∫ ∞

0

|Tl(s)|pdηx(s)dx.

Taking the limit, as l → ∞ and using monotone convergence theorem and Lebesgue domi-
nated convergence theorem, as before, we obtain

lim
k→∞

∫

Rd

b(x)|Tk(Mgn(k))|pdx ≤
∫

Rd

b(x)mp(x)dx.

Changing b(x) to −b(x) we obtain the reverse inequality,

lim
k→∞

∫

Rd

b(x)|Tk(Mgn(k))|pdx ≥
∫

Rd

b(x)mp(x)dx,

resulting in (8.5) and the equi-integrability of |Tk(Mgn(k))|p.
Step 3. In this step we begin constructing the decomposition. The idea is to split ψn so

that the splitting is trivial (i.e. ψn = ψn + 0) on a set where ∇ψn is not too large. Let

R′
j = {x ∈ R

d : Mhn(j)(x) ≥ j}.

Then, according to Lemma 8.2, ψn(j)(x) is Lipschitz continuous on R
d \ R′

j with Lipschitz
constant Lj, where L depends only on d. Also, |R′

j| → 0 as j → ∞, by Chebyshev’s inequality,
since Mhn(j) is bounded in L2(Rd). For each j there exists a Lipschitz extension zj(x) of
ψn(j)(x) from R

d \R′
j to R

d such that zj has Lipschitz constant Lj (with a possibly different
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L that depends on d and m only8), see [14, Theorem 1, p. 80]. In order to prove part (f) of
the theorem we need to control the L∞ norm of zj:

‖zj‖L∞(Rd) ≤ C‖ψn(j)‖L∞(Rd\R′

j)
. (8.6)

If this estimate is not satisfied by our Lipschitz extension zj, then we may modify zj in the
following way. We first define wj(x) with components

w
(i)
j (x) = min{z(i)

j (x), ‖ψn(j)‖L∞(Rd\R′

j)
}, i = 1, . . . ,m.

Then wj(x) is Lipschitz continuous with the same Lipschitz constant as zj and is equal to
ψn(j)(x) for almost all x ∈ R

d \ R′
j. The modified zj(x), not relabeled, is then defined by

z
(i)
j (x) = max{w(i)

j (x),−‖ψn(j)‖L∞(Rd\R′

j)
}, i = 1, . . . ,m.

It has the same Lipschitz constant Lj as the original zj and is equal to ψn(j)(x) for almost
all x ∈ R

d \ R′
j. At the same time the modified zj satisfies (8.6) with C =

√
m. Part (f) is

proved, since by Step 1,
‖ψn(j)‖L∞(Rd) ≤ C‖ψn(j)‖L∞(Ω)

for some constant C > 0, depending only on Ω.
Let

Rj = R′
j ∪ {x ∈ R

d : zj(x) 6= ψn(j)(x) or ∇zj(x) 6= ∇ψn(j)(x)}.
The sets Rj and R′

j differ by a set of Lebesgue measure zero, [14, Theorem 3 and Remark (ii),
Section 6.1.3]. Therefore, |Rj| → 0 as j → ∞. Parts (b) and (e) are proved.

Observe that for a.e. x ∈ R
d \ Rj

|zj(x)| + |∇zj(x)| = |ψn(j)(x)| + |∇ψn(j)(x)| ≤ Mhn(j)(x) = Tj(Mhn(j)(x)),

while, for a.e. x ∈ R′
j, we have

|zj(x)| + |∇zj(x)| ≤ √
m‖ψn(j)‖L∞(Rd\R′

j)
+ Lj ≤ (

√
m + L)j = L′Tj(Mhn(j)(x)), (8.7)

since Mhn(j)(x) ≥ |ψj(x)| for a.e. x ∈ R
d, so that

‖ψn(j)‖L∞(Rd\R′

j)
≤ ‖Mhn(j)‖L∞(Rd\R′

j)
≤ j.

Thus, the inequality (8.7) holds for almost all x ∈ R
d, which together with the equi-

integrability of {|Tj(Mhn(j)(x))|2}, yields the equi-integrability of {|zj|2 + |∇zj|2}. Part
(c) is proved.

8There is Kirszbraun’s theorem [27] that guarantees an extension with the same Lipschitz constant Lj.
However, all we need is a much simpler construction in [14] with Lipschitz constant L

√
mj.
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Let vj = ψn(j) − zj. Then vj is bounded in W 1,2 because so are ψn(j) and zj. For any
ϕ ∈ W 1,2(Rd; Rm) we have

∣∣∣∣
∫

Rd

(ϕ,vj)dx +

∫

Rd

(∇ϕ,∇vj)dx

∣∣∣∣

≤
(∫

Rj

|ϕ|2dx

)1/2

‖vj‖2 +

(∫

Rj

|∇ϕ|2dx

)1/2

‖∇vj‖2 → 0,

as j → ∞, since |Rj| → 0. Hence, vj ⇀ 0 in W 1,2(Rd; Rm). Parts (a) and (d) are proved.
Step 4. In this step we prove items (a′)–(d′). Items (a′) and (b′) are direct consequences

of the definition of sj and tj. Item (d′) is a consequence of item (e) and boundedness of tj

in W 1,p. It is proved in exactly the same way as item (d). The boundedness of tj in W 1,p

follows from the boundedness of sj in W 1,p, which in turn follows from item (c′). In order to
prove (c′) we rewrite the inequality (8.7) in terms of sj and ζn, using the homogeneity of the
maximal function operator M and the identity rTa(s) = Tra(rs), valid for r > 0:

|sj| + |∇sj| ≤ L′Trn(j)j(Mgn(j)),

where L′ =
√

m + L. From this we obtain

|sj| + |∇sj| ≤ L′Tk(j)(Mgn(j)),

because rn(j)j ≤ j ≤ k(j) and because Tj(s) is a non-decreasing sequence of functions on
(0, +∞). Thus, |sj|p + |∇sj|p is equi-integrable, because |Tk(j)(Mgn(j))|p is a subsequence of
the equi-integrable sequence |Tk(Mgn(k))|p (see Step 2).

Step 5. The construction of zj and vj above did not permit us to control their boundary
values, required to establish part (g). On this step we show that we can modify functions zj

(determining vj, sj and tj uniquely), in such a way that (g) is satisfied, while the validity of
all the other items is preserved. The modification is a careful implementation of the standard
cut-off procedure (see e.g. [39, Lemma 8.3]).

Assume first that rn(j) → 0, as j → ∞. Let V denote the closure of Var(A) in W 1,2(Ω; Rm).
Without loss of generality, we assume that ψn(j) ⇀ ψ0, weakly in W 1,2. Then, ψ0 ∈ V because
in Banach spaces the weak and the strong closures of subspaces coincide. According to part
(d) and Rellich’s compact embedding theorem, zj → ψ0 strongly in L2. The function ψ0 ∈ V
might be not smooth enough for our purposes. Therefore, we replace it with a sequence
{ψ̂j} ⊂ Var(A) such that ψ̂j → ψ0 in W 1,2 and αn(j)ψ̂j → 0, uniformly in x ∈ Ω, as j → ∞.

We additionally require that rn(j)‖ψ̂j‖1,p → 0, as j → 0. Such a sequence can easily be

constructed from a sequence of functions ψ̃k ∈ Var(A) that converges to ψ0 in the W 1,2

norm. Let j(k) be a subsequence of positive integers, such that for every j ≥ j(k)

αn(j)‖ψ̃k‖∞ ≤ 1

k
, rn(j)‖ψ̃k‖1,p ≤

1

k
, k = 1, 2, . . . .
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We now define ψ̂j = ψ̃k, if j(k) < j ≤ j(k + 1), k = 0, 1, 2, . . ., with the convention that

j(0) = 0 and ψ̃0 = 0. The required properties of ψ̂j are now evident.
Let ηj(x) be a Lipschitz cut-off function such that 0 ≤ ηj(x) ≤ 1 and

ηj(x) =

{
1, x ∈ ∂Ω,
0, dist(x, ∂Ω) ≥ δj.

(8.8)

It is possible to construct functions ηj, satisfying (8.8), while ensuring that

‖∇ηj‖∞ ≤ C

δj

, (8.9)

where δj → 0, as j → ∞ and C depends only on Ω. The choice of the sequence δj will be
made a little later.

Next, let us make a key observation that sj → 0 in Lp, as j → ∞, if p > 2. This is a
consequence of the Sobolev embedding theorem and Hölder’s inequality. The boundedness of
{sj} in W 1,p(Ω; Rm) implies the boundedness of {sj} in Lq(Ω; Rm) for some q > p > 2. By
Hölder’s inequality,

∫

Ω

|zj|a|zj|p−adx ≤
(∫

Ω

|zj|2dx

)a/2 (∫

Ω

|zj|qdx

)(p−a)/q

,

where a satisfies
a

2
+

p − a

q
= 1, i.e. a =

2(q − p)

q − 2
> 0.

Multiplying both sides of the Hölder inequality above by rp
n(j), we obtain

‖sj‖p
p ≤ ‖zj‖a

2‖sj‖p−a
q ra

n(j) → 0, as j → ∞.

The key observation above allows us to specify the sequence δj and construct the modified
sequence z̃j. We require that δj → 0, as j → ∞ so slow, as to satisfy

lim
j→∞

‖zj − ψ̂j‖2

δj

= 0, (8.10)

and additionally

lim
j→∞

‖sj‖p

δj

= lim
j→∞

rn(j)‖ψ̂j‖1,p

δj

= 0. (8.11)

We define

z̃j(x) = (1 − ηj(x))zj(x) + ηj(x)ψ̂j(x), ṽj = ψn(j) − z̃j, s̃j = rn(j)z̃j, t̃j = rn(j)ṽj,

establishing (a) and (a′). The validity of condition (g) is obvious. Condition (f) follows from

our construction of the sequence ψ̂j and the already established property (f) for the original
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sequences zj and vj. The function zj differs from z̃j on the set {x ∈ Ω: dist(x, ∂Ω) < δj}.
Hence, z̃j differs from ψn(j) on

R̃j = Rj ∪ {x ∈ Ω: dist(x, ∂Ω) < δj}.

