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Abstract

We consider the relatively simple but non-trivial example of an optimal design

problem with a weakly discontinuous objective functional. The objective functional

is quadratic and was suggested by Tartar in his “Remarks on optimal design” paper.

We analyze a problem of finding a layout of a conducting composite such that the

fields in both phases provide least squares fit to a given field. The main result of

the paper is an explicit formula for the relaxed optimal design problem, suitable for

numerical solution. Further analysis of our explicit formula shows that the optimal

layout is a rank one laminate locally, lending some support for Tartar’s conjecture that

the minimizing sequences always converge strongly.

1 Introduction

The bulk of the existing topology optimization literature focuses almost exclusively on the
problems with weakly continuous objective functionals, such as energy, see e.g. a survey pa-
per [30] and the books [4, 9] and references therein. The energy functional has the advantage
that both the objective functional and the equilibrium equations of conductivity or elasticity
can be handled by a single variational principle. Other weakly continuous functionals were
sometimes considered [10, 13, 22, 23]. However the more general functionals are of great
importance in applications. One such application is the design of materials optimal with re-
spect to stress concentrations. The damage in a brittle material usually occurs at regions of
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high stress concentrations. Therefore, the natural objective functional here is the sup-norm
of the stress field in the body. The problems of stress concentrations have been treated before
by beautiful but somewhat ad hoc analytical methods [3, 8, 12, 15, 33, 34, 35] with the goal
of describing the optimal geometry analytically and explicitly. Our objective is different. We
are looking for the relaxed formulations of optimization problems, i.e. formulations that be-
have “nicer” with respect to the existence of solutions and numerical optimization routines.
The sup-norm functional can be effectively approximated by the integral functionals

I =

∫

Ω

J(x, e)dx, (1.1)

where e is the elastic strain or the electric field. Currently we are rather far away from
studying (1.1) in general or even attacking the problem of stress concentrations via (1.1).
However, see the work of Pedregal [27, 28] for a discussion of the relation of (1.1) to gradient
Young measures and quasiconvexification problems.

In this paper we consider the simplest example of (1.1) suggested by Tartar [32]. It
concerns the design of a two phase conductor with fields in each phase conforming as close
as possible to the given fields [10, 21, 32].

I =

∫

Ω

|e(x) − η(x)|2dx → min, (1.2)

where e(x) is the electric field and η(x) is given.
The general problem (1.1) may or may not have a classical design solution if one desires a

global optimum with no topological constraints. The failure of existence is linked to the fact
that the minimizing sequence for (1.1) develops oscillations. The physical meaning of these
oscillations is that the set of classical layouts is too narrow and the optimal layout must use
composites as structural elements. In the case of weakly continuous objective functionals
the passage to composites is sufficient to regularize the ill-posed problem [14, 16, 17]. In our
case of weakly discontinuous objective functionals there is an additional difficulty. In order
to determine the value of the objective functional for designs incorporating composites it is
insufficient to know just the effective properties of the composite medium. The functional is
sensitive to finer features of oscillations of the minimizing sequence, features that go beyond
the effective properties. In the physics literature there has been some work on bounding
the variance of the fluctuating fields in each phase of a two phase composite [1, 5, 7]. Very
recently Lipton used the analytic method of Bergman [6] to obtain bounds on the variance of
the fluctuating fields in the entire periodic composite [19, 20] and to solve an optimal design
problem very similar to the one considered here [18].

In this paper after a brief review of the relation of the oscillating fields in a material
to composites we compute the explicit relaxation of the functional (1.2) in section 4. The
optimal design problem with the relaxed functional I∗ should have at least one solution,
every solution of the relaxed problem should be a weak limit of a minimizing sequence
for the original problem and every weak limit of a minimizing sequence for I should be a
minimizer for I∗. In addition, we must have min I∗ = inf I.
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2 Formulation of the problem

Consider a body Ω ⊂ R
d (d = 2 or 3) that is to be occupied by the two isotropic conductors

α and β with α < β. The electrostatic potential φ is given in Ω by

{

∇ · a(x)∇φ = f,
φ|∂Ω = 0,

(2.1)

where a(x) takes the values α and β :

a(x) = αχ(x) + β(1 − χ(x)). (2.2)

The source distribution f is given. The characteristic function χ(x) of the set where a(x) = α
plays the role of the control. Let

I(χ) =

∫

Ω

|∇φ(x) − η(x)|2dx (2.3)

be the objective functional to be minimized, either over all possible characteristic functions
χ, or only those with a prescribed volume average.

A very similar problem with the volume fraction constraint has been solved by Lipton
[18]. His objective functional is the same as (2.3) with η = 0. The field φ solves a pde in
(2.1) with f = 0 but with affine Dirichlet boundary conditions.

If we impose no volume fraction constraints and if η = 0 then Lipton (personal commu-
nication) has the following elementary but beautiful argument that shows that regardless of
the value of f in the right hand side of (2.1) the pure conductor β gives the optimum.

