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Abstract

We derive a new general jump condition on a broken Weierstrass-Erdmann extremal
of a vectorial variational problem. Such extremals, containing surfaces of gradient dis-
continuity, are ubiquitous in shape optimization and in the theory of elastic phase
transformations. The new condition, which does not have a one dimensional analog,
reflects the stationarity of the singular surface with respect to two-scale variations that
are nontrivial generalizations of Weierstrass needles. The over-determinacy of the en-
suing free boundary problem suggests that typical stable configurations must involve
microstructures or chattering controls.

1 Introduction

Our general mathematical inquiry has its origin in the two related physical problems: optimal
design of materials and equilibrium coexistence of elastic phases during martensitic transfor-
mations [43]. In the optimal design framework the question of whether classical smooth
surfaces of discontinuity are compatible with optimality was addressed in [48, 58, 59, 40, 73]
(see reviews [49, 62, 51, 8, 1]). In the phase transition theory, where broken extremals corre-
spond to multiphase equilibria, the analogous problem concerning stability of classical smooth
phase boundaries was raised in [14, 12, 39, 36, 32] (see reviews [34, 68, 63, 7]). The underly-
ing mathematical problem is the minimization of an integral functional with non quasiconvex
energy density.

Consider the energy functional

E(y) =

∫

Ω

W (x, y(x),∇y(x))dx (1.1)

defined on Lipschitz maps y : Ω → R
m which satisfy given boundary conditions. Here Ω is

an open and bounded domain in R
d. The regularity of the boundary of Ω and specific form of

the boundary conditions will be unimportant for our purposes. Let M denote the space of all
m× d matrices. We assume that the energy density W : Ω×R

m ×M → R is continuous and
bounded from below. In addition we assume that W is of class C2 on an open neighborhood
of the range of a given map x 7→ (x, y(x),∇y(x)). We call y(x) a strong local minimizer if
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E(y + φn) ≥ E(y) for all n large enough and for all admissible strong variations φn. Here
by admissible strong variations we mean sequences {φn} of Lipschitz functions, such φn → 0

uniformly as n → ∞ and y + φn satisfies the imposed boundary conditions. In what follows
we identify stable phase equilibria with strong local minimizers in the above sense.

Assume that the Lipschitz continuous strong local minimizer y : Ω → R
m is such that

F (x) = ∇y(x) has a jump discontinuity across a smooth surface Σ ⊂ Ω and suppose x0 ∈ Σ.
By definition of a jump discontinuity, there exist matrices {F+, F−} ⊂ M, such that for any
z ∈ R

d \ {0}

lim
ǫ→0

F (x0 + ǫz) = F (z) =

{
F+, if z · n > 0,
F−, if z · n < 0.

(1.2)

In this paper we address the question: what are the equalities that the pair of m×d matrices
F± must satisfy in order to be associated with a strong local minimizer via (1.2)?

Classical necessary identities on the jump are known as the Weierstrass-Erdmann condi-
tions. The Lipschitz continuity of y(x) implies that there exists a ∈ R

m such that

[[F ]] = a ⊗ n. (1.3)

Here [[A]] = A+−A− is the jump across the interface and n is the unit normal to the singular
surface pointing from the “−” side into the “+” side. The first Weierstrass-Erdmann condition
[11] reads

[[WF ]]n = 0, (1.4)

where WF denotes the matrix of partial derivatives ∂W/∂Fiα. The second Weierstrass-
Erdmann condition [11] reads

[[W ]] − ({{WF }}, [[F ]]) = 0, (1.5)

where {{A}} =
1

2
(A+ + A−) and we use the inner product notation (·, ·) to denote the dot

product of two vectors or a Frobenius inner product of two matrices. In optimization context
the general vectorial condition (1.5) was derived in [49] (see also [37]). In the phase transition
literature (1.5) is known as the elastic Maxwell condition. Maxwell dealt with the case of
fluids [56] when (1.5) reduces to the equality of the chemical potentials in coexisting phases.
Condition (1.5) was generalized to solid-liquid equilibria by Gibbs [28] and to solid-solid
equilibria by Eshelby [14]; later it was independently rediscovered several times (see e.g.
[64, 41, 33, 39]).

