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Abstract

This paper presents a simple proof of W 2,2
loc

regularity of Lipschitz uniform local
minimizers of vectorial variational problems. The method is based on the idea that
inner variations provide constraints on the structure of singularities of local minimizers.

1 Introduction

Consider the problem of minimizing a variational functional

E[y] =

∫

Ω

W (x,y(x),∇y(x))dx, (1.1)

over vector fields y : Ω → R
m, where Ω is an open and bounded subset of Rd. Such problems

(for various values of d and m) arise in many contexts. The problems in classical Calculus of
Variations, corresponding to d = 1 are well-known. The Plateau problem of finding a surface
of least area, corresponding to m = 3, d = 2 is often studied for arbitrary m and d. The
problems arising in nonlinear elasticity correspond to m = d = 3. In many examples, the
energy density W might reasonably1 be assumed to be a smooth nonnegative function, while
we are interested in minimizing E[y] over all y ∈ C1(Ω;Rm) with prescribed C1 boundary
values (the boundary of Ω might also be assumed to be of class C1). These nice assumptions
(each of which can be rightfully questioned) do not spare us the ensuing difficulties, though.

The first most fundamental question one needs to answer is that of the existence of a
minimizer. The idea is to consider a minimizing sequence yn and extract a convergent sub-
sequence. At the first glance this strategy fails because imposing natural growth conditions
on W does not guarantee compactness (or even boundedness) of {yn} in C1. The idea is
then to relax the topology on the space of vector fields to the point where compactness of
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1Notably, in nonlinear elasticity this is not the case, which causes no end of grief if one wants to create a

consistent theory, free of superfluous technical assumptions.
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{yn} can be guaranteed. This idea gave rise to Sobolev spaces W 1,p and weak topologies on
them [16]. Extracting a convergent subsequence we succeed in obtaining a limit y∗ and . . . a
new problem on our hands: in the new topology the functional E[y] is no longer continuous
and no simple relation exists between E[y∗] and the limit of E[yn]. Tonelli [24, 25] saves the
day by observing that in order to conclude that y∗ minimizes E[y] we only need sequential
weak lower semicontinuity (s.w.l.s.c) of E[y]:

E[y∗] ≤ lim
n→∞

E[yn].

The question of what features of W ensure s.w.l.s.c ushered the modern era of Calculus
of Variations. The answer, given by Morrey [15], was quasiconvexity of the map F 7→
W (x,y,F ), for every fixed x and y. This condition reduces to convexity when d = 1 or
m = 1, but is strictly weaker, when d > 1 and m > 1. However, adding quasiconvexity to our
list of standard assumptions on W does not end our quest for existence. Unfortunately, when
we have weakened the topology of the y-space to make the minimizing sequence compact we
have also extended the space of admissible functions from C1(Ω;Rm) to W 1,p(Ω;Rm) (the
closure of C1 in the new topology). Our final task is therefore to endeavor to prove that the
minimizer y∗ ∈ W 1,p(Ω;Rm) must in fact be in C1(Ω;Rm) by virtue of delivering a minimum
to E[y].

The past 75 years have seen a true appreciation of how deep and nuanced this problem
is, together with a spectacular progress in understanding regularity of minimizers. When
m = 1 De Giorgi-Nash-Moser theory [4, 19, 17] guarantees smoothness of all extremals of
(1.1), provided certain natural growth conditions on W (in addition to uniform convexity)
are satisfied. When d = 2, m ≥ 1, and F 7→ W (x,y,F ) is uniformly convex, Morrey [16]
has shown that extremals of (1.1) must be smooth. However, when d > 1 and m > 1 the
assumption of convexity on W is no longer natural and needs to be replaced with a weaker
quasiconvexity property. However, such a relaxation of convexity assumptions changes the
regularity game drastically. In [18, see Proposition 4.2] Müller and Šverák have shown that
W 1,2 extremals of uniformly quasiconvex integrands need not be of classW 1,2+ǫ for any ǫ > 0.
This shows that passing from uniform convexity to uniform quasiconvexity requires us at
the same time to switch from extremals to minimizers. This idea turned out to be fruitful,
since, as we will see, true minimizers enjoy a lot more regularity than arbitrary extremals.
Partial regularity results of Evans [6] and Kristensen and Taheri [13] guarantee smoothness
of minimizers or local minimizers on an open, dense subset of Ω—a property not enjoyed by
the extremals in general. We emphasise that partial regularity of minimizers is not a partial
result. In fact, minimizers of functionals (1.1) cannot be expected to be smooth when d ≥ 3
and m ≥ 2, even if W = W (F ) is uniformly convex. The minimal, though not the earliest,
examples are found in the work of Šverák and Yan [21, 22], showing that Lipschitz minimizers
do not have to be smooth and that the W 1,2 minimizers do not have to be Lipschitz, if
d ≥ 3, and do not even have to be bounded if d ≥ 5. We conclude that it is impossible to
prove existence of smooth minimizers in full generality for uniformly quasiconvex (or even
convex) variational problems. Singular minimizers of regular variational functionals are not
necessarily a purely mathematical artifice. For example, in nonlinear elasticity they are the
basis of cavitation theory [3, 20]. To finish the discussion we point out a sharp dichotomy
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exhibited by regularity of minimizers, or even extremals of uniformly quasiconvex problems.
The results of Agmon, Douglis and Nirenberg [5, 1, 2] show that an extremal must either be
as smooth as W (including analyticity) or not be in C1.