Hence, parts (b), (e) and (b′) are established. Parts (c) and (d) follow from the fact that zj

and vj satisfy (c) and (d) and

lim
j→∞

‖z̃j − zj‖1,2 = lim
j→∞

‖ṽj − vj‖1,2 = 0. (8.12)

Let us prove (8.12). The relation z̃j − zj → 0 in L2 follows from the fact that both zj and

ψ̂j converge to ψ0 in the L2 norm. Therefore, so does z̃j. We have

∇zj −∇z̃j = ηj(∇zj −∇ψ̂j) + (zj − ψ̂j) ⊗∇ηj.

Let us show that both terms on the right-hand side above converge to zero in L2. The equi-
integrability of |∇zj|2 and |∇ψ̂j|2 (the latter sequence is actually compact in the strong L1

topology) implies that

lim
j→∞

∫

Ω

ηj(x)2|∇zj −∇ψ̂j|2dx ≤ lim
j→∞

∫

{x∈Ω: dist(x,∂Ω)<δj}

|∇zj −∇ψ̂j|2dx = 0,

because |{x ∈ Ω: dist(x, ∂Ω) < δj}| → 0, as j → ∞. We also have
∫

Ω

|(zj − ψ̂j) ⊗∇ηj|2dx ≤ ‖∇ηj‖2
∞‖zj − ψ̂j‖2

2 → 0,

as j → ∞, because of (8.9) and (8.10).
To prove parts (c′) and (d′), let us show that

lim
j→∞

‖s̃j − sj‖1,p = lim
j→∞

‖t̃j − tj‖1,p = 0. (8.13)

We have s̃j − sj = ηj(rn(j)ψ̂j − sj). Then

‖s̃j − sj‖p ≤ ‖sj‖p + rn(j)‖ψ̂j‖p → 0, as j → ∞.

We also have

‖∇s̃j −∇sj‖p ≤
‖sj‖p

δj

+
rn(j)‖ψ̂j‖p

δj

+ ‖ηj∇sj‖p + rn(j)‖ψ̂j‖1,p. (8.14)

The first two terms on the right-hand side of (8.14) go to zero by (8.11). The last term on

the right-hand side of (8.14) goes to zero by construction of the sequence ψ̂j. As for the
remaining term, we have

lim
j→0

∫

Ω

ηj(x)p|∇sj|pdx ≤ lim
j→0

∫

{x∈Ω: dist(x,∂Ω)<δj}

|∇sj|p = 0
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because |∇sj|p is equi-integrable and |{x ∈ Ω: dist(x, ∂Ω) < δj}| → 0, as j → ∞. The
functions sj and tj satisfy (c′) and (d′). Hence, the relation (8.13) implies (c′) and (d′) for s̃j

and t̃j.

Now assume that rn(j) → r0 > 0. Then we construct a sequence {ζ̂j} ⊂ Var(A), such

that ζ̂j → ζ0 in W 1,p(Ω; Rm), where ζ0 is the weak limit of ζn(j) (or a subsequence of it) in

W 1,p(Ω; Rm). We can construct the sequence {ζ̂j} in such a way that αn(j)ζ̂j → 0 uniformly

in x ∈ Ω, as j → ∞. This is done in exactly the same way as for {ψ̂j} in the case rn(j) → 0.

In the present case, r0 > 0, we define ψ̂j = r−1
n(j)ζ̂j. Observe that ψ̂j → r−1

0 ζ0 in W 1,p(Ω; Rm)

and αn(j)‖ψ̂j‖∞ → 0, as j → ∞. Next we define the cut-off functions ηj(x) as in (8.8), (8.9),
where δj is such that

lim
j→∞

‖ζ̂j − ζ0‖p

δj

= 0. (8.15)

We define the modified sequences {z̃j}, {ṽj}, {s̃j} and {t̃j} as before. Properties (a), (a′),
(b), (b′), (e), (f), (g) hold for exactly the same reason as before. Properties (c) and (d) follow
from (8.12), which is a consequence of (8.13), since r0 > 0 and

z̃j − zj =
s̃j − sj

rn(j)

, ṽj − vj =
t̃j − tj

rn(j)

.

The relations (8.13) are proved in exactly the same way as (8.12) in the case r0 = 0, using

the equi-integrability of |∇sj − ∇ζ̂j|p and (8.15). Properties (c′) and (d′) also follow from
(8.13). The Decomposition Theorem is proved.

From now on we restrict our attention to the subsequence n(j) (i.e. n(k(j))) and rename
it back to n. We also rename z̃j into zn, ṽj into vn, and so on. In other words, we will write
αnψn = αnzn + αnvn, instead of ψn(k(j)) = αn(k(j))z̃j + αn(k(j))ṽj.

9 The orthogonality principle

Here we show that the purely weak part {αnzn} and purely strong part {αnvn} of the variation
{φn} act independently.

Theorem 9.1 (Orthogonality Principle).

F(x, αn,ψn,∇ψn) −F(x, αn,vn,∇vn) −F(x, αn,zn,∇zn) → 0,

as n → ∞, strongly in L1(Ω).

Remark 9.2. The orthogonality principle, applied to (2.9), implies that

δ′E({φn}) = lim
n→∞

∫

Ω

F(x, αn,zn,∇zn)dx + lim
n→∞

∫

Ω

F(x, αn,vn,∇vn)dx, (9.1)
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where we have extracted subsequences (without relabeling them), so that the limits in (9.1)
and in (2.9) exist. Thus, in order to prove Theorem 5.2 it will be sufficient to show that each
term on the right-hand side of (9.1) is non-negative.

To facilitate the proof of Theorem 9.1 we first establish a property of Φ(α,ψ,G), given
by (3.7).

Lemma 9.3. The sequences of functions {Φ(αn,ψn,∇ψn)} and {Φ(αn,vn,∇vn)} are bounded
in L1(Ω), while the sequence {Φ(αn,zn,∇zn)} is equi-integrable (i.e. precompact in the weak
topology of L1(Ω)).

Proof. Let us prove the equi-integrability of {Φ(αn,zn,∇zn)}. The same argument applied
to the other two sequences will establish their boundedness.

Φ(αn,zn,∇zn) = |zn|2 + |∇zn|2 + αp−2
n |∇zn|p + αp−2

n |zn|2|∇zn|p−2.

The first two terms in the expansion above are equi-integrable according to part (c) of the
Decomposition Theorem. The third term can be rewritten as βp

n|∇sn|p/α2
n, whose equi-

integrability follows from part (c′) of the Decomposition Theorem and (7.1). The equi-
integrability of the last term is a consequence of (7.1), the Decomposition Theorem and
Hölder’s inequality:

∫

E

αp−2
n |zn|2|∇zn|p−2dx =

βp
n

α2
n

∫

E

|sn|2|∇sn|p−2dx ≤ βp
n

α2
n

(∫

E

|sn|p
) 2

p
(∫

E

|∇sn|p
)1− 2

p

(9.2)

where E is any measurable subset of Ω.

Proof of Theorem 9.1. Step 1. Let

In(x,F) = F(x, αn,ψn,∇ψn) −F(x, αn,vn,∇vn) −F(x, αn,zn,∇zn).

We have ∫

Ω

|In(x,F)|dx ≤
∫

Rn

dn(x)dx +

∫

Rn

|F(x, αn,zn,∇zn)|dx, (9.3)

where
dn(x) = |F(x, αn,ψn,∇ψn) −F(x, αn,vn,∇vn)|.

The estimate (3.10) and Lemma 9.3 immediately imply that

lim
n→∞

∫

Rn

|F(x, αn,zn,∇zn)|dx = 0.

Step 2. In this step we prove that

lim
n→∞

∫

Rn

dn(x)dx = 0, (9.4)
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if W ∈ Lp. Using the decomposition ψn = zn + vn and Lemma 3.2 we obtain

dn(x) ≤ C
(
Âp−1(αn,ψn,∇ψn,vn,∇vn)|∇zn| + Âp(αn,ψn,∇ψn,vn,∇vn)|zn|

)
, (9.5)

for some constant C > 0, where

Âp(α,ψ1,G1,ψ2,G2) = |ψ1| + |ψ2| + |G1| + |G2| + αp−1(|G1|p + |G2|p).

Applying the estimate (3.4) we have taken into account that αnψn = φn and αnvn are
uniformly bounded.

The inequality (9.5) implies that dn(x) ≤ C(d
(1)
n (x) + d

(2)
n (x) + d

(3)
n (x)), where

d(1)
n (x) = (|ψn| + |∇ψn| + |vn| + |∇vn|)(|zn| + |∇zn|),

d(2)
n (x) = αp−2

n (|∇ψn|p−1 + |∇vn|p−1)|∇zn|, d(3)
n (x) = αp−1

n (|∇ψn|p + |∇vn|p)|zn|.
Using the Cauchy-Schwarz inequality, the equi-integrability of {|zn|2 + |∇zn|2} and bound-
edness of vn and ψn in W 1,2, we conclude that

lim
n→∞

∫

Rn

d(1)
n (x)dx = 0. (9.6)

We also have

d(2)
n (x) =

βp
n

α2
n

(|∇ζn|p−1 + |∇tn|p−1)|∇sn|, d(3)
n (x) =

βp
n

α2
n

(|∇ζn|p + |∇tn|p)|αnzn|.

Recall that we are working under the assumption (7.1), so

lim
n→∞

∫

Rn

d(2)
n (x)dx = 0, (9.7)

because of the equi-integrability of |∇sn|p and the Hölder inequality

∫

Rn

d(2)
n (x)dx ≤ βp

n

α2
n

(‖∇ζn(x)‖p−1
p + ‖∇tn(x)‖p−1

p )

(∫

Rn

|∇sn(x)|pdx

)1/p

.