Suppose φ0 is the solution of (2.1) with a(x) = β and suppose φ is the solution of (2.1)
with any other a(x). Then integrating by parts ‖∇φ0‖

2 we obtain

‖∇φ0‖
2 = −

1

β

∫

Ω

φ0fdx = −
1

β

∫

Ω

a(x)∇φ · ∇φ0dx ≤

∫

Ω

|∇φ · ∇φ0|dx ≤ ‖∇φ‖ ‖∇φ0‖.

Thus ‖∇φ0‖
2 ≤ ‖∇φ‖2, as claimed.

It is quite possible that the minimizer for (2.3) does not exist and the minimizing sequence
develops oscillations. In this case there is a well known theory describing weak limits of such
sequences. We review this theory for the reader’s convenience.

3 H-convergence and G-closures

Let φε be a minimizing sequence for I corresponding to the sequence of designs χε(x). As
in the finite dimensional optimization one would like to be able to extract a convergent sub-
sequence. But in our infinite dimensional setting we have to be careful and specify precisely
the type of convergence we are using. The appropriate convergence notion was introduced
by Murat and Tartar [26]. They called it H-convergence (H stands for homogenization).
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Definition 1 A sequence of tensors aε(x) H-converges to the tensor a∗(x) if φε solves

{

∇ · aε(x)∇φε = f,
φε|∂Ω = 0,

(3.1)

and the following weak limit relations hold

∇φε ⇀ ∇φ0,
aε(x)∇φε ⇀ a∗(x)∇φ0,

(3.2)

where φ0 solves the homogenized equilibrium equations

{

∇ · a∗(x)∇φ0 = f,
φ0|∂Ω = 0.

(3.3)

The notion of H-convergence is perfectly suited for optimal design problems with constraints
of the type (2.1) because it makes precise the sense in which equation (3.3) is a limit of the
sequence of equations (3.1). Moreover, it possesses the compactness property we need in
order to study the existence of solutions to optimal design problems. This property is given
by the compactness theorem of Murat and Tartar [26].

Theorem 1 If for almost every x ∈ Ω the sequence of symmetric matrices aε(x) satisfies

αI ≤ aε(x) ≤ βI

for some β > α > 0 in the sense of quadratic forms then there is an H-convergent subsequence

aε(x)
H
→ a∗(x).

The most enlightening example of an H-convergent sequence of tensors aε is the case
of locally periodic composites. Let χε(x) = χ(x,x/ε), where χ(x,y) is periodic in the y

variable with the parallelepiped of periods Q = [0, 1]d. Then a(x,x/ǫ) H-converges to a∗(x),
defined by

a∗(x) =

∫

Q

a(x,y)∇Φ(x,y)dy (3.4)

in terms of the solution Φ : Ω ×Q → R
d of the so called cell problem:







∇y · a(x,y)∇yΦ(x,y) = 0, y ∈ Q
∫

Q

∇yΦ(x,y)dy = I,
(3.5)

where ∇yΦ is assumed to beQ-periodic in y. (We use an unusual convention (∇Φ)ij =
∂Φj

∂xi

.)

In particular, for periodic media, the effective tensor a∗ is constant. The explicit definition
(3.4) prompted a natural question of computing G-closure sets. There are two types of them.
The absolute G-closure of a set S of materials is the set of all effective tensors a∗ of periodic
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composites made with materials from the set S. The other type is the Gθ-closure—the
set of all effective tensors a∗ of periodic composites made with materials α and β taken in
prescribed volume fraction θ.

The relevance of G and Gθ closures is brought out by the unpublished theorem of Kohn
and Dal Maso (see [29] for the proof). The theorem says that a∗(x) is an H-limit of a
sequence of aε(x), not necessarily locally periodic, if and only if a∗(x) ∈ Gθ(x) for almost
every x ∈ Ω. In this paper we will be interested in more than just the effective conductivity
tensor. Nevertheless, the effective tensors and the Kohn and Dal Maso theorem are going to
play an important role in our analysis.

For two-phase conducting composites, where the Gθ-closure is explicitly known [24, 25,
31], the Kohn-Dal Maso theorem was proved directly by Tartar [31]. The set Gθ is described
by two sets of bounds. The first set comprises the elementary, or Wiener, bounds [36]

hI ≤ a∗ ≤ mI (3.6)

in the sense of quadratic forms, where m and h are arithmetic and harmonic means of α and
β respectively:

m = αθ + β(1 − θ), h = (θ/α + (1 − θ)/β)−1.

The second set contains more delicate trace bounds [24, 25, 31]

Tr (a∗ − αI)−1 ≤
d

m− α
+

θ

α(1 − θ)
, (3.7)

Tr (βI − a∗)−1 ≤
d

β −m
−

1 − θ

βθ
. (3.8)

We would like to draw reader’s attention to the fact that every a∗ satisfying Wiener
bounds (3.6) and achieving equality in the upper trace bound (3.8) can be realized as a
composite with the uniform field in the phase of conductivity α for any uniform applied
field. Conversely, any such composite will necessarily achieve equality in (3.8). One class
of such composites is the multiple rank laminates [31], another is the confocal ellipsoid
construction [31].

4 Relaxation

As we mentioned before, the knowledge of the effective tensor a∗ is not sufficient. Not only
our functional is weakly discontinuous, the limit limε → 0 I(χ

ε) can not be expressed in terms
of the weak limit ∇φ0 and the effective tensor a∗. This means that the integrand in (2.3)
“sees” finer features of oscillations of φε than those that determine a∗(x).