The questions of existence and ensuing questions of regularity probe the fundamental
structure of variational functionals. However, regularity theorems can also serve a practi-
tioner searching for a minimizer of a specific variational functional. For example, one might
be able to come across vector fields y satisfying the Euler-Lagrange equations for E[y] (in
the weak sense, if y is not of class C2). How can one tell if such y(x) is a (local) minimizer
of (1.1)? If y(x) fails to possess the mandatory regularity, then such a solution cannot be a
minimizer. An example of this when m = d = 2 is given in Section 7 of [13].

On the “smooth side” of the regularity dichotomy the sufficiency question can be given
a more satisfactory answer. Specifically, if the smooth extremal y(x) of a uniformly quasi-
convex functional has uniformly positive second variation then, according to [10, 11], there
exists a constant β > 0, such that

lim
n→∞

∆E[φn]

‖∇φn‖22
≥ β (1.2)

for every sequence φn
∗

⇀ 0 in W 1,∞
0 (Ω;Rm), where ∆E[φ] = E[y + φ] − E[y]. Establishing

a similar sufficiency result for the singular part of the regularity dichotomy is an important
open problem. We begin attacking it by “reverse-engineering” (1.2), i.e. by asking what
conditions should the pair (W,y) satisfy if (1.2) is known to hold. In view of the sufficiency
theorems for smooth extremals in [10, 11], the extra conditions coming from (1.2) must be
in the form of constraints imposed on singularities of ∇y. In other words, they may be
regarded as regularity results for local minimizers. Indeed, in this paper we prove that if
y(x) is Lipschitz continuous and satisfies (1.2), then y ∈ W 2,2

loc
(Ω;Rm). Even though, this

statement is a regularity theorem, its proof is remarkably simple and transparent, with no
need for delicate estimates that are ubiquitous in regularity papers.

We note that when F 7→ W (x,y,F ) is uniformly convex and satisfies appropriate growth
conditions (which need not be imposed if the extremal is known to be Lipschitz), then,
according to [7], all continuous2 W 1,2 extremals must be of class W 2,2

loc
. The same conclusion

becomes false if convexity is replaced with quasiconvexity, as stated in Proposition 4.2 in
[18].

In regularity theory the main structural assumption on the energy density W is either
uniform convexity or quasiconvexity. Our result makes such structural assumptions only
implicitly via (1.2). For example, as in [12, 23], one can show that (1.2) implies uniform
quasiconvexity of F 7→ W (x,y,F ) at almost every F in the effective range of ∇y, but not
globally, as is customarily assumed in regularity papers, such as [6, 13].

The idea of the proof of our regularity theorem comes from the well-known observation
that inner variations lead to the Noether equation (2.5) in the same way outer variations
lead to the Euler-Lagrange equation. If the extremal is Lipschitz and W 2,2

loc
then the Euler-

Lagrange equation implies Noether equation via the Noether formula (2.6). Our idea, studied

2If W = W (F ) then continuity of an extremal need not be imposed.
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more systematically in [9], is that inner variations could be understood as motions of singu-
larities. Thus, singularities in the example of Šverák and Yan [21], where the minimizer is
Lipschitz and of class W 2,2, are not detectable by variational means.

In this paper we use the following notations. |a| denotes the Euclidean norm, if a is a
vector and |A| denotes the Frobenius norm

√

Tr (AAt) if A is a matrix. ‖f‖p denotes the
Lp norm of |f(x)|. We use 〈A,B〉 to denote the Frobenius inner product Tr (ABt) of two
matrices of the same shape. We also use index-free subscript notation for derivatives, such

as Wx or WF for
∂W

∂xα

, α = 1, . . . , d or
∂W

∂Fiα

, i = 1, . . . ,m, α = 1, . . . , d, respectively.