The three conditions (1.3)–(1.5) constitute a set of relations which have been routinely
used in the modeling of phase coexistence in nonlinear elasticity, for example [17, 20, 24, 42,
66]), and in optimal design problems, for example [49, 61, 8, 1]. In this paper we derive a set
of additional general jump conditions

[[WF ]]T [[F ]]n = 0. (1.6)

Among these d equalities d − 1 are independent.
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The necessity of additional equalities on smooth broken extremals was first realized by
Lurie [48] in the context of optimal design of resistivity of the working medium in a magnetic-
hydrodynamic generator (see more recent exposition and extensions in [49, 51, 8]). In an
application to a scalar phase equilibrium problem a special form of the condition (1.6) was
found by Gurtin [36]. Gurtin’s condition was later used by Silling [71] in a complete character-
ization of classical and generalized solutions for anti-plane shear boundary value problem for
a two-phase material. In the case of 2D isotropic non-linear materials a condition equivalent
to (1.6) was implicitly obtained by Šilhavý [70] (see also [69]). Various special forms of (1.6)
appeared earlier in physical and optimization literature where the functional was minimized
with respect to the orientation of the layered microstructure, see [65, 53, 51, 67, 45]. A need
for an additional equality on the equilibrium phase boundary was also realized in the series
of papers on ellipsoidal inclusions of a new phase appearing in an elastic matrix ( see e.g.
[44, 18]). However, to the knowledge of the authors, the general form of the condition (1.6)
and its link to a particular mode of instability of an interface has not been previously reported
in the literature.

In this paper we derive the condition (1.6) in three different ways. First, we exhibit an
explicit two-scale Weierstrass needle-like variation on the surface of discontinuity leading to
the new condition. The new variation can be viewed as the combination of a platelet and
an antiplatelet attached to the smooth interface, with the effect of a strong variation of its
normal (see Fig. 1). The implied mode of surface instability requires local perturbation of
the surface orientation and can be associated with roughening. While this variation has a
lot in common with the plate-like variation of Weierstrass, it leads to a necessary condition
in the form of equality rather than an inequality.

The Weierstrass plate-like variation for vectorial variational problems have been employed
in [9, 31] to derive what is now called rank-one convexity inequality in Calculus of Variations.
In the context of optimal design such variations, first used in [46, 47], became an essential
tool in deriving optimality conditions, eventually evolving into the concept of a topological
gradient (see e.g. [60, 72, 13, 26, 1]). The first application of the Weierstrass positivity
condition to phase transitions is due to Ericksen [12] and to general non-linear elasticity to
Ball [5], where it was understood that a stronger quasiconvexity condition is the appropriate
generalization of the Weierstrass condition in Calculus of Variations.

The mechanism of emergence of the equality (1.6) from the rank one convexity inequality
is noteworthy. Recall that both the quasiconvexity and the rank one convexity conditions lead
to inequalities because the variational functional is not differentiable with respect to strong
variations. Our explicit construction of the platelet-antiplatelet variation shows that the
presence of equilibrium surfaces of gradient discontinuity creates “directions” in the space of
strong variations along which the functional becomes differentiable, which leads to necessary
conditions in the form of equalities.

Our second derivation of the new condition is based on the application of rank one con-
vexity inequality simultaneously to two coexisting states. The idea to combine rank one
convexity with Weierstrass-Erdmann jump conditions belongs to Lurie [48]; in the phase
transition framework the interaction of the two types of conditions was first exhibited in
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[36]. We go further and show that the combination of rank one convexity with Weierstrass-
Erdmann jump conditions can be interpreted as a minimality condition of a certain function
of the interface normal. The vanishing of the first derivative leads to the new condition (1.6),
while the positive semidefiniteness of the Hessian results in a new inequality. The latter
can be regarded as a condition of non-negativity of second variation corresponding to our
two-scale platelet-antiplatelet variation.

Our third derivation of the new condition is based on the study of geometry of the Maxwell
set, first introduced in [21, 22] (see also [19, 23]). The Maxwell set contains all rank one
connected matrices F± satisfying the classical Weierstrass-Erdmann conditions (1.4), (1.5).
We show that the interior of the Maxwell set violates the rank one convexity condition,
meaning that stable configurations must correspond to points on the boundary of the Maxwell
set and are, therefore, singled out by a set of d − 1 additional relations. These relations are
provided by (1.6), which is satisfied on the boundary of the Maxwell set. The necessity of
failure of the Legendre-Hadamard condition at some points of the Maxwell set was first shown
in [42].