We also have ∫

Rn

d(3)
n (x)dx ≤ βp

n

α2
n

(‖∇ζn(x)‖p
p + ‖∇tn(x)‖p

p)‖αnzn‖∞.

Hence, by part (f) of the Decomposition Theorem and boundedness of ζn and tn in W 1,p, we
have

lim
n→∞

∫

Rn

d(3)
n (x)dx = 0.

Formula (9.4) is proved for W ∈ Lp.

30



Step 3. Now assume that W ∈ Lp \ Lp. Then by virtue of Lemma 3.7, there exist a
sequence of functions Wk ∈ Lp and corresponding functions Bk, computed according to (3.5),
such that Bk = B on a neighborhood of R and Bk → B in X0. Let

Fk(x, α,ψ,G) = Bk(x, αψ, αG)Φ(α,ψ,G) + δ2W (x,ψ,G).

Then we have
∫

Rn

|In(x,F)|dx ≤
∫

Rn

|In(x,Fk)|dx +

∫

Rn

|In(x,F) − In(x,Fk)|dx.

According to Step 2 applied to Fk,

lim
n→∞

∫

Rn

|In(x,F)|dx ≤ lim
n→∞

∫

Rn

|In(x,F) − In(x,Fk)|dx.

Recall that αnψn, αnzn and αnvn are all uniformly bounded (by 1, if n is large enough). Let

ǫk = P0
1(Bk − B) → 0, as k → ∞.

Then, using formula (3.6) we obtain

|In(x,F) − In(x,Fk)| ≤ ǫk(Φ(αn,ψn,∇ψn) + Φ(αn,zn,∇zn) + Φ(αn,vn,∇vn)). (9.8)

Lemma 9.3 implies that

lim
n→∞

∫

Ω

|In(x,F)|dx ≤ Cǫk.

This proves (9.4) and finishes the proof of the theorem.

10 Representation formulas

According to Remark 9.2, our task is to establish the non-negativity of T1 and T2, given by

T1 = lim
n→∞

∫

Ω

F(x, αn,zn,∇zn)dx, T2 = lim
n→∞

∫

Ω

F(x, αn,vn,∇vn)dx. (10.1)

In this section we will derive representation formulas for T1 and T2.

Lemma 10.1. Let {νx}x∈Ω be the Young measure generated by a subsequence of {∇zn}. Then

T1 =
1

2

∫

Ω

{
(Wyy(x)ψ0,ψ0) + 2(WFy(x)ψ0,∇ψ0) +

∫

M

(L(x)G,G)dνx(G)

}
dx, (10.2)

where L(x) = WFF (x) and ψ0 is the W 1,2-weak limit of (a subsequence of) ψn, and by part
(d) of the Decomposition Theorem, of zn.
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We call αnzn the weak part of the variation because its action on the functional is described
in terms of the second variation of E(y).

Proof. There exists a further subsequence, not relabeled, such that

lim
n→∞

∫

Ω

B(x, αnzn, αn∇zn)Φ(αn,zn,∇zn)dx = 0 (10.3)

and

lim
n→∞

∫

Ω

δ2W (x,zn,∇zn)dx = T 1, (10.4)

where T 1 is the right-hand side of (10.2). Formula (10.4) follows from the equi-integrability
of |∇zn|2, the Young measure representation theorem, [2] (see, also [39, Theorem 6.2]) and
the compact embedding of W 1,2 into L2 (Rellich’s lemma).

Let us prove (10.3). Observe that αn∇zn → 0 in L2, because ∇zn is bounded in L2 and
αn → 0. Then we can find a subsequence, not relabeled, such that αn∇zn(x) → 0 for a.e.
x ∈ Ω. Thus, B(x, αnzn, αn∇zn(x)) → B(x,0,0) = 0, as n → ∞ for a.e. x ∈ Ω. Also,
according to Lemma 3.5.

|B(x, αnzn, αn∇zn)|Φ(αn,zn,∇zn) ≤ CΦ(αn,zn,∇zn). (10.5)

Lemma 9.3 then implies that the left-hand side in (10.5) is equi-integrable. Now, (10.3) follows
from the generalized Vitali convergence theorem9 (see [38, Theorem 2, p. 152] and [43, p. 133,
exercise 10(b)] for the original Vitali convergence theorem). Lemma 10.1 is proved.

Lemma 10.2 (Generalized Vitali convergence theorem).
Let (X,M, µ) be a positive measure space. If (i) µ(X) is finite, (ii) fn → 0, µ-a.e. as n → ∞,
(iii) gn is bounded in L1(µ) and, (iv) the sequence {fngn} is equi-integrable, then fngn → 0
in L1(µ).

The original Vitali convergence theorem corresponds to gn = 1.

Proof. For any ǫ > 0, let δ > 0 be such, that

sup
n≥1

∫

E

|fngn|dµ < ǫ,

whenever µ(E) < δ. By Egorov’s theorem, there exists a set Eδ such that µ(Eδ) < δ and
fn → 0 uniformly on X \ Eδ. Then

‖fngn‖L1(µ) =

∫

X\Eδ

|fngn|dµ +

∫

Eδ

|fngn|dµ ≤ ‖gn‖L1(µ) sup
x∈X\Eδ

|fn(x)| + ǫ.

Thus,
lim

n→∞
‖fngn‖L1(µ) ≤ ǫ.

The lemma is proved.

9A similar statement in [21, (7.11)] is also a consequence of the generalized Vitali convergence theorem
and not of the original Vitali theorem as claimed in [21].
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Now, let us turn our attention to the representation of T2. Extracting enough subse-
quences, not relabeled, we may write T2 = T21 + T22, where

T21 = lim
n→∞

∫

Ω

δ2W (x,vn,∇vn)dx,

T22 = lim
n→∞

∫

Ω

B(x, αnvn, αn∇vn)Φ(αn,vn,∇vn)dx.

The first term T21 above cannot be written in terms of Young measures because |∇vn|2 does
not have to be equi-integrable. However, it can be simplified in view of part (d) of the
Decomposition Theorem and Rellich’s lemma, that says that ‖vn‖2 → 0, as n → ∞. Hence

T21 = lim
n→∞

1

2

∫

Ω

(L(x)∇vn,∇vn)dx.

We can now use Fonseca’s Varifold Theorem [16, Theorem 3.6] that says that there is a family
of probability measures {λx}x∈Ω on the unit sphere S in M and a non-negative measure π on
Ω such that

T21 =
1

2

∫

Ω

∫

S

(L(x)G,G)dλx(G)dπ(x). (10.6)

The non-negative measure π on Ω is the weak-* limit (in C(Ω)∗) of the sequence of measures
dπn = |∇vn|2dx. Let us now turn to the computation of T22.

Lemma 10.3.

T22 = lim
n→∞

∫

Ω

B◦(x, αn∇vn)Φ◦(αn,∇vn)dx,

where B◦(x,H) = B(x,0,H) and Φ◦(α,G) = Φ(α,0,G).

Proof. Step 1. Let us first prove that

T22 = lim
n→∞

∫

Ω

B◦(x, αn∇vn)Φ(αn,vn,∇vn)dx. (10.7)

Relation (10.7) is a consequence of part (f) of the Decomposition Theorem, Lemma 9.3 and
Theorem 3.1. The latter implies the uniform continuity of B(x,φ,H) at φ = 0:

lim
φ→0

sup
x∈Ω,H∈M

|B(x,φ,H) − B◦(x,H)| = 0. (10.8)

Indeed, the uniform continuity of B(x,φ,H) on compact sets is a property of all continuous
functions (Cantor’s theorem). We may assume, therefore, without loss of generality, that
|φ| < 1 and |H| > 1. Then we may write B(x,φ,H) = R1(x,φ,H) − R2(x,φ,H), where

R1(x,φ,H) =
W (x,y0(x) + φ,F0(x) + H)

(|φ|2 + |H|2)(1 + |H|p−2)

33



and

R2(x,φ,H) =
W (x) + (Wy(x),φ) + (WF (x),H) + δ2W (x,φ,H)

(|φ|2 + |H|2)(1 + |H|p−2)
.

The uniform continuity of R1(x,φ,H) at φ = 0 in the sense of (10.8), follows from Theo-
rem 3.1, while the uniform continuity of R2(x,φ,H) is not difficult to verify directly.

Step 2. To finish the proof of the lemma, we observe that by Lemma 3.5
∣∣∣∣
∫

Ω

B◦(x, αn∇vn)(Φ(αn,vn,∇vn) − Φ◦(αn,∇vn))dx

∣∣∣∣ ≤ C

∫

Ω

(|vn|2 + αp−2
n |vn|2|∇vn|p−2)dx.

The first term on the right-hand side goes to zero because vn → 0 in L2, as we mentioned in
connection with T21. The second term is estimated as in (9.2):

∫

Ω

αp−2
n |vn|2|∇vn|p−2dx =

βp
n

α2
n

∫

Ω

|tn|2|∇tn|p−2dx ≤ βp
n

α2
n

‖tn‖2
p‖∇tn‖p−2

p . (10.9)

Part (d′) of the Decomposition theorem and the compact embedding of W 1,p into Lp implies
that ‖tn‖p → 0. The lemma follows now from (7.1).

Following [21] we would like to view the limit in the formula for T22 in Lemma 10.3 as a
linear functional acting on B◦(x,H). The following lemma adapts the arguments of DiPerna
and Majda [12, Theorem 4.1] for our purposes.