2 W 2,2
loc -regularity

In this paper we are interested in local properties of minimizers (or local minimizers) of (1.1).
We are going to investigate them by examining the effect on E[y] of variations supported
in balls in Ω, since interior regularity can be described in terms of properties of y(x) an
every ball in Ω. Therefore, the geometry of the open set Ω in (1.1) is irrelevant for our
purposes. Hence, without loss of generality, we can assume that Ω is a ball in R

d. Let
W : Ω× R

m ×M → R be a continuous, bounded from below function, where M = R
m×d.

Definition 2.1. We say that y ∈ W 1,∞(Ω;Rm) is a uniform strong local minimizer3, if it
satisfies (1.2).

For an L∞(Ω;RN ) vector field Y we define the essential range R(Y ) of values of Y to
be the intersection of all closed subsets K ⊂ R

N , such that Y (x) ∈ K for a.e. x ∈ Ω.
We further assume that for every x ∈ Ω the function W (x,y,F ) is twice continuously
differentiable in (x,y,F ) variables on Ω×O, where O is a neighborhood of R(Y ) in R

m×M,
where Y = (y,∇y). We also assume that W and its derivatives are uniformly continuous
on Ω×O. Our goal is to obtain regularity properties of uniform strong local minimizers of
E[y]. We can now state our main result.

Theorem 2.2. Suppose that y(x) is a uniform strong local minimizer of E[y]. Then y ∈
W 2,2

loc
(Ω;Rm).

Proof. To prove the theorem we consider inner variations

x 7→ x+ ǫh(x), (2.1)

where h ∈ C1
0(Ω;R

d). When |ǫ| < ‖∇h‖−1
∞

the map (2.1) is a diffeomorphism of Ω onto
itself. Indeed, extending h by zero to all of Rd we will obtain a local diffeomorphism of Rd.
It is also a global diffeomorphism because if x1 + ǫh(x1) = x2 + ǫh(x2), then |x1 − x2| ≤
|ǫ|‖∇h‖∞|x1 − x2|. We conclude that x1 = x2, if |ǫ| < ‖∇h‖−1

∞
. Now, if x ∈ Ω, while

y = x + ǫh(x) 6∈ Ω, then x 6= y will both get mapped onto y by the transformation (2.1),
in contradiction to the established injective property of (2.1). Variation (2.1) indicates that

3Here we are using a slightly weaker version of the classical concept of a strong local minimizer by allowing
only the variations that are bounded in W

1,∞.
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y(x) is replaced with a “competitor” yǫ(x) = y(Xǫ(x)), where Xǫ(x) is the inverse of the
diffeomorphism x 7→ x+ ǫh(x). The corresponding outer variation is

φǫ(x) = y(Xǫ(x))− y(x) ∈ W 1,∞
0 (Ω;Rm) (2.2)

compares values of y and ∇y at neighboring points, naturally leading to regularity con-
straints. Obviously, φǫ → 0 in C(Ω;Rm) and ∇φǫ is uniformly bounded. Thus, φǫ

∗

⇀ 0 in
W 1,∞(Ω;Rm). We conclude that the lower bound (1.2) applies. In order to obtain regularity
information on y(x) we supplement (1.2) with an upper bound on ∆E[φǫ].

The first observation is that property (1.2) implies that the function d(ǫ) = ∆E[φǫ] has a
local minimum at ǫ = 0. Therefore, d′(0) = 0, if d(ǫ) is differentiable at ǫ = 0. At first glance
it looks like we can not differentiate under the integral sign in E[y + φǫ], because ∇y(x)
is not assumed to be differentiable (or even continuous). However, if we make a change of
variables x′ = Xǫ(x) we obtain

E[y + φǫ] =

∫

Ω

W (x′ + ǫh(x′),y(x′),∇y(x′)(I + ǫ∇h)−1) det(I + ǫ∇h)dx′,

which allows differentiation under the integral. In order to make our argument more trans-
parent we introduce the function

V (x,η,H) = W (x+ η,y(x),∇y(x)(I +H)−1) det(I +H)−W (x,y(x),∇y(x)).

Then

d(ǫ) = ∆E[φǫ] =

∫

Ω

V (x, ǫh(x), ǫ∇h(x))dx. (2.3)

Hence,

0 = d′(0) =

∫

Ω

{Vη(x,0,0) · h(x) + 〈VH(x,0,0),∇h(x)〉}dx. (2.4)

We remark that equation (2.4) is equivalent to the well-know Noether equation

−∇ · P ∗ +Wx = 0, P ∗ = WI − (∇y)tWF , (2.5)

understood in the sense of distributions. The d×dmatrix P ∗ is encountered in a vast array of
applications under different names, such as Eshelby, energy-momentum, or Hamilton tensor.
In the classical smooth case there is a well-known Noether formula