An analysis of the free boundary problem for the broken extremal with a smooth surface
of gradient discontinuity shows that adding the new condition (1.6) to the classical set of
Weierstrass-Erdmann conditions (1.3)–(1.5) leads to an over-determined problem. This over-
determinacy suggests that typically a smooth surface of jump discontinuity is unstable. It
is natural to associate this instability with roughening of the surface and the formation of
an extended zone where the fields are represented by Young measures [48, 58]; such singular
behavior is known in the general control theory as “chattering controls” [15, 25]. This in-
terpretation is also compatible with an idea that solutions of non rank one convex problems
may contain infinitely fine microstructures (see e.g. [6]). In the context of elastic phase tran-
sitions the numerical studies of the microstructures were initiated in [71] and more recently
the numerical reproduction of the roughening instability of solid-solid interfaces has attracted
a lot of attention in the physics literature (see, for instance, [3, 2]). In the present paper we
illustrate (1.6) by providing a proof of the instability of the non-hydrostatically stressed solid
in equilibrium contact with its melt [28, 4, 32]. A brief announcement of the main results of
this paper can be found in [30].

2 Classical conditions

For a point x0 ∈ Σ to be in (mechanical) equilibrium, it is necessary that the energy is
stationary with respect to smooth inner and outer variations which we can present as a
variation of the graph Γy = {(x, y(x)) : x ∈ Ω} ⊂ R

d×R
m of y(x) (see [29]). The perturbed

graph is
Γyǫ

= {(x + ǫθ(x), y(x) + ǫφ(x)) : x ∈ Ω}. (2.1)

where φ ∈ C1
0(Ω; Rm) and θ ∈ C1

0(Ω; Rd). When ǫ is sufficiently small the set Γyǫ
is a graph of

a function yǫ(x). It is not hard to see [27, 68] that if a Lipschitz map y(x) is an equilibrium
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configuration it must satisfy (in the sense of distributions) the Euler-Lagrange equation

∇ · P = Wy (2.2)

and the Eshelby equation
∇ · P ∗ = Wx, (2.3)

where

P (x) = WF (x, y(x),∇y), P ∗(x) = W (x, y(x),∇y)I − (∇y)T P (x)

are the Piola-Kirchhoff and the the Eshelby stress tensors, respectively. These equilibrium
equations imply the continuity of tractions

[[P ]]n = 0, (2.4)

and the Maxwell relation
p∗ = [[W ]] − ({{P }}, [[F ]]) = 0. (2.5)

The last two equalities arise as conditions of equilibrium with respect to smooth perturbations
(2.1) of the graph of y(x). As such, they can be regarded as necessary conditions for weak
local minima, where the notions of weak local minima and weak variations are understood
in the sense of graphs: in this way weak variations become compatible with non-smooth
(Lipschitz) extremals and variable domains.

In the classical theory of strong local minima the necessary conditions for weak local
minima are supplemented by the Weierstrass condition ensuring stability with respect to
needle-type variations. In vectorial variational problems the analogous result is the quasicon-
vexity inequality at points of continuity of the deformation gradient [57, 5]. To obtain this
generalization of the Weierstrass condition we need to consider variations of the form [5]

y(x) 7→ yǫ = y(x) + ǫφ

(
x − x0

ǫ

)
, (2.6)

where φ ∈ C1
0(B(0, 1); Rm). If x0 is the point of continuity of F (x0), we obtain the quasi-

convexity condition

lim
ǫ→0

E(yǫ) − E(y)

ǫd
= δE(φ) =

∫

B(0,1)

{W0(F (x0) + ∇φ) − W0(F (x0))}dz ≥ 0, (2.7)

where W0(F ) = W (x0, y(x0), F ). From now on W (F ) will denote W0(F ).

Remark 2.1. In (2.7) we obtained the inequality, because the functional δE(φ) is not linear
in φ, which is the consequence of the lack of differentiability of the functional E(y) with
respect to variations (2.6).
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Figure 1: Sketch of the classical inner variation (left) and the Weierstrass type inner variation (right) of the
interface in the reference space.

3 Two-scale surface variations

In this section we construct a special needle variation localized at x0 ∈ Σ with respect to
which the energy functional becomes differentiable. In Fig. 1 we show two ways of how the
surface can be perturbed locally in the reference configuration. The figure on the left shows
the classical smooth variation (2.1) corresponding to the displacement of the interface in the
direction of its normal. The figure on the right shows how the local orientation of the surface,
but not its location, can be perturbed. In the left figure, the normal of the perturbed surface
is uniformly close to the normal of the original surface. By contrast, the right figure shows a
strong variation of the normal which is akin to the classical “Weierstrass needle” applied to
the orientation of the surface.

As we show below the desired variation has the form (2.6), where x0 ∈ Σ and φ(z)
depends on two small parameters h and δ (see Fig. 1). The new variation is constructed from
the infinite strip of thickness 2|h|

φh,δ(z) =






(n + δη, z)a, if |(n + δη, z/h))| < 1,
ha, if (n + δη, z/h) ≥ 1,
−ha, if (n + δη, z/h) ≤ −1.