Lemma 10.4. Let CB denote the set of all bounded and continuous functions on Ω×M. There
exist a subsequence, not relabeled, a non-negative finite measure σ on Ω and a continuous
linear transformation T : CB → L∞

σ (Ω) such that for any B ∈ CB

lim
n→∞

∫

Ω

B(x, αn∇vn)Φ◦(αn,∇vn)dx =

∫

Ω

(TB)(x)dσ(x). (10.10)

Proof. We observe that

Λn(B) =

∫

Ω

B(x, αn∇vn)Φ◦(αn,∇vn)dx

is a bounded sequence of linear and continuous functionals on the Banach space CB. By the
Banach-Alaoglu theorem there exists a subsequence, not relabeled, and a linear continuous
functional Λ on CB such that Λn

∗
⇀ Λ. Let σ be the Radon measure that is a weak-* limit of

measures Φ◦(αn,∇vn)dx in C(Ω)∗. In other words, for any test function φ ∈ C(Ω) we have

Λ(φ) =

∫

Ω

φ(x)dσ(x). (10.11)

The positivity of Φ◦(α,G) implies positivity of Λ, i.e. Λ(B) ≥ 0, provided B(x,H) ≥ 0. The
map C(Ω) ∋ φ 7→ Λ(φB) is a linear continuous functional on C(Ω). Therefore, there exists a
Radon measure mB on Ω, depending on B(x,H), such that

Λ(φB) =

∫

Ω

φ(x)dmB(x). (10.12)
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The positivity and linearity of Λ and (10.11) imply that

|Λ(φB)| ≤ ‖B‖∞
∫

Ω

|φ(x)|dσ(x). (10.13)

Hence, for each B ∈ CB, the measure mB is absolutely continuous with respect to σ. By the
Radon-Nikodym theorem there exists a function fB ∈ L1

σ(Ω) such that for every Borel subset
E of Ω

mB(E) =

∫

E

fB(x)dσ(x).

The integrand fB depends linearly on B and the inequality (10.13), together with density of
C(Ω) in L1

σ(Ω), implies that ‖fB‖L∞

σ (Ω) ≤ ‖B‖∞. Hence, the map B 7→ fB defines a bounded

linear transformation T : CB → L∞
σ (Ω), and (10.10) is proved.

Let us list here some useful properties of the operator T.

Lemma 10.5.

(a) The operator T is “local in x” in the sense that T(φB) = φTB for any φ ∈ C(Ω);

(b) (Tφ)(x) = φ(x) for any φ ∈ C(Ω);

(c) the operator T is “positive”, in the sense that B ≥ 0 implies TB ≥ 0.

Part (c) implies that |TB| ≤ T|B| and if B1 ≤ B2 then TB1 ≤ TB2 in the sense of L∞
σ

functions.

Proof. Property (a) is obtained by substituting dmB = (TB)(x)dσ in (10.12) and applying
Lemma 10.4. Property (b) is a consequence of Lemma 10.4 and (10.11). Property (c) is an
immediate consequence of positivity of Φ◦(α,G).

The measure π from (10.6) is absolutely continuous with respect to σ. Indeed, let us apply
Lemma 10.4 to B(x,H) = a(x)bp(H), where a ∈ C(Ω) and

bp(H) =
1

1 + |H|p−2
.

We obtain
dπn = |∇vn|2dx = bp(αn∇vn)Φ◦(αn,∇vn)dx

∗
⇀ (Tbp)(x)dσ,

where the convergence is in the sense of weak-* topology on C(Ω)∗. Thus,

dπ = (Tbp)(x)dσ. (10.14)

Combining (10.6), (10.10) and (10.14) we have the following representation formula for T2:

T2 =

∫

Ω

{
(TB◦)(x) +

(Tbp)(x)

2

(∫

S

(L(x)G,G)dλx(G)

)}
dσ(x). (10.15)
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We remark that the measures π and λx are exactly the measures π̃ and λ̃x in [21], respectively.
In summary, we have shown that δ′E({φn}) = T1 +T2, where T1 is given by (10.2) and T2

is given by (10.15). The non-negativity of T1 follows from the non-negativity of the second
variation (4.1) and a density argument (since in general zn belongs to the closure V of Var(A)
in W 1,2). The non-negativity of T2 is far less apparent. It follows from the quasiconvexity
conditions (4.2) and (4.3). However, T2, by its definition, has a geometrically global character
(it is an integral over Ω), while the quasiconvexity conditions have a local character. In order
to exhibit the local character of T2 and link it to the quasiconvexity conditions, we proceed
to establish the localization principle.

11 The localization principle

As we mentioned in the Introduction, one of the ideas in the proof of the sufficiency theorem is
to exhibit the action of the strong part of the variation αnvn as a superposition of “Weierstrass
needles”, i.e. variations of the form ǫφ((x−x0)/ǫ), or more generally, ǫφǫ((x−x0)/ǫ), where
φ (or φǫ) is a smooth function supported in a unit ball B. Even though αnvn does not
have the required form, we will show that it localizes, i.e. its action on the functional can
be understood by studying what happens in the vicinity of each fixed point x0 ∈ Ω. The
reason why localization works is that vn ⇀ 0 in W 1,2. Rellich’s lemma then implies that for
a smooth cut-off function θ(x) the sequences ∇(θ(x)vn) and θ(x)∇vn differ by a sequence
that converges to zero in the L2 norm.

With the above understanding, we may proceed in different ways technically. One way
is to follow the strategy of Evans [13, Chapter 3.B] by showing that T2 is well approximated
by an expression similar to (10.1)2, where vn(x) is replaced by θr

k(x)vn(x), where θr
k(x) are

cut-off functions that are supported on compact subsets of the interior of cells of a rectangular
grid with mesh size r. On each cell of the grid we may then use the quasiconvexity inequality.

For the purposes of exposition we choose a formally different (but, in fact, quite similar)
approach based on localization and Lebesgue’s differentiation theorem. The idea is to apply
the representation theorem for the localized version of vn, i.e. to θr

k(x)vn(x), where θr
k(x)

is a cut-off function supported on the r-neighborhood of x0, and exhibit T2 as a limit of the
localized variations via the Lebesgue differentiation theorem. The quasiconvexity conditions
will then imply that each member of the sequence converging to T2 is non-negative. The
advantage of this approach is that it allows us to split the inevitable error estimates associated
with the introduction of cut-off functions into relatively small steps and use the power of
measure theory and functional analysis to streamline at least some of the technicalities.

11.1 Localization in the interior

Theorem 11.1 (Localization in the interior). Define

F◦(x, α,G) = F(x, α,0,G) = B◦(x, αG)Φ◦(α,G) +
1

2
(L(x)G,G). (11.1)
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For x0 ∈ Ω, let θr
k(x) ∈ C∞

0 (B(x0, r)) be the cut-off functions, such that θr
k(x) → χB(x0,r)(x)

for all r > 0 and x ∈ R
d, as k → ∞, and 0 ≤ θr

k(x) ≤ 1. Then for σ-a.e. x0 ∈ Ω, we have

lim
r→0

lim
k→∞

lim
n→∞

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

F◦(x0, αn,∇(θr
k(x)vn))dx = I(x0), (11.2)

where BΩ(x0, r) = B(x0, r) ∩ Ω and

I(x) = (TB◦)(x) +
(Tbp)(x)

2

(∫

S

(L(x)G,G)dλx(G)

)
. (11.3)

Proof. Step 1. First we show that the gradients of the cut-off functions θr
k(x) do not appear

in the limit.

Lemma 11.2. For each k ∈ N, and r > 0

lim
n→∞

∫

BΩ(x0,r)

F◦(x0, αn,∇(θr
k(x)vn))dx = lim

n→∞

∫

BΩ(x0,r)

F◦(x0, αn, θr
k(x)∇vn)dx.

Proof. Let
Sn,k,r(F◦) = |F◦(x0, αn,∇(θr

k(x)vn)) −F◦(x0, αn, θr
k(x)∇vn)|

Then we show that Sn,k,r(F◦) → 0 strongly in L1 as n → ∞. Here we use same technique as
in the proof of the Orthogonality Principle in Section 9. Let us first assume that W ∈ Lp.
Then the estimate (3.4) is applicable. It reduces to

|F◦(x, α,G1)−F◦(x, α,G2)| ≤ C(|G1|+ |G2|+ αp−2(|G1|p−1 + |G2|p−1))|G1 −G2|. (11.4)

Thus,

Sn,k,r(F◦) ≤ C(|∇(θr
kvn)| + |θr

k∇vn| + αp−2
n (|∇(θr

kvn)|p−1 + |θr
k∇vn|p−1))|∇θr

k ⊗ vn|.

Then using the same estimates that have led to (9.6) and (9.7) it follows that there exists a
positive constant C(k, r) (constant, in the sense that it is independent of n) such that

‖Sn,k,r(F◦)‖1 ≤ C(k, r)(‖vn‖1,2‖vn‖2 + ‖tn‖p−1
1,p ‖tn‖p).

Recall that vn ⇀ 0 weakly in W 1,2 and tn = rnvn ⇀ 0 weakly in W 1,p. Therefore, ‖vn‖2 → 0
and ‖tn‖p → 0, as n → ∞, by compact the embedding of W 1,p into Lp for all p ≥ 1. Hence,
Sn,k,r(F◦) → 0 strongly in L1 as n → ∞.

Now, if W ∈ Lp \ Lp we use the Approximation Lemma (Lemma 3.7) to construct a
sequence F◦

j such that

|F◦
j (x, α,G) −F◦(x, α,G)| ≤ ‖B◦

j − B◦‖∞Φ◦(α,G). (11.5)

Lemma 9.3 and the argument in Step 3 in the proof of Theorem 9.1 imply that Sn,k,r(F◦) → 0
strongly in L1 as n → ∞.
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Step 2. Next we compute the limit in Lemma 11.2 by means of the representation formula
(10.15), and show that the limit as k → ∞ corresponds to taking θr

k(x) = χB(x0,r)(x) formally
in Lemma 11.2.