Let φε be a minimizing sequence for I corresponding to the sequence of designs χε(x).

We can restrict our attention to a subsequence labeled χε(x) again, such that χε(x)
∗
⇀ θ(x)
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and aε H
⇀ a∗(x). Then φε converges weakly in W 1,2(Ω) to φ0 and φ0 solves (3.3). We

therefore obtain

lim
ε → 0

I(χε) =

∫

Ω

(|η(x)|2 − 2η(x) · ∇φ0(x))dx + lim
ε → 0

∫

Ω

|∇φε|
2dx. (4.1)

We have the following strategy for evaluating the limit in (4.1). We define

A(θ,a∗) = {{χε(x) : ε > 0}| aε H
⇀ a∗(x), χε(x)

∗
⇀ θ(x)}

and then evaluate

J∗(θ,a∗) = inf
χε∈A(θ,a∗)

{lim inf
ε → 0

∫

Ω

|∇φε|
2dx}. (4.2)

It turns out that it is possible to find a good estimate for J∗(θ,a∗).

Lemma 1

J∗(θ,a∗) ≥

∫

Ω

{

−
1

β
f(x)φ0(x) +

|(βI − a∗(x))∇φ0(x)|2

β(β − α)θ(x)

}

. (4.3)

The equality is achieved for the effective tensors of composites with constant local field in the
phase of conductivity α. To be more precise, the equality in (4.3) is achieved if and only if
the Young measure νx corresponding to the sequence (χε(x), χε(x)∇φε(x)) is supported on
a ray

Rx = {(τ,y) ∈ (0,+∞) × R
d| y = τv0(x)}

for some v0(x), for almost every x ∈ Ω.

Proof: We have the following three identities

∇φε(x) ⇀ ∇φ0(x) (4.4)

in L2(Ω).
aε(x)∇φε(x) ⇀ a∗(x)∇φ0(x) (4.5)

in L2(Ω).
aε(x)|∇φε(x)|2 ⇀ a∗(x)∇φ0(x) · ∇φ0(x) (4.6)

in the sense of distributions, or more precisely, in the sense of weak convergence of measures.
We will use them to estimate the integral in (4.2). Using equations (4.4) and (4.5) we

obtain

χε(x)∇φε(x) ⇀
βI − a∗(x)

β − α
∇φ0(x). (4.7)

We can use the remaining relation (4.6) by representing |∇φε|
2 as follows

|∇φε(x)|2 =
β − α

β
χε(x)|∇φε(x)|2 +

1

β
aε(x)|∇φε(x)|2. (4.8)
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In order to estimate the first term in (4.8) we use the fact that the function

C(τ,y) =







|y|2/τ, if τ > 0
+∞, if τ = 0, y 6= 0

0, if τ = 0, y = 0

is convex and lower semicontinuous on [0,+∞) × R
d and that

χε(x)|∇φε(x)|2 = C(χε(x), χε(x)∇φε(x)).

Therefore, using (4.7) and weak lower semicontinuity of convex functions we obtain

lim
ε → 0

χε(x)|∇φε(x)|2 ≥
|(βI − a∗(x))∇φ0(x)|2

θ(x)(β − α)2
, (4.9)

where the limit is understood as a weak limit of measures. Now using (4.9) and (4.6) we can
pass to the limit in (4.8) and obtain

lim
ε → 0

|∇φε(x)|2 ≥
|(βI − a∗(x))∇φ0(x)|2

θ(x)β(β − α)
+

1

β
a∗(x)∇φ0(x) · ∇φ0(x),

Integration by parts and (3.3) gives us

lim
ε → 0

∫

Ω

|∇φε(x)|2dx ≥

∫

Ω

{

|(βI − a∗(x))∇φ0(x)|2

θ(x)β(β − α)
−

1

β
f(x)φ0(x)

}

dx. (4.10)

Let us examine when an equality holds in (4.9). The language of Young measures [2] is
the appropriate way to formulate the answer rigorously. Let νx(τ,y) be the Young measure
corresponding to the weakly convergent sequence (χε(x), χε(x)∇φε(x)). Then

lim
ε → 0

χε(x)|∇φε(x)|2 =

∫

D

C(τ,y)dνx(τ,y),

where D = [0,+∞) × R
d. The inequality (4.9) can be written as

∫

D

C(τ,y)dνx(τ,y) ≥ C(τ(x),y(x)),

where (τ(x),y(x)) is the first moment of the Young measure νx, or, in other words, the
weak limit of the sequence (χε(x), χε(x)∇φε(x)):

(τ(x),y(x)) = (θ(x),
βI − a∗(x)

β − α
∇φ0(x)).

The inequality (4.9) becomes equality whenever
∫

D

C(τ,y)dνx(τ,y) = C(τ(x),y(x)).
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An easy computation will show that

∫

D

C(τ,y)dνx(τ,y) − C(τ ,y) =
1

2τ

∫

D

∫

D

ττ ′
∣

∣

∣

∣

y

τ
−

y′

τ ′

∣

∣

∣

∣

2

dνx(τ,y)dνx(τ ′,y′).