Here n and a are as in (1.3) and the vector η ∈ R
d is arbitrary. The variation of the normal

is achieved by splitting the double-strip φh,δ into single strips

φh,δ(z) = φ+
h,δ(z) + φ−

h,δ(z),

where

φ+
h,δ(z) =






(n + δη, z)a, if 0 < (n + δη, z/h)) < 1,
0, if (n + δη, z/h) ≤ 0,
ha, if (n + δη, z/h) ≥ 1

and

φ−

h,δ(z) = −φ+
h,δ(−z) =






(n + δη, z)a, if − 1 < (n + δη, z/h)) < 0,
0, if (n + δη, z/h) ≥ 0,

−ha, if (n + δη, z/h) ≤ −1.
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Figure 2: Cut-off functions ρ(t) and ζ(|z|).

The strip variations φ±

h,δ are not supported on the unit ball, as required in (2.6). This can
be dealt with by means of cut-off functions. Let ρ(t) ∈ C∞(R) be such that ρ(t) = 1, when
t ≤ 0 and ρ(t) = 0, when t ≥ 1, while 0 < ρ(t) < 1, when t ∈ (0, 1). Let ζh(s) ∈ C∞([0,∞))
be such that ζh(s) = 1, when 0 ≤ s ≤ 1 −

√
|h| and ζh(s) = 0, when s ≥ 1. In addition

0 ≤ ζh(s) < 1 and |ζ ′

h(s)| ≤ C/
√
|h| for some C > 0 and all s ≥ 0. See Fig. 2. We define the

platelet variation

Φ+
h (z) = φ+

h,δ(h)(z)ρ

(
(z, n)√

|h|

)
ζh(|z|),

and the antiplatelet variation

Φ−

h (z) = −φ−

h,δ(h)(z)ρ

(

−
(z, n)√

|h|

)

ζh(|z|) = Φ+
h (−z).

We also define the total platelet-antiplatelet variation

Φh(z) = Φ+
h (z) + Φ−

h (z). (3.1)

The first important feature of the new class of variations is its two-scale structure. Our
particular construction requires that δ(h) ∼ |h|α, with 0 < α < 1/2, to ensure that the
variation δE(φh,δ), defined in (2.7), depends on the parameter η linearly (i.e. exhibiting
differentiability of E(y) with respect to the variations (3.1)). The second important aspect
of the variation (3.1) is that the perturbation of the local surface orientation is strong despite
the smallness of the parameter δ. In fact, the limiting orientation of the normal is multivalued
at the point x0, as ǫ → 0, h → 0 and δ(h) → 0.

Figure 3 shows regions of different behavior of ∇Φ+
h (z). The key technical step in our

analysis is the observation that when x0 ∈ Σ

δE(Φh) =

∫

B(0,1)

W ◦(F (z),∇Φh(z))dz, (3.2)

where F (z) is given by (1.2) and

W ◦(F , H) = W (F + H) − (WF (F ), H) − W (F )
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Figure 3: Weierstrass needle variation of the phase boundary.

is a version of the Weierstrass excess function. Indeed, the same calculation that led to (2.7)
for points x0 of continuity of F (x) leads to the inequality

δE(Φh) =

∫

B(0,1)

{W (F (z) + ∇Φh) − W (F (z))}dz ≥ 0, (3.3)

when x0 ∈ Σ. It remains to observe that due to (2.4)

∫

B(0,1)

(WF (F (z)),∇Φh)dz =

∫

Tx0
Σ∩B(0,1)

([[P ]]n,Φh)dS = 0,

where Tx0
Σ is the tangent space to Σ at x0. The formula (3.2) is established.

Now, we are ready to estimate δE(Φh), using a simple observation that |W ◦(F , H)| ≤
C|H|2, when F and H are uniformly bounded. Observe that the supports of ∇Φ+

h (z) and
∇Φ−

h (z) are disjoint. Therefore, for each z the value of the total platelet-antiplatelet variation
gradient ∇Φh(z) is equal either to ∇Φ+

h (z) or to ∇Φ−

h (z). Therefore,

∫

B(0,1)

W ◦(F (z),∇Φh)dz =

∫

B(0,1)

W ◦(F (z),∇Φ+
h )dz +

∫

B(0,1)

W ◦(F (z),∇Φ−

h )dz.

