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Abstract

In this paper we consider an optimal design problem, where the goal is to find the

layout of two conductors that minimize a given quadratic objective functional. The

most important feature of the objective functional is that it is weakly discontinuous.

In that case the tools of homogenization that were traditionally used in order to study

such problems, are helpful but not sufficient. In this paper we present an example

where additional tools are required to analyze the problem.

1 Introduction

The stationary process of heat or electric conduction in a solid body Ω can be described by
an elliptic PDE of the form

∇ · a(x)∇φ = f(x), (1.1)

where φ(x) has the physical meaning either of temperature or of electrostatic potential. The
function f(x) corresponds to the external heat source, and the symmetric positive definite
matrix field a(x) describes local properties of the conducting medium at the point x.

Any layout of two conductors with conductivities αI and βI can be described by a
characteristic function χ(x) of the set occupied by the material with conductivity αI. The
local conductivity of the medium a(x) then has the form a(x) = a(x)I, where

a(x) = αχ(x) + β(1 − χ(x)). (1.2)
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Let us assume that α < β and that the boundary condition supplementing (1.1) is

φ|∂Ω = 0. (1.3)

Let J(x, e) : Ω × R
3 → R+ be a coercive function in the sense that

inf
x∈Ω

lim inf
|e| → ∞

J(x, e)

|e|p
> 0,

for some p > 1. We will consider a problem of finding a geometric arrangement of materials
χ(x) that minimizes

I(χ) =

∫

Ω

J(x,∇φ(x))dx (1.4)

These problems ultimately require a numerical solution. The existence of a solution is,
however, a fundamental issue that needs to be addressed first. If χε(x) is a minimizing
sequence and φε is a corresponding sequence of solutions of (1.1)–(1.3), then we can assert
only the existence of the weakly convergent subsequence

∇φε ⇀ ∇φ0 weakly in Lp

There are two separate difficulties that have to be dealt with. The first one is that there
is no reason why the potential φ0 should solve an equation (1.1) with a(x) given by (1.2).
The second difficulty is that the value

∫

Ω
J(x,∇φ0(x))dx may have little to do with the

limit points of the sequence I(χε). The presence or absence of the latter difficulty is what
distinguishes the two types of optimal design problems: the problems with weakly continuous
and the problems with weakly discontinuous objective functionals.

The optimal design problems with weakly continuous objective functionals have received
a lot of attention in recent years, see for example a survey paper [19] and the books [3, 5]
for extensive review and references. By contrast the optimal design problems with weakly
discontinuous objective functionals and partial differential constraints of the type (1.1)–
(1.3) have not been treated as extensively. Pedregal [17, 16] showed that these problems are
intimately related to Young measures [2] and to quasiconvexification [13, 14]. Pedregal also
pointed out the almost complete absence of particular examples. The notable exceptions are
[1, 6, 10, 21], all of which except the first paper treat one and the same example of a weakly
discontinuous functional

I(χ) =

∫

Ω

|∇φ(x) − η(x)|2dx, (1.5)

where η(x) ∈ L2(Ω; R3) is a given function. This example was suggested by Tartar [21] as
the simplest non-trivial example with all the requisite features. We will follow the example
of our predecessors and consider the functional (1.5) as well. We will discuss relations
between contributions mentioned above a little later, after we address the first issue of non-
admissibility of the limit potential.
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We conclude this section by a discussion of a simple one-dimensional example whose basic
idea is probably due to L. C. Young [22]. Suppose we need to minimize

I(u) =

∫ 1

0

{

u2(x) + ((u′(x))2 − 1)2
}

dx (1.6)

over all C1 functions u(x) with u′(0) = 1. In order to make I(u) as small as possible we
would like to have u′ take values of only ±1 and have u be as small as possible. Obviously,
we cannot have both terms zero, but we can approach our goal as close as we like. Indeed a
sequence uǫ that looks like this

x
10.80.60.40.2

0

will make the value of I(uǫ) very close to zero. We see that the limiting function u0 = 0 is
not admissible: u′0(0) 6= 1. This illustrates the first difficulty mentioned above. In addition

I(u0) = 1 6= 0 = lim
ǫ → 0

I(uǫ).