Therefore, the equality in (4.9) holds if and only if the Young measure νx is supported on
the ray

Rx = {(τ,y) ∈ D| y = τv0(x)}

for each fixed x ∈ Ω. Physically, this means that an optimal composite placed at the point
x ∈ Ω must have a constant field in the phase α:

χε(x)∇φε(x) ≈ χε(x)v0. (4.11)

In particular, the weak limits of both sides of (4.11) are equal. Thus we obtain

v0(x) =
βI − a∗(x)

θ(x)(β − α)
∇φ0(x).

We remark here that Lipton and Velo [21] have computed the limit in (4.2) with the
restriction that the sequence φε comes from a locally layered microstructure at every point
x ∈ Ω. Such a microstructure has the constant field property required to attain equality
in (4.3). Therefore, the limit in (4.2) is uniquely determined by a∗(x) and equals to the
right hand side of (4.3). In general we do not know if equality in (4.3) holds for any pair
(a∗(x), θ(x)). Nevertheless, we are going to show that for the minimizing sequences for (2.3)
the pair (a∗(x), θ(x)) always achieves equality in (3.8) and therefore, the equality in (4.3)
indeed holds.

Theorem 2 Let
I0 = inf

χ
I(χ)

and let

I∗ = inf
θ(x)

inf
a∗∈Gθ(x)

∫

Ω

{

|η(x)|2 − 2η(x) · ∇φ(x) −
1

β
f(x)φ(x) +

|(β − a∗(x))∇φ(x)|2

β(β − α)θ(x)

}

dx

(4.12)
where φ(x) solves

{

∇ · a∗(x)∇φ = f,
φ|∂Ω = 0.

(4.13)

Then I0 = I∗.
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Proof: Our idea is to show that the optimal value of a∗ can be chosen to achieve
equality in the upper trace bound (3.8) for almost every x ∈ Ω. For such values of a∗ the
equality in (4.3) in achieved and the Theorem 2 would be proved.

For the purposes of convenience let us denote

T1(φ) = |η(x)|2 − 2η(x) · ∇φ(x) −
1

β
f(x)φ(x)

and

T2(θ,a
∗,∇φ) =

|(β − a∗(x))∇φ(x)|2

β(β − α)θ(x)
.

Our idea is to include the PDE constraint (4.13) into (4.12) as a Lagrange multiplier and
carry out the minimization over a∗ ∈ Gθ(x) explicitly. Let λ ∈ W 1,2

0 (Ω) be our Lagrange
multiplier. Then the problem (4.12), (4.13) can be stated as

I∗ = inf
θ(x)

inf
a∗

inf
φ

sup
λ

∫

Ω

{

T1(φ) + T2(θ,a
∗,∇φ) + 2(a∗(x)∇φ,∇λ) + 2f(x)λ(x)

}

dx, (4.14)

where both φ and λ may vary over the whole space W 1,2
0 (Ω). Now, observe that the aug-

mented integrand in (4.14) is a convex function of a∗ and an affine (an therefore, concave)
function of λ. We would like to interchange the order of sup in λ and inf in a∗. In order
to do this we apply a general result from convex analysis [11, Proposition 2.3]. We need to
check several additional conditions beyond convex/concave structure of the functional. The
set where λ varies is the whole space W 1,2

0 , which is a reflexive Banach space. The set

ad(θ) = {a∗(x) ∈ L2(Ω; Sym(Rd))| a∗(x) ∈ Gθ(x) ∀x ∈ Ω},

where a∗(x) varies can be thought of as a closed subset of L2(Ω; Sym(Rd))—a reflexive
Banach space. It is remarkable that for all θ ∈ [0, 1] the set Gθ is convex. As a consequence
the set ad(θ) is also convex for any measurable function θ(x) : Ω → [0, 1] The convexity of
Gθ sets is a special feature of the G-closure of two conductors. In general G-closure sets do
not have to be convex, like for the case of a polycrystal. Finally, we need that the infimum in
a∗ of the supremum in λ be achieved. Supremum over λ in (4.14) is a functional F(θ, φ,a∗).
It is a convex lower semi-continuous functional of a∗ as a supremum of such functionals.
Therefore,

min
a∗∈ad(θ)

F(θ, φ,a∗)

is attained. Thus all conditions of [11, Proposition 2.3] are satisfied and we can interchange
the inf over a∗ with the sup over λ in (4.14). We obtain

I∗ = inf
φ

inf
θ(x)

sup
λ

inf
a∗

∫

Ω

(

T1(φ) + T2(θ,a
∗,∇φ) + 2f(x)λ(x) + 2(a∗(x)∇φ,∇λ

)

dx. (4.15)

Hence, we need to carry out a finite-dimensional optimization problem:

K∗ = min
a∗∈Gθ

{

2(a∗v,u) +
|βv − a∗v|2

β(β − α)θ

}

(4.16)
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Here v stands for ∇φ and u stands for ∇λ. We may rewrite (4.16) as

K∗ =
(K̃∗)2

β(β − α)θ
+ 2βu · v − β(β − α)θ|u|2,

where
K̃∗ = min

a∗∈Gθ

|a∗v − p| (4.17)

and
p = βv − β(β − α)θu.