It is sufficient to examine only the first term on the right-hand side of the above equality.
Region 1. Here ρ = 1, ζh = 1 and φ+

h,δ(z) = (n + δη, z)a. Therefore, ∇Φ+
h (z) =

a ⊗ (n + δ(h)η). Volume V1(h) of Region 1 is of order h:

lim
h→0

V1(h)

|h|
= V ◦

1 > 0.

Also F (z) = F− in Region 1. Therefore, by (1.3)

W ◦(F (z),∇Φ+
h (z)) = W (F+ + δ(h)a ⊗ η) − (P−, [[F ]] + δ(h)a ⊗ η) − W (F−).

Expanding in powers of δ(h) we get, using (2.4),

W ◦(F (z),∇Φ+
h (z)) = p∗ + δ(h)([[P ]], a ⊗ η) + O(δ(h)2).
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Thus,

∫

Region 1

W ◦(F (z),∇Φ+
h (z))dz = |h|V ◦

1 p∗ + |h|δ(h)V ◦

1 ([[P ]], a ⊗ η) + o(hδ(h)).

Region 2. Here ζh(z) = 1 and φ+
h,δ(z) = (n + δη, z)a. Therefore,

∇Φ+
h (z) = a ⊗ (n + δ(h)η)ρ

(
(z, n)√

|h|

)

+ ρ′

(
(z, n)√

|h|

)
(n + δ(h)η, z)√

|h|
a ⊗ n.

In Region 2 |(n + δ(h)η, z)| ≤ |h|, therefore ∇Φ+
h (z) is uniformly bounded. The volume

V2(h) of Region 2 is of order h
√
|h|. Thus,

∫

Region 2

W ◦(F (z),∇Φ+
h (z))dz = O(h

√
|h|) = o(hδ(h)).

Region 3. Here ζh(z) = 1 and φ+
h,δ(z) = ha. Therefore,

∇Φ+
h (z) =

√
|h|ρ′

(
(z, n)√

|h|

)

a ⊗ n = O(
√
|h|).

So, W ◦(F (z),∇Φ+
h (z)) = O(h). The volume V3(h) of Region 3 is of order

√
|h|. Therefore,

∫

Region 3

W ◦(F (z),∇Φ+
h (z))dz = O(h

√
|h|) = o(hδ(h)).

Region 4. Here ρ = 1 and φ+
h,δ(z) = ha. Therefore, ∇Φ+

h (z) = hζ ′

ha ⊗ ẑ = O(
√
|h|),

where ẑ = z/|z|. So, W ◦(F (z),∇Φ+
h (z)) = O(h). The volume V4(h) of Region 4 is of order

δ(h)
√

|h|. Therefore,

∫

Region 4

W ◦(F (z),∇Φ+
h (z))dz = O(hδ(h)

√
|h|) = o(hδ(h)).

Region 5. Here φ+
h,δ(z) = ha. Therefore,

∇Φ+
h (z) = hζ ′

h(|z|)ρ

(
(z, n)√

|h|

)

a ⊗ ẑ +
√
|h|ζh(|z|)ρ

′

(
(z, n)√

|h|

)

a ⊗ n = O(
√
|h|).

So, W ◦(F (z),∇Φ+
h (z)) = O(h). The volume V5(h) of Region 5 is of order h. Therefore,

∫

Region 5

W ◦(F (z),∇Φ+
h (z))dz = O(h2) = o(hδ(h)).
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Figure 4: Non-differentiability of the energy with respect to the platelet variation at the point of continuity
of the deformation gradient.

Region 6. Here ρ = 1 and φ+
h,δ(z) = (n + δη, z)a. Therefore,

∇Φ+
h (z) = ζh(|z|)a ⊗ (n + δ(h)η) + ζ ′

h(|z|)(n + δ(h)η, z)a ⊗ ẑ.

In Region 6 |(n + δ(h)η, z)| ≤ |h|, therefore ∇Φ+
h (z) is uniformly bounded. The volume

V6(h) of Region 6 is of order h
√
|h|. Thus,

∫

Region 6

W ◦(F (z),∇Φ+
h (z))dz = O(h

√
|h|) = o(hδ(h)).

We have shown that

δE(Φ+
h ) = |h|V ◦

1 p∗ + |h|δ(h)([[P ]]T a, η)V ◦

1 + o(hδ(h)).

Similarly,
δE(Φ−

h ) = −|h|V ◦

1 p∗ + |h|δ(h)([[P ]]T a, η)V ◦

1 + o(hδ(h)).

Therefore,
δE(Φh) = 2|h|δ(h)([[P ]]T a, η)V ◦

1 + o(hδ(h)).