Lemma 11.3.

lim
k→∞

lim
n→∞

∫

BΩ(x0,r)

F◦(x0, αn, θr
k(x)∇vn)dx =

∫

BΩ(x0,r)

I(x0,x)dσ(x) (11.6)

where

I(x0,x) = (TB◦(x0, ·))(x) +
(Tbp)(x)

2

(∫

S

(L(x0)G,G)dλx(G)

)
. (11.7)

The operators T in the definition of I(x0,x) act on functions (x,H) 7→ B(x0,H) and
(x,H) 7→ bp(H) that depend on H only. The integral in the right-hand side of (11.6) is
taken over the set BΩ(x0, r), instead of its closure, because the integrand in the left-hand side
of (11.6) is continuous and vanishes on the “round part” ∂BΩ(x0, r) ∩ Ω of ∂BΩ(x0, r).

Proof. For each fixed x0 ∈ Ω and k ≥ 1 we use (11.1) and write

F◦(x0, αn, θr
k(x)∇vn) = Bk,r(x, αn∇vn)Φ◦(αn,∇vn) +

1

2
(Lk,r(x)∇vn,∇vn),

where

Bk,r(x,H) =
θr

k(x)2(1 + |θr
k(x)H|p−2)

1 + |H|p−2
B◦(x0, θ

r
k(x)H), Lk,r(x) = θr

k(x)2
L(x0).

Applying the representation formula (10.15), with BΩ(x0, r) playing the role of Ω, we obtain

lim
n→∞

∫

BΩ(x0,r)

F◦(x0, αn, θr
k(x)∇vn)dx =

∫

BΩ(x0,r)

Ik,r(x0,x)dσ(x), (11.8)

where

Ik,r(x0,x) = (TBk,r)(x) +
(Tbp)(x)

2

(∫

S

(Lk,r(x)G,G)dλx(G)

)
.

The bounded convergence theorem implies that for σ-a.e. x ∈ BΩ(x0, r)

lim
k→∞

∫

S

(Lk,r(x)G,G)dλx(G) =

∫

S

(L(x0)G,G)dλx(G).

Observe that Bk,r(x,H) → B◦(x0,H), as k → ∞ pointwise, but not uniformly in (x,H).
To prove Lemma 11.3 we need to show that the convergence is uniform in H for each fixed
x. This is a consequence of W ∈ Lp and the following lemma.

Lemma 11.4. Let B0(H) = B◦(x0,H). Suppose q > 0, θj ≥ 0 and θj → θ0 ≥ 0, as j → ∞.
Then θq

jB0(θjH) → θq
0B0(θ0H) uniformly in H ∈ M, as j → ∞.
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Proof. If θ0 = 0, then θq
jB0(θjH) → 0 uniformly in H ∈ M, as j → ∞, because the function

B0(H) is bounded. Now suppose that θ0 > 0 and

lim
j→∞

sup
H∈M

|θq
jB0(θjH) − θq

0B0(θ0H)| > 0,

in contradiction to the statement of the lemma. Then, there exists a sequence Hj such that
|Hj| → ∞ and such that

lim
j→∞

|θq
jB0(θjHj) − θq

0B0(θ0Hj)| > 0. (11.9)

Let H ′
j = θ0Hj and H ′′

j = θjHj. Then |H ′
j| → ∞ and |H ′′

j | → ∞, as j → ∞, while

lim
j→∞

|H ′
j − H ′′

j |
1 + |H ′

j| + |H ′′
j |

= lim
j→∞

|θ0 − θj|
|Hj|−1 + θ0 + θj

= 0.

Therefore, Theorem 3.1 implies that B0(θjHj) − B0(θ0Hj) → 0, as j → ∞. It follows that

|θq
jB0(θjHj) − θq

0B0(θ0Hj)| ≤ |θq
j − θq

0|‖B0‖∞ + θq
0|B0(θjHj) − B0(θ0Hj)|.

Taking a limit as j → ∞, we get a contradiction with (11.9). This finishes the proof of the
lemma.

Lemma 11.3 follows now from bounded convergence theorem and

Lemma 11.5.

lim
k→∞

(TBk,r)(x) = (TB◦(x0, ·))(x)

for σ-a.e. x ∈ BΩ(x0, r).

Proof. Observe that the functions Bk,r(x,H) are uniformly bounded. Therefore,

δk,r(x) = sup
H∈M

|Bk,r(x,H) − B◦(x0,H)|

is a uniformly bounded sequence of functions, such that δk,r(x) → 0 for every x ∈ BΩ(x0, r).
Let us show that functions δk,r(x) are also continuous. This is a consequence of the uniform
continuity of Bk,r(x,H).

Definition 11.6. We say that B ∈ CB is uniformly continuous, if for every ǫ > 0 there
exists δ > 0 so that for every H ∈ M and {x′,x′′} ⊂ Ω, such that |x′ − x′′| < δ, we have

|B(x′,H) − B(x′′,H)| < ǫ.

The subspace of all uniformly continuous functions in CB will be denoted CU
B .

The uniform continuity of Bk,r(x,H) is a corollary of Lemma 11.4.
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Corollary 11.7. The functions Bk,r(x,H) are uniformly continuous in the sense of Defini-
tion 11.6.

Proof. Suppose {x′
n,x′′

n} ⊂ Ω are such that |x′
n − x′′

n| → 0, as n → ∞. Without loss of
generality we may assume that there exists x∗ ∈ Ω such that x′

n → x∗ and x′′
n → x∗, as

n → ∞. Let θ′n = θr
k(x

′
n), θ′′n = θr

k(x
′′
n) and θ0 = θr

k(x∗). Then

|Bk,r(x
′
n,H) − Bk,r(x

′′
n,H)| ≤ |(θ′n)2B0(θ

′
nH) − (θ′′n)2B0(θ

′′
nH)|

+ |(θ′n)pB0(θ
′
nH) − (θ′′n)pB0(θ

′′
nH)|.

Adding and subtracting θ2
0B0(θ0H) in the first term and θp

0B0(θ0H) in the second term above
and applying Lemma 11.4, we obtain uniform continuity of Bk,r(x,H).

Now, Lemma 10.5 implies that

|(TBk,r)(x) − (TB◦(x0, ·))(x)| ≤ (Tδk,r)(x) = δk,r(x)

for σ-a.e. x ∈ BΩ(x0, r). Lemma 11.5 follows.

Lemma 11.3 follows now from the bounded convergence theorem.

Step 3. In order to finish the proof of Theorem 11.1 we need to divide both sides of
(11.6) by σ(BΩ(x0, r)) and take the limit as r → 0. Observe that

I2(x0,x) =
(Tbp)(x)

2

(∫

S

(L(x0)G,G)dλx(G)

)

is a linear combination of functions

fijkl(x) =
(Tbp)(x)

2

(∫

S

GijGkldλx(G)

)

with coefficients Lijkl(x0) depending on x0. The application of the Radon measure version
of Lebesgue differentiation theorem [15, Corollary 2.9.8] to m2d2 functions fijkl(x) yields the
desired result

lim
r→0

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

I2(x0,x)dσ(x) =
(Tbp)(x0)

2

(∫

S

(L(x0)G,G)dλx0(G)

)

for σ-a.e. x0 ∈ Ω.
To compute the limit for I1(x0,x) = (TB◦(x0, ·))(x) we will have to use the uniform

continuity condition (UC). The problem, is that the σ-null set, where convergence, as r → 0,
fails in the Lebesgue differentiation theorem may, in principle, depend on x0. Consequently,
the convergence at x0 might fail for all x0 ∈ Ω. From the expression

B◦(x,H) =
W ◦(x,H) − 1

2
(L(x)H ,H)

|H|2(1 + |H|p−2)
=

U(x,0,H)

1 + |H|p−2
(11.10)

we see that condition (UC) is equivalent to the uniform continuity of B◦ in the sense of
Definition 11.6, i.e. B◦ ∈ CU

B .
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Lemma 11.8. Suppose B ∈ CU
B . Then for σ-a.e. x0 ∈ Ω the limit

lim
r→0

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

(TB(x0, ·))(x)dσ(x)
def
=(T̂B)(x0)

exists.

Proof. Let {xj : j ≥ 1} be a countable dense subset of Ω. Then there exists a σ-null set
N ⊂ Ω such that for all j ≥ 1 and all x0 ∈ Ω \ N ,

lim
r→0

Ar(xj,x0) = I1(xj,x0), (11.11)

where

Ar(ξ,x0) =
1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

I1(ξ,x)dσ(x).

Let us show that Ar(ξ,x0) has a limit, as r → 0 for all ξ ∈ Ω and all x0 ∈ Ω \ N . Let us
choose an arbitrary ξ ∈ Ω. For any ǫ > 0 we may find and index j0 ∈ N such that

|Ar(ξ,x0) − Ar(xj0 ,x0)| ≤
ǫ

3
(11.12)

for all r > 0 and x0 ∈ Ω. Indeed, by uniform continuity of B◦ we may choose an index j0

such that
sup
H∈M

|B◦(ξ,H) − B◦(xj0 ,H)| <
ǫ

3
.

Then Lemma 10.5 implies that

‖I1(ξ, ·) − I1(xj, ·)‖L∞

σ
= ‖TB◦(ξ, ·) − TB◦(xj0 , ·)‖L∞

σ
≤ ǫ

3
.

Therefore, (11.12) holds uniformly in x0 and r. Now fix any x0 ∈ Ω \ N . Then, convergence
(11.11) implies that there exists δ > 0 so that for all r ∈ (0, δ) and all s ∈ (0, δ)

|Ar(xj0 ,x0) − As(xj0 ,x0)| <
ǫ

3
.

But then

|Ar(ξ,x0) − As(ξ,x0)| ≤|Ar(ξ,x0) − Ar(xj0 ,x0)|
+ |Ar(xj0 ,x0) − As(xj0 ,x0)| + |As(xj0 ,x0) − As(ξ,x0)| < ǫ.

Thus, by the Cauchy convergence criterion, Ar(ξ,x0) converges, as r → 0 for all ξ ∈ Ω and
all x0 ∈ Ω \ N . In particlualar, taking ξ = x0, we establish the lemma.