This is a geometric problem of finding the distance between a given vector p and the set
Gθv. This problem requires some effort. We present the solution in two steps. First, for
given a∗ ∈ Gθ we compute the set

O(a∗,v) = {Ra∗Rtv ; R ∈ SO(d)}. (4.18)

Lemma 2 Suppose d = 2. Let a1 ≥ a2 be the eigenvalues of a∗. Let c = (a1 + a2)/2 and
r = (a1 − a2)/2. Then O(a∗,v) is a circle centered at cv with radius r|v|.

Suppose d = 3. Let a1 ≥ a2 ≥ a3 be the eigenvalues of a∗. Define

c1 = (a2 + a3)/2, c2 = (a1 + a3)/2, c3 = (a1 + a2)/2

and
r1 = (a2 − a3)/2, r2 = (a1 − a3)/2, r3 = (a1 − a2)/2.

Then O(a∗,v) consists of all points of the closed ball centered at c2v of radius r2|v|, that are
exterior to the open balls with centers at c1v and c3v with radii r1|v| and r3|v| respectively.

It is very curious to note that the “shadow” that the three dimensional group SO(3) casts
onto R

3 has cavities.

Proof: We prove a more interesting three dimensional case. The reader may prove the
easier two dimensional case either by the method we use for d = 3 or by explicitly computing
the vector Rγa

∗Rt
γv where Rγ is a rotation matrix through the angle γ.

Let S be the set described in the Lemma for d = 3. And let O denote the set O(a∗,v).
We first show that O ⊂ S. Then we will show that ∂O ⊂ ∂S. We then conclude that O = S.

To prove that O ⊂ S we observe that for a ∈ O the matrix a − c3I has eigenvalues
λ1 = r3, λ2 = −r3 and λ3 = a3 − (a1 + a2)/2. We easily check that |λ3| ≥ λ1 = r3 and
therefore, for any vector v ∈ R

3 we have

|av − c3v| ≥ r3|v|

Similarly, we obtain that
|av − c1v| ≥ r1|v|
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and that
|av − c2v| ≤ r2|v|.

We deduce that O ⊂ S.
Now we need to get some information about the boundary of the set O. Let a∗ and v

be fixed and f : SO(3) → R
3 be given by

f (R) = Ra∗Rtv.

The function f is a C∞ map between smooth manifolds. We also know that O = f (SO(3))
is a compact and path-connected subset of S. Let R0 be fixed and f∗ : TR0SO(3) → R

3 is
a linear map between the three dimensional tangent spaces of the two manifolds. If the map
f∗ is non-singular then the inverse function theorem guarantees that f (R0) is an interior
point of O. Thus

∂O ⊂ {f (R0)| f∗ is singular}.

We will show now that ∂S coincides with the set of critical values of the map f . Let us find
an explicit expression for f∗ at R0. For that purpose we think of SO(3) as a submanifold in
the space of 3 by 3 matrices. The tangent space TR0

SO(3) can then be identified with the
Lie algebra so(3) = TI(SO(3)) via the relation TR0 = so(3)R0. The Lie algebra so(3) is the
space of all skew-symmetric matrices L that can be identified with R

3 by the cross product
map π : R

3 → so(3) as follows
π(x)y = x × y. (4.19)

Now, we easily compute f∗:
f∗x = [π(x),a]v, (4.20)

where [, ] denotes the commutator of two matrices and a = R0a
∗Rt

0. We can rewrite (4.20)
using (4.19) as follows:

f∗x = (aπ(v) − π(av))x.

We see now that the value av is critical if and only if det(aπ(v) − π(av)) = 0. In or-
der to evaluate this determinant we use the following decomposition formula valid in three
dimensions only:

det(A + B) = det(A) + (adj(A),B) + (A, adj(B)) + det(B),

where (A,B) = Tr (ABt) and adj(A) can be defined as the gradient of the determinant:

(adj(A),B) = lim
ǫ → 0

(det(A + ǫB) − det(A))/ǫ.

(There are probably as many different definitions of adj as those of det.) The adjoint adj
enjoys many pleasant properties some of which we are going to use. The reader can easily
check that

adj(AB) = adj(A)adj(B)
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and that
adj(π(x)) = x ⊗ x.

With these properties and the observation that det(π(x)) = 0 for any x ∈ R
3 we easily

compute
det(aπ(v) − π(av)) = −adj(a)v · π(av)v + aπ(v)av · av.

In order to simplify the above expression further we need to recall the triple product (x,y, z)
of vectors x, y and z. We define

(x,y, z) = x · (y × z) = −(y,x, z) = −(x, z,y).

In terms of the triple product we compute

det(f∗) = (adj(a)v + a2v,v,av).