−∇ · P ∗ +Wx = (∇y)t(∇ ·WF −Wy) (2.6)

valid for all smooth functions y(x). It is a mathematical expression of our understanding that
the only extra constraints provided by inner variations are the constraints on singularities of
∇y(x). When y(x) is smooth, inner variations bring nothing new. Using (2.4) we can write

∆E[φǫ] =

∫

Ω

{V (x, ǫh, ǫ∇h)− ǫVη(x,0,0) · h− ǫ〈VH(x,0,0),∇h〉}dx.
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By the Taylor expansion theorem, there exists a constant K > 0, depending on W and
‖∇y‖∞, such that for all h ∈ C1

0(Ω;R
d) and all 0 < ǫ < ‖h‖−1

1,∞ we have

|V (x, ǫh, ǫ∇h)− ǫ(Vη(x,0,0),h)− ǫ(VH(x,0,0),∇h)| ≤ Kǫ2{|h|2 + |∇h|2}.

By the Poincaré inequality there exists a constant C > 0, depending on W , ‖F ‖∞ and Ω,
such that

lim
ǫ→0

|∆E[φǫ]|

‖ǫ∇h‖22
≤ C (2.7)

for all h ∈ C1
0(Ω;R

d). Combining the upper bound (2.7) with (1.2), we obtain

lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
= lim

ǫ→0

∆E[φǫ]

‖ǫ∇h‖22
∆E[φǫ]

‖∇φǫ‖22

≤
C

β
(2.8)

for all h ∈ C1
0(Ω;R

d). Changing variables x′ = Xǫ(x) in the integral in ‖∇φǫ‖
2
2 we obtain

‖∇φǫ‖
2
2 =

∫

Ω

|F (x′)(I + ǫ∇h)−1 − F (x′ + ǫh(x′))|2 det(I + ǫ∇h)dx′,

where we have used the shorthand F (x) in place of ∇y(x). Our next lemma makes it clear
why inequality (2.8) is related to higher regularity of y(x).

Lemma 2.3. There exists a constant C > 0, depending only on the bound in (2.8) and
‖F ‖∞, so that for all h ∈ C1

0(Ω;R
d)

lim
ǫ→0

1

‖ǫ∇h‖22

∫

Ω

|F (x)− F (x+ ǫh(x))|2dx ≤ C. (2.9)

Proof. For sufficiently small |ǫ| we can estimate det(I + ǫ∇h) > 1/2 and therefore,

‖∇φǫ‖
2
2 ≥

1

2

∫

Ω

|[F (x′)− F (x′ + ǫh)(I + ǫ∇h)](I + ǫ∇h)−1|2dx′,

Observing that I + ǫ∇h is uniformly close to I we can choose |ǫ| so small that all singular
values of (I + ǫ∇h)−1 will be no smaller than 1/2. In that case

‖∇φǫ‖
2
2 ≥

1

4

∫

Ω

|F (x′)− F (x′ + ǫh)(I + ǫ∇h)|2dx′. (2.10)

This follows from a simple inequality from the theory of matrices.

Lemma 2.4. Let σmin and σmax be the minimal and maximal singular values, respectively, of
a d× d matrix A. Then

σmin|B| ≤ |BA| ≤ σmax|B|

for all m× d matrices B.
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Proof. |BA|2 = Tr (AAtBtB). Observe that AAt ≥ σ2
minI and

|BA|2 = Tr ((AAt − σ2
minI)B

tB) + σ2
min|B|2. (2.11)

By a theorem of Schur (see e.g. [14, Theorem 10.7]), the first term on the right hand side
of (2.11) is non-negative, since the matrices AAt − σ2

minI and BtB are symmetric and
non-negative definite. Similarly,

|BA|2 = σ2
max|B|2 − Tr ((σ2

maxI −AAt)BtB) ≤ σ2
max|B|2.

Using inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, we have

|F (x)− F (x+ ǫh)|2 ≤ 2|F (x)− F (x+ ǫh)(I + ǫ∇h)|2 + 2‖F ‖2
∞
|ǫ∇h|2.

Integrating over Ω and combining with inequality (2.10) we obtain

lim
ǫ→0

1

‖ǫ∇h‖22

∫

Ω

|F (x)− F (x+ ǫh(x))|2dx ≤ 8 lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
+ 2‖F ‖2

∞
.

Lemma 2.3 now follows from (2.8).

It remains to observe that the conclusion of Theorem 2.2 is a consequence of Lemma 2.3
and [8, Lemma 7.24].

Remark 2.5. An immediate consequence of the W 2,2

loc
regularity is the upper bound of d− 2

on the Hausdorff dimension of the singular set of a uniform strong local minimizer.
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