To finish the proof of Theorem 11.1 we only need to prove that T̂B◦ = TB◦. We first
note that both T and T̂ are bounded linear operators from CU

B to L∞
σ . Indeed, for every x0

for which the limit (T̂B)(x0) exists, we have |(T̂B)(x0)| ≤ ‖B‖∞, since |(TB)(x)| ≤ ‖B‖∞
for σ-a.e. x ∈ Ω.
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Lemma 11.9. Let Π ⊂ CU
B denote the subspace of all finite linear combinations of functions

of the form φ(x)b(H). Then CU
B = Π, where the closure is taken in CB.

The proof of this lemma is in Appendix B.
Let us show that T and T̂ agree on Π. Indeed, (T(φb))(x) = φ(x)(Tb)(x), according to

property (a) of Lemma 10.5. By Lemma 11.8 we have

(T̂(φb))(x0) = lim
r→0

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

(Tφ(x0)b))(x)dσ(x) = φ(x0)(Tb)(x0)

for σ-a.e. x0 ∈ Ω. Since T and T̂ agree on Π and are bounded on CU
B , they also have to agree

on Π = CU
B . Theorem 11.1 is proved now.

11.2 Localization on the free boundary

For x0 ∈ ∂Ω2 we cannot use Theorem 11.1 directly, because in order to use the quasiconvexity
at the boundary condition (4.3) we have to flatten completely the “almost-flat” part of the
boundary of

B−
r =

BΩ(x0, r) − x0

r
.

As r → 0, the set B−
r “converges” to the half-ball B−

n(x0). To make this precise, in Appendix C

we construct a family of diffeomorphisms fr : B−
n(x0) → B−

r such that fr(x) → x in C1(B−
n(x0))

and f−1
r (x) → x in C1(B−

r ) in the sense that

lim
r→0

sup
x∈B−

r

|f−1
r (x) − x| = lim

r→0
sup

x∈B−

r

|∇f−1
r (x) − I| = 0. (11.13)

Let vr
n(x) = r−1vn(x0 + rfr(x)) be the “blown-up” version of vn defined on B−

n(x0).

Theorem 11.10 (Localization at the free boundary). Let x0 ∈ ∂Ω2∩supp(σ). Let the cut-off
functions θk(x) ∈ C∞

0 (B) be such that θk(x) → χB(x), as k → ∞, and 0 ≤ θk(x) ≤ 1. Let
ξr

n,k(x) = θk(x)vr
n(x). Then

lim
r→0

lim
k→∞

lim
n→∞

rd

σ(BΩ(x0, r))

∫

B−

n(x0)

F◦(x0, αn,∇ξr
n,k(x))dx = I(x0) (11.14)

for σ-a.e. x0 ∈ ∂Ω2, where I(x) is given by (11.3).

Proof. The proof follows the same sequence of steps as the proof of Theorem 11.1, except
that here we need an extra step to take care of the deformations fr(x).

Step 1.

Lemma 11.11.

lim
n→∞

∫

B−

n(x0)

F◦(x0, αn,∇ξr
n,k)dx = lim

n→∞

∫

B−

n(x0)

F◦(x0, αn, θk(x)∇vr
n)dx. (11.15)
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Proof. The proof is very similar to the proof of Lemma 11.2. We first assume that W ∈ Lp

and use (11.4) to obtain

‖Sn,k,r(F◦)‖1 ≤ C(k)(‖vr
n‖1,2‖vr

n‖2 + αp−2
n ‖vr

n‖p−1
1,p ‖vr

n‖p),

where
Sn,k,r(F◦) = |F◦(x0, αn,∇ξr

n,k) −F◦(x0, αn, θk(x)∇vr
n)|

and the norms of vr
n are now taken over the domain B−

n(x0). To see that

Sn,k,r(F◦) → 0 in L1(B−
n(x0)), as n → ∞ (11.16)

we need to change variables
x′ = x0 + rfr(x) (11.17)

in the norms above. Since the change of variables depends on r only, we easily obtain

‖vr
n‖p ≤ C(r, p)‖vn‖p, ‖vr

n‖1,p ≤ C(r, p)‖vn‖1,p,

for all p ≥ 1, where the norms of vn are taken over BΩ(x0, r). Using the identity

αp−2
n ‖vn‖p−1

1,p ‖vn‖p =
βp

n

α2
n

‖tn‖p−1
1,p ‖tn‖p,

Rellich’s lemma and (7.1) we establish (11.16). If W ∈ Lp \ Lp the estimate (11.5) requires
that ‖Φ◦(αn,∇ξr

n,k)‖1 be bounded as n → ∞. We have

‖Φ◦(αn,∇ξr
n,k)‖1 ≤ C(k)(‖vr

n‖2
1,2 + αp−2

n ‖vr
n‖p

1,p).

Once again, making a change of variables (11.17) and using (7.1) we obtain

‖Φ◦(αn,∇ξr
n,k)‖1 ≤ C(k, r)(‖vn‖2

1,2 + ‖tn‖p
1,p),

completing the proof of the lemma.

Step 2. In this step we compute the limit n → ∞ followed by the limit k → ∞ in (11.14).
We make the change of variables (11.17) in the right-hand side of (11.15).

∫

B−

n(x0)

rdF◦(x0, αn, θk(x)∇vr
n)dx =

∫

BΩ(x0,r)

F◦(x0, αn, θk(pr(x
′))∇vnJr(x

′))J−1
r (x′)dx′ (11.18)

where

pr(x
′) = f−1

r

(
x′ − x0

r

)
, Jr(x

′) = (∇fr)(pr(x
′)), Jr(x

′) = det Jr(x
′).
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As in Step 2 in the proof of Theorem 11.1 we are going to use the representation formula
(11.3) to express the limit of the right-hand side of (11.18) as n → ∞. We have

F◦(x0, αn, θr
k(x)∇vnJr(x))J−1

r (x) = Bk,r(x, αn∇vn)Φ◦(αn,∇vn) +
1

2
(Lk,r(x)∇vn,∇vn),

where

θr
k(x) = θk(pr(x)), (Lk,r(x)G,G) =

θr
k(x)2

Jr(x)
(L(x0)GJr(x),GJr(x))

and

Bk,r(x,H) =
θr

k(x)2|HJr(x)|2(1 + |θr
k(x)HJr(x)|p−2)

Jr(x)|H|2(1 + |H|p−2)
B◦(x0, θ

r
k(x)HJr(x)).

For notational convenience we have dropped the prime in the variable x. The property (11.13)
of the maps fr implies that

Jr(x) → I, Jr(x) → 1, (11.19)

uniformly in x ∈ BΩ(x0, r), as r → 0. Thus, when r is sufficiently small, J−1
r (x) is continuous

on BΩ(x0, r) and
|HJr(x)| ≥ κr|H|, (11.20)

where κr is the smallest singular value of the set of matrices {Jr(x) : x ∈ BΩ(x0, r)}. We
have κr → 1,as r → 0, in view of (11.19). Hence,

Bk,r(x,H) → |HJr(x)|2(1 + |HJr(x)|p−2)

Jr(x)|H|2(1 + |H|p−2)
B◦(x0,HJr(x)) = Br(x,H),

uniformly in H ∈ M, as k → ∞ for all x ∈ BΩ(x0, r). This is proved by a simple modification
of the arguments in Lemma 11.4. Similarly, the modified Lemma 11.4 and Corollary 11.7
imply that Bk,r(x,H) is uniformly continuous for each k ∈ N and r > 0 in the sense of
Definition 11.6. Hence, we obtain the analog of Lemma 11.5

lim
k→∞

(TBk,r)(x) = (TBr)(x) (11.21)

for σ-a.e. x ∈ BΩ(x0, r). Applying the bounded convergence theorem we may compute the
first two limits in (11.14). Thus, we have established the following lemma.

Lemma 11.12.

lim
k→∞

lim
n→∞

∫

B−

n(x0)

rdF◦(x0, αn,∇ξr
n,k(x))dx =

∫

BΩ(x0,r)

Ir(x0,x)dσ(x), (11.22)

where

Ir(x0,x) = (TBr)(x) +
(Tbp)(x)

2Jr(x)

∫

S

(L(x0)GJr(x),GJr(x))dλx(G). (11.23)
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The integral in (11.22) is over BΩ(x0, r) because θr
k(x) vanishes on ∂B(x0, r)∩Ω, but not

on ∂Ω ∩ B(x0, r).
Step 3. In this step we take a limit, as r → 0. For the first term in (11.23) we have

ǫ(1)
r = sup

x∈BΩ(x0,r)

sup
H∈M

|Br(x,H) − B◦(x0,H)| → 0, (11.24)

as r → 0. To prove (11.24) one just repeats the arguments of Lemma 11.4 using the inequality
(11.20).

For the second term in (11.23) we also have

ǫ(2)
r = sup

x∈BΩ(x0,r)

max
G∈S

∣∣∣∣
(L(x0)GJr(x),GJr(x))

Jr(x)
− (L(x0)G,G)

∣∣∣∣ → 0, (11.25)

as r → 0. The estimate (11.25) is a consequence of (11.19) and compactness of the unit
sphere S ⊂ M and BΩ(x0, r). Thus,

|Ir(x0,x) − I(x0,x)| ≤ ǫ(1)
r +

ǫ
(2)
r (Tbp)(x)

2
, (11.26)

for σ-a.e. x ∈ BΩ(x0, r). It follows that

lim
r→0

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

Ir(x0,x)dσ(x) = lim
r→0

1

σ(BΩ(x0, r))

∫

BΩ(x0,r)

I(x0,x)dσ(x),

(11.27)
since Tbp ∈ L∞

σ (Ω). Step 3 in the proof of Theorem 11.1 now completes the proof of Theo-
rem 11.10.

12 Proof of Theorem 5.2

In order to prove Theorem 5.2, it suffices to show that T1 ≥ 0 and T2 ≥ 0, where T1 and T2

are given in (10.2) and (10.15), respectively. We show that (4.1) implies that T1 ≥ 0. We also
prove that T2 ≥ 0 by proving that I(x) ≥ 0 for σ-a.e. x ∈ Ω, where I(x) is given by (11.3).
The proof is essentially the same as in [21, Section 9]. We give full details here for the sake
of completeness.