Now, the inequality (3.3) implies that ([[P ]]T a, η) ≥ 0 for an arbitrary vector η ∈ R
d. We

conclude that in order for the interface to be stable the equality

[[P ]]T a = 0. (3.4)

has to be satisfied. Due to continuity of the fields (1.3), the condition (3.4) is equivalent to
(1.6).

4 Rank one convexity

The heterogeneity introduced by the phase boundary Σ is responsible for the multiscale
nature of the variation (3.1), while the equilibrium condition (2.4) is responsible for the
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differentiability of the energy functional E(y) with respect to the variations (3.1). We recall
that a very similar single scale variation

φh(z) =






(n, z)a, if − 1 < (n, z/h) < 0,
0, if (n, z/h) ≥ 0,

−ha, if (n, z/h) ≤ −1
(4.1)

produces the rank one convexity inequality

W ◦(F (x0), a ⊗ n) ≥ 0, (4.2)

which can also be obtained directly from the quasiconvexity inequality (2.7), see [9, 31, 57, 5].
Here a and n are arbitrary vectors in R

m and R
d, respectively, while x0 is a point of continuity

of F (x). The cut-off function is ζh(|z|) and analysis is similar (but much simpler) to the one in
Section 3, except the result is not the equality (3.4) but the inequality (4.2), since the energy
functional is not differentiable in h, see Fig. 4. We now see that the slope W ◦(F , a ⊗ n) in
Fig. 4 becomes zero, when F = F− and a⊗n = [[F ]], due to the phase boundary equilibrium
condition (2.4) and the Maxwell relation (2.5). Hence, the energy becomes differentiable with
respect to the variation (3.1), see Fig. 5. In fact, the platelet-antiplatelet structure of the new
variation makes the energy differentiable when only the traction continuity condition (2.4)
holds.

Let us now show that both the Maxwell relation (2.5) and the new phase boundary equi-
librium condition (3.4) can be obtained as consequences of the rank one convexity inequality
(4.2) applied simultaneously to both fields coexisting at the jump discontinuity, provided that
kinematic compatibility condition (1.3) and the continuity of tractions (2.4) hold. In the case
of the Maxwell identity this has already been done in [49].

Theorem 4.1. Assume that W (F ) is of class C2 on the neighborhoods of F+ and F−. Assume
that the jump conditions (1.3) and (1.4) hold. Assume also that the rank one convexity
inequalities hold at F±:

W (F± + u ⊗ v) ≥ W (F±) + (P±v, u). (4.3)

for all u ∈ R
m and v ∈ R

d. Then both (2.5) and (3.4) hold.
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Proof. Let u = ∓a in (4.3). We obtain

ω±(v) = W (F± ∓ a ⊗ v) − W (F±) ± (P±v, a) ≥ 0 (4.4)

for all v ∈ R
d. Observe that (1.3) and (2.4) imply that ω±(n) = ±p∗. The inequalities (4.4)

then imply p∗ = 0. Therefore, the non-negative functions ω±(v) achieve their global minima
equal to zero at v = n and, hence,

0 = ∇ω±(n) = ∓[[P ]]T a.

We can translate the arguments in the proof above into the language of variations. Re-
placing F (x0) in (4.2) with F± and differentiating ω±(v) at v = n can be interpreted as the
variation of the interface normal by means of combined platelet-antiplatelet variation.

Remark 4.2. The differentiability of the energy functional with respect to the variations
shown in Fig. 1 allows the computation of the second variation, whose non-negativity is a
necessary condition for the interface stability. The derivation and applications of the new
inequality will be presented elsewhere while here we only state the result. Let

(A′

±
(u)v, v) = (A±(v)u, u) = (WFF (F±)(u ⊗ v), u ⊗ v)

and
(B±(u, v)η, ξ) = (WFF (F±)(u ⊗ η), ξ ⊗ v).

Assume that the acoustic tensors A±(n) are positive definite in the sense of quadratic forms.
Then the d × d matrices

B±(a, n) = A′

±
(a) − (B±(a, n) + [[P ]])T A−1

±
(n)(B±(a, n) + [[P ]]) (4.5)

must be non-negative definite on (Rn)⊥.

5 The Maxwell set

Definition 5.1. The Maxwell set M is the set of all matrices F ∈ M for which there exist a
vector a ∈ R

m \ {0} and a unit vector n ∈ R
d such that F− = F and F+ = F +a⊗n satisfy

(2.4) and (2.5).