This illustrates the weak discontinuity of the functional I.
We can try to resolve the first difficulty by enlarging the set of admissible functions

to a weak closure of the original set. In our example this weak closure is just a Sobolev
space W 1,4([0, 1]). We can resolve the second difficulty by changing or relaxing the objective
functional in a special way. The new relaxed functional must have the property that every
minimizing sequence for the original functional converges to a minimizer of the new functional
and every minimizer of the new functional is a weak limit of a minimizing sequence for the
original functional. In this example the function F (u′) = ((u′)2 − 1)2 has to be replaced by
its convexification F ∗(u′) = ((u′)2 − 1)2

+, where (a)+ = max(a, 0).

2 Composites as generalized controls

Let (χε, φε) be a minimizing sequence for (1.4). Can we extract a convergent subsequence?
The obvious answer is yes, we can extract a W 1,p weakly convergent subsequence φε ⇀ φ0

and an L∞ weak-* convergent subsequence χε(x)
∗
⇀θ(x), where θ(x) can be any measurable

function with values in the interval [0, 1]. However, the limit potential φ0 may no longer
satisfy the constraints (1.1)–(1.3). Therefore, we need a little different notion of convergence
that is better suited to the nature of our constraints. Such a notion has been put forward
by Murat and Tartar [15] under the name H-convergence. Let aε(x) be a sequence of
conductivity tensors and φε be the sequence of solutions to the Dirichlet problem

{

∇ · aε(x)∇φε = f,
φε|∂Ω = 0,
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Definition 1 The sequence of conductivity tensors aε(x) H-converges to the conductivity
tensor a∗(x) if for all f ∈ L2(Ω)

1. φε ⇀ φ0 weakly in W 1,2
0 (Ω)

2. aε∇φε ⇀ a∗∇φ0 weakly in L2(Ω),

where φ0 solves
{

∇ · a∗(x)∇φ0 = f,
φ0|∂Ω = 0.

(2.1)

Physically, the H-limit a∗(x) can be understood as the effective conductivity of the compos-
ite material described mathematically by a sequence aε(x). The weak-* limit θ(x) of the
sequence χε can be interpreted as a local volume fraction of the material α in a composite
placed at the point x ∈ Ω. To give a non-trivial example of an H-convergent sequence aε(x)
consider a periodic composite [4] described by the sequence

aε(x) = a0(x/ε), a0(y) = αIχ(y) + βI(1 − χ(y)),

where χ(y) is a triply periodic characteristic function with parallelepiped of periods Q. Then

there exists a constant tensor a∗ such that aε(x)
H
⇀ a∗. The tensor a∗ is defined in terms of

the unique (up to an additive constant) Q-periodic solution ψξ of the cell problem:

∇ ·
(

a0(y)(∇ψ + ξ)
)

= 0, (2.2)

where ξ is an arbitrary constant vector in R
3. Notice that ψξ depends linearly on ξ. There-

fore,

a∗ξ =

∫

Q

a0(y)(∇ψξ + ξ)dy

defines a 3 by 3 matrix a∗, which is exactly the H-limit of the sequence aε(x).
The explicit form of the H-limit a∗ for a periodic composite justifies the following defi-

nition

Definition 2 The G-closure G(S) of the set of materials S ⊂ Sym+(R3) is the set of all
effective tensors a∗ of periodic composites made of materials from the set S.

We can also define the Gθ-closure for composites made with two materials α and β.

Definition 3 The Gθ-closure of two materials α and β is the set of all effective tensors a∗

of periodic composites made with materials α and β taken in volume fractions θ and 1 − θ
respectively.

The Gθ-closure of two materials α and β is known exactly [11, 12, 20]. It consists of all
symmetric 3 by 3 matrices a∗ satisfying the following inequalities

hI ≤ a∗ ≤ mI (2.3)
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in the sense of quadratic forms, where m and h are arithmetic and harmonic means of α and
β respectively:

m = αθ + β(1 − θ), h = (θ/α + (1 − θ)/β)−1. (2.4)

Also,

Tr (a∗ − αI)−1 ≤
d

m− α
+

θ

α(1 − θ)
(2.5)

Tr (βI − a∗)−1 ≤
d

β −m
−

1 − θ

βθ
(2.6)

The following two fundamental theorems explain why the notion of H-convergence is so
useful and why the G-closure sets are important.