Step 1. We observe that the inequality (4.1) holds not only for every φ ∈ Var(A) but
also for every φ ∈ V = Var(A), where the closure is taken in W 1,2(Ω; Rm). Hence, for every
n ∈ N we have ∫

Ω

δ2W (x,zn,∇zn)dx ≥ 0.

Therefore, T1 ≥ 0.
Step 2. In this step we show that I(x0) ≥ 0 for σ-a.e. x0 ∈ Ω∪∂Ω1. Indeed, Theorem 11.1

represents I(x0) as a limiting value of numbers

pn,k,r =
1

σ(BΩ(x0, r))α2
n

∫

Ω

W ◦(x0, αn∇(θr
k(x)vn))dx,
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for σ-a.e. x0 ∈ Ω. The non-negativity of the numbers pn,k,r follows from the quasiconvexity
inequality (4.2) and the fact that θr

k(x)vn ∈ W 1,∞
0 (Ω; Rm) for each n, k and r, sufficiently

small so that B(x0, r) ∩ ∂Ω2 = ∅.
Step 3. In this step we show that I(x0) ≥ 0 for σ-a.e. x0 ∈ ∂Ω2. Theorem 11.10

represents I(x0) as a limiting value of numbers

qn,k,r =
rd

σ(BΩ(x0, r))α2
n

∫

B−

n(x0)

W ◦(x0, αn∇(θk(x)vr
n))dx,

for σ-a.e. x0 ∈ ∂Ω2. The non-negativity of the numbers qn,k,r follows from the quasiconvexity
at the boundary condition (4.3) and the following lemma.

Lemma 12.1. Suppose that the inequality (4.3) holds for every x0 ∈ ∂Ω2. Then it also holds
for every x0 ∈ ∂Ω2.

Proof. Let x0 ∈ ∂Ω2 and {xk : k ≥ 1} ⊂ ∂Ω2 be such that xk → x0, as k → ∞. Let
φ ∈ Vn(x0), where Vn is defined by (4.4). Let Rk be a sequence of d × d orthogonal matrices
such that Rk → I—the d × d identity matrix, as k → ∞, and Rkn(xk) = n(x0). Such a
sequence exists, since ∂Ω is a C1 surface and n(xk) → n(x0), as k → ∞. Then φk(x) =
φ(Rkx) ∈ Vn(xk). The inequality (4.3) then implies that for each k ∈ N

∫

B−

n(xk)

W ◦(xk,∇φ(Rkx)Rk)dx ≥ 0.

Changing variables x′ = Rkx, we obtain
∫

B−

n(x0)

W ◦(xk,∇φ(x′)Rk)dx′ ≥ 0. (12.1)

Passing to the limit, as k → ∞ in (12.1) we obtain (4.3) for x0 ∈ ∂Ω2.

By construction (see Section 2), the sets ∂Ω1 and ∂Ω2 are such that Ω = Ω ∪ ∂Ω1 ∪ ∂Ω2.
Hence, we have proved that I(x0) ≥ 0 for σ-a.e. x0 ∈ Ω. Theorem 5.2 is proved now.

A Proof of Theorem 3.1

In this Section we define

B(x,y,F ) =
W (x,y,F )

1 + |F |p .

This should not be confused with (3.5). In terms of B, we can say that W ∈ Lp if and only
if B is continuously differentiable in the sense of footnote 4 on page 8 and

|BF (x,y,F )| ≤ C(y)

1 + |F | , |By(x,y,F )| ≤ C(y) (A.1)

for some locally bounded function C(y), depending on W , of course.
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Lemma A.1. Assume that W ∈ Lp. Then, for every r > 0 and ǫ > 0 there exists δ > 0 so
that for every x ∈ Ω, y′ and y′′, and F ′ and F ′′, such that |y′| < r, |y′′| < r, |y′ − y′′| < δ,

|F ′ − F ′′|
1 + |F ′| + |F ′′| < δ,

we have
|B(x,y′,F ′) − B(x,y′′,F ′′)| < ǫ. (A.2)

Proof. Let us first assume that W ∈ Lp, i.e. inequalities (A.1) are satisfied. Consider any
two sequences |F ′

n| → ∞ and |F ′′
n | → ∞ such that

lim
n→∞

|F ′
n − F ′′

n |
1 + |F ′

n| + |F ′′
n |

= 0.

If we prove that
lim

n→∞
|B(x,y′,F ′

n) − B(x,y′′,F ′′
n )| ≤ C(r)|y′ − y′′|, (A.3)

then (A.2) will follow. Applying Lagrange’s mean-value theorem and (A.1), we obtain

|B(x,y′,F ′
n) − B(x,y′′,F ′′

n )| ≤ C(r)|F ′
n − F ′′

n |
1 + |Fn|

+ C(r)|y′ − y′′|,

where Fn = tnF
′
n + (1 − tn)F ′′

n and tn ∈ [0, 1] depends on x, y′ and y′′. We claim that

lim
n→∞

|Fn|
|F ′

n| + |F ′′
n |

=
1

2
. (A.4)

Observe that the sequence Fn/(|F ′
n| + |F ′′

n |) is bounded in M. Extracting any convergent
subsequence (not relabeled), we obtain

lim
n→∞

|Fn|
|F ′

n| + |F ′′
n |

= lim
n→∞

∣∣∣∣
F ′′

n

|F ′
n| + |F ′′

n |
+ tn

F ′
n − F ′′

n

|F ′
n| + |F ′′

n |

∣∣∣∣ = lim
n→∞

|F ′′
n |

|F ′
n| + |F ′′

n |
.

Also,

lim
n→∞

|F ′
n|

|F ′
n| + |F ′′

n |
= lim

n→∞

|F ′′
n |

|F ′
n| + |F ′′

n |
because ∣∣∣∣

|F ′
n|

|F ′
n| + |F ′′

n |
− |F ′′

n |
|F ′

n| + |F ′′
n |

∣∣∣∣ ≤
|F ′

n − F ′′
n |

|F ′
n| + |F ′′

n |
→ 0,

as n → ∞. But then

lim
n→∞

|Fn|
|F ′

n| + |F ′′
n |

=
1

2

(
lim

n→∞

|F ′
n|

|F ′
n| + |F ′′

n |
+ lim

n→∞

|F ′′
n |

|F ′
n| + |F ′′

n |

)
=

1

2
.
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The relation (A.4) is satisfied, because the limit (1/2) does not depend on the choice of the
subsequence. Thus,

lim
n→∞

|F ′
n − F ′′

n |
1 + |Fn|

= lim
n→∞

|F ′

n−F ′′

n |
|F ′

n|+|F ′′

n |

1
|F ′

n|+|F ′′

n |
+ |Fn|

|F ′

n|+|F ′′

n |

= 0,

and (A.2) is established.
If Wk ∈ Lp for each k and Bk = Wk/(1 + |F |p) → B in X0, as k → ∞ then

|B(x,y′,F ′) − B(x,y′′,F ′′)| ≤ |B(x,y′,F ′) − Bk(x,y′,F ′)|
+ |Bk(x,y′,F ′) − Bk(x,y′′,F ′′)| + |Bk(x,y′′,F ′′) − B(x,y′′,F ′′)|.

If we choose k ∈ N so that
P0

r(Bk − B) < ǫ

and δ > 0, so that (A.2) holds for Bk, we get

|B(x,y′,F ′) − B(x,y′′,F ′′)| ≤ 3ǫ.

Lemma A.1 is proved.

Suppose now B(x,y,F ) ∈ X0 and satisfies (A.2). Our goal is to prove that we can
approximate B in X0 by functions Bδ satisfying (A.1). Let

B̃(x,y, F̂ , τ) = B(x,y, eτ F̂ )

for (x,y, F̂ ) ∈ Ω × R
m × M and τ ∈ R. Let

Kr = {(x,y, F̂ ) : x ∈ Ω, |y| ≤ r, |F̂ | ≤ 2}.

Then Kr is a compact subset of R
d × R

m × M.

Lemma A.2. B̃(x,y, F̂ , τ) is uniformly continuous on Kr × R for any r > 0.

Proof. In view of uniform continuity of continuous functions on compact sets, we only need
to prove uniform continuity in τ . For any ǫ > 0, let δ > 0 be such that (A.2) is satisfied. The
uniform continuity of the hyperbolic tangent implies that there exists δ′ > 0, such that for
any τ ′ and τ ′′ satisfying |τ ′ − τ ′′| < δ′ we have | tanh((τ ′ − τ ′′)/2)| < δ. In that case

|B̃(x,y, F̂ , τ ′) − B̃(x,y, F̂ , τ ′′)| = |B(x,y, eτ ′

F̂ ) − B(x,y, eτ ′′

F̂ )| < ǫ,

because
|eτ ′

F̂ − eτ ′′

F̂ |
1 + |F̂ |eτ ′ + |F̂ |eτ ′′

≤
∣∣∣∣tanh

(
τ ′ − τ ′′

2

)∣∣∣∣ < δ.

48



Here B denotes the unit ball in R
m × M × R. Let ρ(y,F , τ) ∈ C∞

0 (B) be the standard
convolution kernel, i.e. ρ is non-negative and integrates to 1 over all space. Let

B̃δ(x,y, F̂ , τ) =

∫

B

B̃(x,y − δz, F̂ − δH , τ − δξ)ρ(z,H , ξ)dzdHdξ (A.5)

be the standard convolution approximation. Then B̃δ → B̃ uniformly on Kr × R, as δ → 0.
Indeed, we conclude, using Lemma A.2 that for every (z,H , ξ) ∈ B

|B̃(x,y − δz, F̂ − δH , τ − δξ) − B̃(x,y, F̂ , τ)| < 3ǫ.