The triple product (x,y, z) is zero if and only if vectors x, y and z lie in the same plane.
Therefore, av is a critical value for f if and only if vectors v, av and adj(a)v + a2v lie in
the same plane. Now we show that for any symmetric matrix a and vector v the vectors v,
av and adj(a)v−a2v always lie in the same plane. Cayley-Hamilton theorem says that any
matrix annihilates its characteristic polynomial. For any invertible symmetric matrix a we
can multiply the Cayley-Hamilton identity by a−1 and obtain

a2 − ta + jI − adj(a) = 0, (4.21)

where t = Tra and 2j = t2 − Tra2 and where we used the formula a−1 = adj(a)/ det(a).
Now applying (4.21) to a vector v we obtain that the vectors v, av and adj(a)v − a2v

always lie in the same plane for an invertible symmetric matrix a. The same will be true for
any symmetric matrix a because invertible matrices are dense in the set of all matrices and
because being in the same plane is a closed condition. Thus vectors v, av and adj(a)v+a2v

lie in the same plane if and only if vectors v, av and a2v do. In other words av is a critical
value for f whenever v lies in a proper invariant subspace for a. Suppose u1, u2 and u3 are
eigenvectors of a. And suppose v = v1u1 + v2u2. Then

av − c3v =
1

2
(a1 − a2)(v1u2 − v2u2).

Thus |av − c3v| = r3|v| and av ∈ ∂S. Similarly, the same conclusion is reached if v is in
the span of u2 and u3 or u1 and u3.

Now we show that every vector q ∈ ∂S is a critical value for f . Suppose r3 6= 0. (If
r3 = 0 then this part of the boundary of S disappears and we need to consider only spheres
with non-vanishing radius.) Let q be on the boundary of the ball centered at c3v with radius
r3|v|. Let p = (q − c3v)/r3. Then |p| = |v|. Define u1 = (p + v)/2 and u2 = (v − p)/2.
Observe that vectors u1 and u2 are orthogonal. Therefore, we can find a rotation R such
that a = Ra∗Rt has eigenvectors u1 and u2. We have v = u1 + u2 lies in the proper
invariant subspace of a and av − c3v = r3(u1 − u2) = r3p, from which it follows that
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av = q. Thus q is a critical value for f . So, the set of all critical values for f coincides with
∂S. It might happen that either u1 or u2 is zero. The argument above works in this case
too, except the zero vector should not be called an eigenvector of a.

Now we show that S = O. If the matrix a∗ is a multiple of the identity then both
S = O = {a∗v}. If the matrix a∗ has a double eigenvalue then S = ∂S and ∂S ⊂ O
because ∂S is the set of critical values of f as shown in the previous paragraph. Thus
S = O. Therefore we may suppose that a∗ has three distinct eigenvalues resulting in the
set O having a non-empty interior, since it contains the images of all regular points of f .
Suppose there is a point x0 ∈ S such that x0 6∈ O. Pick another point x1 ∈ O such that
x1 6∈ ∂S. For example we can choose any point x1 in the interior of O. Now connect the
points x0 and x1 by a continuous path γ(t) such that γ(0) = x0 and γ(1) = x1 and such
that γ(t) lies in the interior of S for all t > 0. Now let

t0 = inf{t ∈ [0, 1] : γ(t) ∈ O}.

Observe that γ(t0) ∈ O because O is closed. Therefore, t0 > 0, since γ(0) = x0 6∈ O. Also
γ(t0) ∈ ∂O ⊂ ∂S because γ(t0) can not be an interior point of O by definition of t0 and
because a path connected set O does not have isolated points. But γ(t) does not intersect
the boundary of S for all t > 0. Contradiction. Thus O = S.

Using Lemma 2 we can compute K∗ in (4.16) and show that the minimum can be achieved
at matrices a∗ satisfying (3.8) with equality.

Lemma 3

K̃∗ =

(
∣

∣

∣

∣

m+ h

2
v − p

∣

∣

∣

∣

−
m− h

2
|v|

)

+

, (4.22)

where (a)+ = max(a, 0). Moreover, the minimum in (4.17) is attained at a∗ satisfying (3.8)
with equality.

Proof: The set Gθv = {a∗v|a∗ ∈ Gθ} can be represented as the union

Gθv =
⋃

a∗∈Gθ

O(a∗,v)

of sets (4.18). Each of these sets is the circle S(cv, r|v|) for d = 2 or contains the sphere
S(c2v, r2|v|), if d = 3. The centers and the radii of the circle or the sphere are described
in Lemma 2. Our first observation is that the sphere corresponding to a∗ with eigenvalues
(m,m, h) contains spheres corresponding to any a∗ with eigenvalues m ≥ a1 ≥ a2 ≥ a3 ≥ h.
Let c0 = (m + h)v/2, c′ = (a1 + a3)v/2, r0 = (m − h)|v|/2 and r′ = (a1 − a2)|v|/2. Then
we easily check that

|c0 − c′| =

∣

∣

∣

∣

m− a1

2
−
a3 − h

2

∣

∣

∣

∣

|v| ≤

(

m− a1

2
+
a3 − h

2

)

|v| = r0 − r′.
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Geometrically, this means that the sphere S(c0, r0) contains the sphere S(c′, r′). Now, we
show that every point in the interior of the largest sphere S(c0, r0) belongs to an outer
sphere of some a∗ ∈ Gθ achieving equality in (3.8). Suppose p is in the interior of the
sphere S(c0, r0). Take an isotropic a∗ = a0I ∈ Gθ that achieves equality in (3.8). The set
O(a∗,v) corresponding to this matrix degenerates into a single point a0v. If p = a0v then
our assertion is true. If not then p is certainly outside of this degenerate sphere. Now let
us connect the point a∗ = a0I with point a∗

0 with eigenvalues (m,m, h) by a smooth curve
entirely lying on the lower trace bound. As we move along the curve the outer sphere will
continuously deform from the single point a0v to the largest sphere S(c0, r0). Along the way
there will be a point on that curve such that the corresponding outer sphere will pass through
the point p. Thus, K̃∗ is zero, if p is inside the sphere S(c0, r0) and K̃∗ = |p − c0| − r0 if p

is outside of S(c0, r0). Lemma 3 is proved.