Theorem 2.1 (Kohn and Dal Maso) The tensor field a∗(x) is an H-limit of a sequence
of tensors aε(x) taking values in the set S if and only if a∗(x) ∈ G(S) for almost all x ∈ Ω.

Theorem 2.2 (Murat and Tartar) The topology of sequential H-convergence is locally
compact: Any bounded sequence aε(x) has an H-convergent subsequence.

Theorem 2.1 is coming from unpublished work of Kohn and Dal Maso. It’s proof can be
found in [18]. Theorem 2.2 is proved in [15]. For our particular case of two isotropic

conductors, Tartar [20] showed explicitly that if χε(x)
∗
⇀ θ(x) and aε(x)

H
⇀ a∗(x) then for

almost every x ∈ Ω we have a∗(x) ∈ Gθ(x). And conversely, if the pair of measurable
fields (θ(x),a∗(x)) satisfies 0 ≤ θ(x) ≤ 1 and a∗(x) ∈ Gθ(x) then there is a sequence of
characteristic functions χε(x) and the corresponding (via (1.2)) sequence aε(x) such that

χε(x)
∗
⇀ θ(x) and aε(x)

H
⇀ a∗(x).

Now we can approach our optimal design problem again applying the notion of H-
convergence. Let χε(x) be a minimizing sequence for (1.4). Then by Theorem 2.2 we can

extract a subsequence still labeled χε(x) such that χε(x)
∗
⇀ θ(x) and aε(x)

H
⇀ a∗(x). Then

φε ⇀ φ0 weakly in W 1,p and φ0 satisfies (2.1). That way we can say that we have enlarged
the set of admissible structural elements in a layout from the two pure materials α and β to
the set of all possible composites made with α and β. Therefore, the answer to the optimal
design problem will be specifying which composites rather than materials are occupying each
point x ∈ Ω.

3 Relaxation

Now we would like to point out that knowledge of the weak limit data such as φ0(x), a∗(x)
and θ(x) is not enough to describe the limit of I(χε) as ε → 0. The reason is that there
may be many very different composites, even periodic composites, with the same value of a∗.
At the same time, the functional I is sensitive to the particular kind of composite used. A
similar effect was present in Axell’s work, where he computed bounds for the variances of the
field in each phase of a two-phase isotropic composite. Axell’s bounds also imply bounds on
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the L2 norm of the field, relevant for the objective functional (1.5). They can be shown to be
weaker than ours simply because Axell’s goal was obtaining bounds for variances within each
phase and not for the L2 norm of the field in the whole composite. This conclusion should
not be surprising, if one realizes that the fields in both phases are strongly correlated. Most
recently Lipton [8, 9] obtained the optimal bounds on the variance of field fluctuations in the
conducting composite. Our bounds could be derived from his, and in fact our approaches
are in many respects similar.

Tartar [21] was the first to propose the form (1.5) of the objective functional. He proved
a remarkable result that for η(x) in a dense Gδ subset of L2(Ω; R3) the minimizing sequence
φε converges strongly in W 1,2

0 (Ω). His was a Baire category argument and so it gave no
indication of what that dense Gδ set might look like. Unfortunately, this result does not
exclude pathological examples. For instance, the set L2(Ω; R3) \W 1,2(Ω; R3) is a Gδ dense
subset of L2(Ω; R3) but contains no continuous, piecewise smooth functions. The strong
convergence of the sequence φε means that at almost every point x ∈ Ω the corresponding
composite is a rank-1 laminate (a composite with alternating layers of materials α and β)
whose effective conductivity is the matrix a∗(x) with eigenvalues (m(x), m(x), h(x)), where
m and h are given by (2.4). Moreover, for almost all x ∈ Ω the limit potential gradient
∇φ0(x) is an eigenvector of a∗(x) with eigenvalue m(x):

a∗(x)∇φ0(x) = m(x)∇φ0(x). (3.1)

In other words the field ∇φ0(x) is always directed parallel to the layers.
Dvořák, Haslinger and Miettinen [6] approached the optimal design problems from the

numerical point of view. In their work they considered many different objective functionals,
(1.5) among them, and showed how the knowledge of the relaxed formulation makes it
possible to solve the problem numerically. Unfortunately, they were not able to compute the
relaxation of (1.5).