Following [21, 22] we observe that the system of md kinematic conditions (1.3), m me-
chanical equilibrium conditions (2.4) and one Maxwell condition (2.5) constitute the set of
md + m + 1 equalities constraining 2md + m + d− 1 unknown fields F+, F−, a and n at any
equilibrium phase boundary. One can conclude that the solution set forms an md + d − 2
parameter family. This means that the value of say F− can be chosen from a set of full
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dimension in M, while the corresponding deformation gradient F+ will belong to a d − 2-
dimensional parametric family of m × d matrices. Hence, generically, M has a non-empty
interior.

We claim, however, that the entire interior of the Maxwell set violates the rank one
convexity condition. This can be conveniently stated in terms of the instability set

S = {F ∈ M : RW (F ) < W (F )}, (5.1)

where RW (F ) is the rank one convex envelope of W (F ), [10, 43]. This set is an example of
the “forbidden region” introduced in [49, 8]. Below we show that F ∈ S for all matrices F

in the interior of the Maxwell set.

Theorem 5.2. Suppose that the pair F+, F− satisfies (1.3), (2.4) and (2.5). Suppose that
(A−(n)a, a) > 0. Let Ft = tF+ + (1 − t)F−. Then Ft ∈ S when t > 0 is small enough.

Proof. We have

RW (Ft) ≤ tRW (F+) + (1 − t)RW (F−) ≤ tW (F+) + (1 − t)W (F−),

since F+ and F− are rank one related, according (1.3). Then

RW (Ft) − W (Ft) ≤ tW (F+) + (1 − t)W (F−) − W (Ft).

Let
Ψ(t) = tW (F+) + (1 − t)W (F−) − W (Ft).

We observe that
Ψ(0) = 0, Ψ′(0) = p∗ = 0.

We also compute

Ψ′′(0) = −(WFF (F−)[[F ]], [[F ]]) = −(A−(n)a, a) < 0,

by assumption. Therefore, RW (Ft)−W (Ft) ≤ Ψ(t) < 0, when t > 0 is sufficiently small.

We conclude that stable values F− must belong to the md−1-dimensional boundary of M.
This shows that exactly d − 1 relations are missing from the classical set of jump conditions
(1.3), (2.4) and (2.5).

Let us now consider F0 ∈ M, and apply the implicit function theorem to the system of
equations (1.3), (2.4), (2.5) to determine when F0 lies in the interior of M.

Theorem 5.3. Let F0 ∈ M. Let a0 and n0 be the vectors from Definition 5.1 of M,
corresponding to F0. Assume that [[P ]]T a0 6= 0 and the acoustic tensor A(n0) is non-singular.
Then F0 is in the interior of M.
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Proof. Our assumption of invertibility of the matrix A(n0) implies, via the implicit function
theorem, that the system of equations (2.4), WF (F +a⊗n)n−WF (F )n = 0, can be solved
for a in the neighborhood of a0 for all F and n sufficiently close to F0 and n0. Hence, we may
regard a as a function of F and n defined on the neighborhood of F0 and n0, respectively.
Let

p∗(n; F ) = W (F + a(F , n) ⊗ n) − W (F ) − (WF (F )a(F , n), n)

which we regard as a function on the unit sphere S
d−1 depending on md parameters F .

Observe that p∗(n0; F0) = p∗ = 0. The implicit function theorem states that the equation
p∗(n; F ) = 0 has a solution n ∈ S

d−1, near n0 for all F sufficiently close to F0, if the
differential dp∗(n0, F0) : Tn0

S
d−1 → R is non-zero. Differentiating, we obtain, using (2.4),

dp∗(n0, F0)ṅ = ([[P ]]T a0, ṅ) + ([[P ]]n0, daṅ) = ([[P ]]T a0, ṅ),

where ṅ is an arbitrary vector in Tn0
S

d−1. We conclude that, due to (2.4), dp∗ 6= 0 if and
only if [[P ]]T a0 6= 0. The theorem is proved.

To summarize, the new interface condition (3.4) is necessary for stability, because, if it
fails (and A−(n) is positive definite), then F− must belong to the interior of M, in which
case the rank one convexity condition F− 6∈ S is violated.

The vector equation (3.4) comprises d scalar equations. However, one linear combination
of these equations

([[P ]]T a, n) = 0 (5.2)

is a consequence of (2.4). Equation (5.2) is the Hill’s orthogonality relation [38]. The remain-
ing d−1 equations, if added to the system of classical jump conditions (1.3), (2.4), (2.5), will
now constrain F± to lie on a co-dimension 1 surface in M called the jump set.

Definition 5.4. The jump set J is the set of matrices F ∈ M such that there exist vectors
a ∈ R

m \ {0} and n ∈ R
d, |n| = 1 such that F+ = F + a ⊗ n and F− = F satisfy (1.3),

(2.4), (2.5) and (3.4).