Therefore,

B̂δ(x,y,F ) = B̃δ

(
x,y,

F

|F | , ln |F |
)

→ B(x,y,F ), (A.6)

as δ → 0, uniformly in x ∈ Ω, |y| < r and |F | ≥ 1.
Let B′

δ(x,y,F ) be a sequence of C1 functions converging to B uniformly on Kr for every
r > 0. Let η(F ) ∈ C∞

0 (M) be a cut-off function that is equal to 1 for all |F | ≤ 1 and to 0 for
all |F | ≥ 2. We define

Bδ(x,y,F ) = η(F )B′
δ(x,y,F ) + (1 − η(F ))B̂δ(x,y,F ).

Then Bδ → B, as δ → 0, in X0.
It only remains to show that Bδ satisfies (A.1). Obviously Bδ is continuously differentiable

in the sense of footnote 4 on page 8. Hence, we only need to check if B̂δ(x,y,F ) satisfies

(A.1) for large values of |F |. Differentiating B̂δ, defined by (A.6), we obtain

B̂δ
y(x,y,F ) = B̃δ

y, B̂δ
F (x,y,F ) =

1

|F |

(
B̃δ

bF
−

(B̃δ
bF
,F )F

|F |2 +
B̃δ

τF

|F |

)
, (A.7)

where B̃δ
y, B̃δ

bF
and B̃δ

τ are evaluated at (x,y,F /|F |, ln |F |).
Let us change variables in the convolution formula (A.5).

B̃δ(x,y, F̂ , τ) =
1

δm(d+1)+1

∫

Rm×R×M

B̃(x,z,H , ξ)ρ

(
y − z

δ
,
F̂ − H

δ
,
τ − ξ

δ

)
dzdHdξ. (A.8)

Differentiating (A.8) and using the boundedness of B̃, we obtain the following estimates.

|B̃δ
y(x,y, F̂ , τ)| ≤ C(r)

δ
, |B̃δ

bF
(x,y, F̂ , τ)| ≤ C(r)

δ
, |B̃δ

τ (x,y, F̂ , τ)| ≤ C(r)

δ
. (A.9)

where
C(r) = ‖∇ρ‖1 sup

τ∈R

sup
bF∈M

max
|y|≤r

max
x∈Ω

|B̃(x,y, F̂ , τ)| = ‖∇ρ‖1P
0
r(B).

Applying estimates (A.9) to formulas (A.7) we obtain

|B̂δ
y(x,y,F )| ≤ C(r)

δ
, |B̂δ

F (x,y,F )| ≤ 3C(r)

|F |δ .

Theorem 3.1 is proved.
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B Proof of Lemma 11.9

First observe that all functions in Π are uniformly continuous in the sense of Definition 11.6.
Moreover, uniform continuity is preserved under uniform convergence, i.e. convergence in CB.
Thus, Π ⊂ CU

B . To prove the reverse inclusion we use the Stone-Čech compactification. The
Stone-Čech compactification βM of M is a compact, Hausdorff topological space, containing
M as a subset. The topology induced on M by the embedding M ⊂ βM has to coincide with
the original (Euclidean) toplogy of M. There are many possible compactifications of M. The
Stone-Čech compactification βM is characterized by its universal property : any bounded and
continuous function on M has a unique continuous extension to βM.

Lemma B.1.

(a) Every uniformly continuous function B ∈ CU
B has a unique continuous extension to

Ω × βM.

(b) The restriction of every continuous function on Ω × βM to Ω × M is bounded and
uniformly continuous.

Proof. Part (b) is an immediate corollary of compactness of Ω × βM. To prove part (a), we
observe that by the universal property of the Stone-Čech compactification, for each fixed x ∈
Ω the bounded continuous function M ∋ H 7→ B(x,H) has a uniquely defined continuous

extension βM ∋ h 7→ B̃(x, h). Hence, any continuous extension of B from Ω×M to Ω× βM

must coincide with B̃(x, h). The uniqueness is proved. The existence will be established, if

we show that B̃(x, h), which is uniquely defined, is continuous on Ω × βM. It is here that
the uniform continuity of B will be used.

Let us fix (x0, h0) ∈ Ω × βM. For every ǫ > 0 there exists a neighborhood U of h0 in βM

such that for every h ∈ U

|B̃(x0, h) − B̃(x0, h0)| <
ǫ

2
.

Also, by uniform continuity of B(x,H) there exists δ > 0 such that for all x ∈ Ω, such that
|x − x0| < δ

sup
H∈M

|B(x0,H) − B(x,H)| <
ǫ

2
.

By definition of B̃(x, h), we also have

sup
H∈M

|B(x0,H) − B(x,H)| = max
h∈βM

|B̃(x0, h) − B̃(x, h)|

for any two points x and x0 in Ω. Hence, for all (x, h) ∈ B(x0, δ) × U we have

|B̃(x, h) − B̃(x0, h0)| ≤ |B̃(x, h) − B̃(x0, h)| + |B̃(x0, h) − B̃(x0, h0)| < ǫ.
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Lemma B.1 tells us that the closed subspace CU
B ⊂ CB of uniformly continuous, in the

sense of Definition 11.6, functions is isometrically isomorphic to C(Ω × βM). Thus, in order

to prove that Π = CU
B , we can prove that the subspace Π̃ of all finite linear combinations

of functions of the form φ(x)̃b(h) are dense in C(Ω × βM). This can be accomplished by

the Stone-Weierstrass theorem. Obviously, Π̃ is a subalgebra in C(Ω× βM) that contains all

constant functions. Also, if (x1, h1) 6= (x2, h2) we may easily construct a function φ(x)̃b(h)
that takes two different values at these two points, since any compact Hausdorff topological
space is regular (even normal). Hence, the Stone-Weierstrass theorem applies and Lemma 11.9
is proved.

C Construction of the diffeomorphisms fr

Let Ω be a C1 domain in R
d. Let x0 ∈ ∂Ω. Let B−

r = (BΩ(x0, r) − x0)/r, where BΩ(x0, r) =
Ω∩B(x0, r). Let n be the outer unit normal to ∂Ω at x0 and let B−

n = {x ∈ B : (x,n) < 0},
where B is the unit ball in R

d.

Theorem C.1. There exist functions gr ∈ C1(B−
r ; Rd) such that gr are diffeomorphisms

between B−
r and B−

n and gr(x) → x and ∇gr(x) → I uniformly as r → 0 in the sense that

lim
r→0

sup
x∈B−

r

|gr(x) − x| = lim
r→0

sup
x∈B−

r

|∇gr(x) − I| = 0. (C.1)

Proof. We may assume without loss of generality that x0 = 0 and that the tangent plane to
∂Ω at x0 has the equation xd = 0 with outer unit normal n = −ed. Let x′ = (x1, . . . , xd−1).
Let Dr, r > 0 be open neighborhoods of 0 ∈ R

d−1 that are the orthogonal projections of
∂Ω ∩ B(0, r) onto the tangent plane (identified with R

d−1). Therefore Dr ⊂ B′(0, r), where
B′(a′, r) is the ball of radius r in R

d−1, centered at a′ ∈ R
d−1. There exists r0 > 0 so that the

C1 surface ∂Ω ∩ B(0, r0) has the equation xd = φ(x′), x′ ∈ Dr0 , where φ ∈ C1(Dr0) satisfies
φ(0) = 0 and ∇φ(0) = 0. If r is so small that B′(0, r) ⊂ Dr0 , then we can describe domains
Dr, as

Dr = {x′ ∈ R
d−1 : |x′|2 + φ(x′)2 < r2}. (C.2)

In the definition (C.2) φ(x′) is well defined, because |x′| < r.
For r < r0 the domain BΩ(0, r) is described as

BΩ(0, r) = {(x′, xd) : x′ ∈ Dr, φ(x′) ≤ xd <
√

r2 − |x′|2}.

Then
B−

r = {(z′, zd) : z′ ∈ D̂r, ψr(z
′) ≤ zd <

√
1 − |z′|2, }, (C.3)

where D̂r = Dr/r ⊂ B′ ⊂ R
d−1 and ψr(z

′) = r−1φ(rz′). Here B′ denotes the unit ball in
R

d−1. We observe that
ψr → 0, ∇ψr → 0 (C.4)
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uniformly in z′ ∈ B′, as r → 0. When r is sufficiently small for (C.2) to hold we have

D̂r = {z′ ∈ R
d−1 : |z′|2 + ψr(z

′)2 < 1}. (C.5)

Let z ∈ B and y = gr(z) be defined by y = (y′, yd) and

y′ =
z′

√
1 + ψr(z′)2 − 2zdψr(z′)

, yd =
zd − ψr(z

′)√
1 + ψr(z′)2 − 2zdψr(z′)

. (C.6)

Let

kr(z) =
1√

1 + ψr(z′)2 − 2zdψr(z′)
.

Then uniform convergence of ψr(z
′) to 0 implies that kr(z) → 1, as r → 0 uniformly on B.

Therefore, gr(z) converges to z, as r → 0, uniformly on B. We also have

∇z′kr(z) = kr(z)3(zd − ψr(z
′))∇ψr(z

′),
∂kr

∂zd

= kr(z)3ψr(z
′).

These formulas, together with (C.4) show that ∇kr(z) → 0, as r → 0 uniformly on B.
Differentiating

gr(z) = kr(z)z − kr(z)ψr(z
′)ed,

and using (C.4) we conclude that ∇gr(z) → I, as r → 0 uniformly on B. Hence, gr(z)
is a diffeomorphism for sufficiently small r and ∂gr(B−

r ) = gr(∂B−
r ). Clearly, the surface

zd = ψr(z
′) gets mapped into yd = 0, while the formula

|y|2 =
|z|2 + ψr(z

′)2 − 2zdψr(z
′)

1 + ψr(z′)2 − 2zdψr(z′)

shows that the surface |z| = 1 gets mapped into |y| = 1.

The diffeomorphisms fr = g−1
r then map B−

n(x0) onto B−
r and satisfy (11.13).
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