A more recent investigation was done by Lipton and Velo [10] who studied the optimiza-
tion problem numerically using only simply layered microstructures. According to Tartar’s
result the solution to Lipton and Velo’s problem exists for a Gδ dense set of fields η. They
derive the formula for the relaxed functional for “good” choices of η that agrees with our
formula (3.5) below. Their numerical experiments suggest a conjecture that Tartar’s dense
Gδ set may be the whole space.

We show elsewhere [7] that in fact the optimal composites at almost every x ∈ Ω must be
rank-1 laminates. However, we were not able to show that (3.1) holds, which is necessary (and
sufficient) to settle the conjecture about Tartar’s dense Gδ set. We also note that introduction
of the volume fraction constraints considered by other authors invalidate our arguments that
led to the last conclusion about rank-1 laminates being the optimal composites at almost
every point x ∈ Ω.

Our idea is to fix a∗ and to minimize explicitly over all possible composites with the same
value of a∗. More precisely, we denote

A(a∗) = {{χε(x) : ε > 0}| aε H
⇀ a∗(x)}
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and we define
I∗(a∗) = inf

χε∈A(a∗)
lim inf

ε → 0
I(χε) (3.2)

It is remarkable that it is possible to compute I∗ explicitly for our example (1.5).

Theorem 3.1 The relaxed formulation of the optimal design problem (1.5) with constraints
(1.1)–(1.3) is the following problem

inf
χ
I(χ) = inf

a∗(x)∈G({α,β})
I∗(a∗), (3.3)

where I∗ is given by

I∗(a∗) =

∫

Ω

{

|η|2 − 2η · ∇φ0 −
1

β
fφ0 + ψ(a∗)|(βI − a∗)∇φ0|

2

}

dx, (3.4)

φ0 solves (2.1) and

ψ(a∗) =
Tr (βI − a∗)−1 − 1/β

β + α
.

Proof. Let
J∗(θ,a∗) = inf

χε∈A(a∗,θ)
{lim inf

ε → 0
I(χε),

where
A(θ,a∗) = {{χε(x) : ε > 0}| aε H

⇀ a∗(x), χε(x)
∗
⇀ θ(x)}.

In [7] we obtain

I∗(θ,a∗) =

∫

Ω

{

|η|2 − 2η · ∇φ0 −
1

β
fφ0 +

|(βI − a∗)∇φ0|
2

β(β − α)θ

}

. (3.5)

Observe that the admissible set of pairs (θ(x),a∗(x))

ad = {(θ(x),a∗(x)) : 0 ≤ θ(x) ≤ 1, a∗(x) ∈ Gθ(x)}

allows some freedom in the choice of the field θ(x) when the field a∗(x) is fixed. We can
represent I∗(a∗) as

I∗(a∗) = min
θ∈ad1

I∗(θ,a∗), (3.6)

where ad1 is the projection of the set ad onto the first component.
The functional I∗(θ,a∗) is monotone decreasing in θ. The minimum in (3.6), therefore,

is attained at the largest possible value of θ. That value is easily found from inequality (2.6)
describing the upper boundary of the Gθ set:

θ∗(x) =
1

β(β − α)ψ(a∗)
.

Substituting it in (3.5) we obtain the statement of the theorem.
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We remark that the form (3.3) of the relaxed problem is less convenient that the alter-
native formulation

inf
χ
I(χ) = inf

(θ, a∗)∈ad
I∗(θ,a∗) (3.7)

obtained by combining (3.3) with (3.6). The reason for this is that the functional I∗(a∗) is
not convex in a∗, while the functional I∗(θ,a∗) is. This allows us to include constraints (2.1)
in (3.7) with a Lagrange multiplier and then use saddle point theorems of convex analysis.
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