Remark 5.5. Theorem 5.3 implies that ∂M ∩ M ⊂ J, while Theorem 5.2 implies that those
points of J that are in the interior of M are unstable.

The requirement that the deformation gradients on the stable interface must belong to the
jump set is rather strong. For example in the case of anti-plane shear Silling has shown [71]
that equilibrium configurations satisfying both classical and the new equilibrium condition
are very special and are generated by a single complex potential which is analytic in the whole
domain (rather than two potentials analytic on each phase separately). Generic Weierstrass-
Erdmann solutions would be incompatible with such restrictions ( roughening instability) and
the corresponding smooth phase discontinuities would be replaced by the generalized surfaces
in the sense of Young [74].
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6 Solid-melt instability

As an example of the ability of (1.6) to indicate instability, consider an elastic solid in equi-
librium with its melt. This problem was first addressed by Gibbs [28] who concluded that a
non-hydrostatically stressed solid in equilibrium with a hydrostatically stressed fluid is always
unstable. His argument was that a stressed element of solid surface can always dissolve into
fluid and then recrystallize inside the fluid under hydrostatic conditions. This instability was
later studied more systematically by Asaro and Tiller [4] in linear framework and by Grinfeld
[32, 35] in the geometrically and physically nonlinear setting. In the work of Grinfeld the
classical second variation was used and the unconditional instability was found. Here we show
that the instability of a stressed solid-melt phase boundary can also be detected by checking
our new jump condition (3.4). However, the implied mode of instability is closer to the one
envisaged by Gibbs than to the one studied by Grinfeld.

To match our general setting we assume that the liquid is described as a hyperelas-
tic solid with the energy density W (F ) that depends only on det F . The liquid does not
have a preferred reference state, therefore, the representation v = det∇y(x) is only formal.
Indeed, if y′(x′) defined on the domain Ω′ ⊂ R

d is such that y′(Ω′) = y(Ω) = Ω∗ and
det∇y′((y′)−1(z)) = det∇y(y−1(z)) for all z ∈ Ω∗ then the two states y(x) and y′(x′)
are equivalent. We therefore assume that any statement about the liquid must hold for all
equivalent deformation fields compatible with the prescribed function v(z) = det∇y(y−1(z)).

Let w(v) be such that W (F ) = w(detF ). Then the equations of equilibrium say ∇p = 0,
where p(x) = −w′(det∇y(x)). Hence, p(x) = const. In the absence of liquid-liquid phase
transitions v(x) = det F (x) must also be constant. Now, assume that there is a smooth
surface Σ separating the solid and the liquid phase, that is capable of changing its position
in Lagrangian coordinates. In other words, we assume that the solid and liquid phases can
transform into one another.

If at the point x0 ∈ Σ the values of the deformation gradients are Fs and Fl for the solid
and the liquid, respectively, then the interface condition (1.3) states that Fl = Fs + a⊗n at
the point y(x0) in Eulerian coordinates. Then

vl = det Fl = det Fs + (cofFsn, a) = vs + (n∗, a)|cofFsn|,

where n∗ is the unit normal to the solid-liquid interface in Eulerian coordinates. We conclude
that replacing a with a′ such that (a, n∗) = (a′, n∗) produces an equivalent state of the
system, where Ω is the half-space Hn = {x ∈ R

d : (n, x) > 0}. Obviously,

(Fs + a ⊗ n)Hn = (Fs + a′ ⊗ n)Hn = {z ∈ R
d : (z, n∗) > 0},

provided, (a, n∗) = (a′, n∗).
Let p = −w′(vl) be the pressure in the liquid and σ = PsF

T
s / det Fs the Cauchy stress

tensor of the solid. The continuity of tractions (2.4) can be written as

σn∗ = −pn∗.
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For a liquid phase we have

P T
l a = −pcof(Fs + a ⊗ n)T a = −p(cofFs)

T a = −p(det Fs)F
−1
s a.

The new condition (3.4) then becomes

P T
s a = −p det FsF

−1
s a.

Equivalently, in terms of the Cauchy stress tensor, σT a = −pa. Using the symmetry of σ

we obtain
σa = −pa.

According to our assumption about equivalent states, we must also have σa′ = −pa′ for all
a′, such that (a′, n∗) = (a, n), which means σ = −pI. In other words, the solid which is in
stable equilibrium with a fluid must be hydrostatically stressed.
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l’homogénéisation: théorie et applications en physique, volume n◦ 57 of Collection de
la Direction des Etudes et Recherches d’Electricité de France, pages 319–369. Eyrolles,
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