In Lemma 3 we showed that the optimal value of a∗ can always be taken such that equality
in Lemma 1 is achieved. This finishes the proof of the Theorem 2.

5 The optimal design is a rank-1 laminate

In the case of no resource constraints of θ(x) our analysis shows more. If p is outside of the
sphere S(c0, r0) then the optimal a must have eigenvalues (m,m, h) corresponding to the
rank-1 laminate. We continue our evaluation of I∗ and show that this is indeed always the
case.

Theorem 3 The optimal composite must be a rank-1 laminate at every point in the domain.

A strong suggestion that a theorem like this might be true was made in the paper of Tartar
[32], where he showed that for η(x) in a dense Gδ subset of L2 the minimizing sequence
for the original optimal design problem converges strongly. On that dense Gδ set Tartar’s
theorem says more than we prove. Namely, it says that the optimal microstructure is a
rank-1 laminate at every point in the material, where ∇φ is parallel to the layers. At present
we still can not prove that last part.

Proof: In order to prove the theorem we are going to show that the minimum in (4.17)
is attained at a∗ with eigenvalues (m,m, h). According to our analysis this is the case if and
only if

∣

∣

∣

∣

m+ h

2
v − p

∣

∣

∣

∣

≥
m− h

2
|v|. (5.1)

Now we return to the computation of I∗ in (4.15). Using Lemma 3 we compute

I∗ = inf
φ

inf
θ(x)

sup
λ

∫

Ω

(L(φ, λ) +Q(θ,∇φ,∇λ))dx, (5.2)

where

Q(θ,∇φ,∇λ) =
(N(θ,∇φ,∇λ))2

+

β(β − α)θ(x)
− β(β − α)θ(x)|∇λ(x)|2,
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N(θ,∇φ,∇λ) =

∣

∣

∣

∣

(
m+ h

2
− β)∇φ(x) + β(β − α)θ(x)∇λ(x)

∣

∣

∣

∣

−
m− h

2
|∇φ(x)| (5.3)

and

L(φ, λ) = |η(x)|2 − 2η(x) · ∇φ(x) −
1

β
f(x)φ(x) + 2f(x)λ(x) + 2β∇λ(x) · ∇φ(x).

We will show that the optimal value for the field θ(x) in (5.2) is such that N(θ,∇φ,∇λ) > 0,
meaning that the minimum in (4.17) is attained at a∗ with eigenvalues (m,m, h), correspond-
ing to the rank-1 laminate structure. We achieve this goal by justifying the interchange of
sup in λ and inf in θ and then showing that for any value of the fields ∇φ and ∇λ the
minimum of Q(θ,∇φ,∇λ) is attained at θ∗(x) that makes N(θ∗,∇φ,∇λ) strictly positive.

Observe that the functional
∫

(L + Q) is concave in λ because it was obtained as a
minimum of linear functions in λ. Surprisingly, the function Q turns out to be convex in θ.

Lemma 4 The function F (θ) = Q(θ,v,u) is convex in θ on [0, 1] for any choice of vectors
u and v.

We remark that convexity of Q in θ does not follow from any general principle because the
sets Gθ are dependent on θ and the set of pairs

{(a∗, θ)| 0 ≤ θ ≤ 1, a∗ ∈ Gθ}

is not convex.

Proof: Substituting the values of m and h into the formula for F we get

F (θ) =
θ

β(β − α)

{

(
∣

∣

∣

∣

βv′

βθ + α(1 − θ)
− (u′ − v′)

∣

∣

∣

∣

−
(β − α)(1 − θ)

βθ + α(1 − θ)
|v′|

)2

+

− |u′|2

}

, (5.4)

where u′ = β(β − α)u and v′ = (β − α)v/2.
In order to prove convexity we will first eliminate as many parameters from F as possible.

It will be convenient to denote

e = v′/|v′|, w = u′/|v′| − e, ν = α/β, ξ = θ + ν(1 − θ). (5.5)

We can also discard the part of F that is linear in θ (or ξ). Thus we need to study convexity
of the function

H(ξ) =
ξ − ν

ξ2
(g(ξ))2

+,

where
g(ξ) = |ξw − e| + ξ − 1.

If θ is between 0 an 1 then ξ is between ν and 1. We need to prove that H(ξ) is convex
in ξ. In the special case when w = e we find that H is identically zero and therefore convex.
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ξ
0

H

ξν

Figure 1: The graph of H(ξ) near ξ0.

From now on we assume that w 6= e. First we show that there exists ξ0 ∈ [ν, 1) such that
H(ξ) = 0 for all ξ ∈ [ν, ξ0] and H(ξ) > 0 for all ξ ∈ (ξ0, 1]. If |w| ≤ 1 then

g(ξ) ≥ 1 − ξ|w|+ ξ − 1 = ξ(1 − |w|) ≥ 0.

If g(ξ) = 0 even for one particular value of ξ ∈ [ν, 1] then w = e, the case we ruled out.
Thus g(ξ) > 0 for all ξ. In that case ξ0 = ν. If |w| > 1 then g(ξ) ≤ 0 is equivalent to

ξ ≤
2(w1 − 1)

|w|2 − 1
,

where w1 = w · e. If
2(w1 − 1)

|w|2 − 1
≥ ν

then

ξ0 =
2(w1 − 1)

|w|2 − 1
< 1,

and H(ξ) behaves as claimed. If
2(w1 − 1)

|w|2 − 1
< ν

then g(ξ) > 0 for all ξ and ξ0 = ν. If ξ0 ∈ (ν, 1) then g(ξ0) = 0 and g(ξ) is smooth around ξ0.
Therefore, the function H(ξ) behaves on the interval [ν, ξ0 + ǫ] as shown in Figure 1 Thus,
in order to prove that H(ξ) is convex it is sufficient to establish convexity of H(ξ) only on
the interval (ξ0, 1). For ξ ∈ (ξ0, 1) we have g(ξ) > 0 and

H(ξ) =
ξ − ν

ξ2
g(ξ)2. (5.6)

We differentiate (5.6) twice keeping g unevaluated and then factor out 2(ξ − ν)/ξ2:

H ′′(ξ) = 2
ξ − ν

ξ2
(gg′′ + ψ(ξ)),
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where

ψ(ξ) = g′2 +
2(2ν − ξ)

ξ(ξ − ν)
gg′ +

ξ − 3ν

ξ2(ξ − ν)
g2.

Obviously, g(ξ) is convex and therefore gg′′ ≥ 0 on (ξ0, 1). We are going to show that ψ(ξ)
is also non-negative. Observe that ψ(ξ) factors:

ψ(ξ) = (g′ −
1

ξ
g)(g′ +

3ν − ξ

ξ(ξ − ν)
g).

Observe also that

(g′ +
3ν − ξ

ξ(ξ − ν)
g) − (g′ −

1

ξ
g) =

2ν

ξ(ξ − ν)
g > 0 (5.7)

Finally, an easy computation involving explicit differentiation of g in ξ yields:

g′ −
1

ξ
g =

ξw1 − 1 + |ξw − e|

ξ|ξw − e|
.

But
|ξw1 − 1| = |(ξw − e) · e| ≤ |ξw − e|.

Thus

g′ −
1

ξ
g ≥ 0

and in view of (5.7), ψ(ξ) ≥ 0. Therefore, H ′′(ξ) ≥ 0 and the lemma is proved.

Now we can finish the proof of Theorem 3. Lemma 4 allows us to justify the interchange
of sup in λ and inf in θ in (5.2). The supremum over λ in (5.2) is a convex lower semi-
continuous functional in θ(x) that varies in a closed, convex and bounded subset of L2(Ω).
Therefore, infimum over θ in (5.2) is attained. Thus, we can apply the min-max theorem
[11, Proposition 2.3] once again and write that

I∗ = inf
φ

sup
λ

∫

Ω

(L(φ, λ) +Q′(∇φ,∇λ))dx, (5.8)

where
Q′(v,u) = min

θ∈[0,1]
Q(θ,v,u). (5.9)

In order to find some information about where the minimum in Q′ is achieved we study the
function F (θ) given by (5.4). This function differs from H(ξ) by a constant multiple and by
an extra linear term −θ|u′|2/β(β − α). If ξ0 from the proof of Lemma 4 is equal to ν and
g(ξ0) > 0 then no matter where the minimum of F is achieved we will always have N > 0,
where N is defined by (5.3). In the remaining cases there exists θ0 ∈ [0, 1] corresponding to
ξ0 via (5.5) such that F (θ) is linear and decreasing on [0, ξ0] and its derivative at θ = θ0 is
−|u′|2/β(β−α) < 0. Therefore, the minimum in (5.9) is always achieved at θ∗ > θ0. But for
all θ > θ0 we have that N > 0. Thus if θ∗(x) is the optimal volume fraction for variational
problem (5.2) then N(θ∗,∇φ,∇λ) > 0. Going back to our analysis in Lemma 3 we conclude
that the minimum in (4.12) is always achieved at a∗ corresponding to a rank-1 laminate.
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We remark that the proof of Theorem 3 holds for the optimal design problems with resource
constraints up to (5.9). If in (5.9) we replace minimization of Q(θ,v,u) with

inf
〈θ〉=γ

∫

Ω

Q(θ(x),∇φ(x),∇λ(x))dx,

then we cannot conclude that the minimizer θ∗(x) > θ0 for all x ∈ Ω. Nevertheless, Tartar
[32] showed that for η in a dense Gδ subset of L2 the optimal microstructure at every point
in a composite must be laminar for a problem with or without resource constraints.
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