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Abstract

We demonstrate that failure of time-invariance assumption in the modeling of

electrochemical systems by equivalent circuits can lead to the formation of low fre-

quency “inductive loops” that manifest themselves as positive imaginary parts of the

impedance function. Assuming that the properties of the equivalent circuits change

slowly in time we perform an asymptotic analysis and obtain a new integral represen-

tation of the impedance function that reduces to the standard one at high frequencies,

while exhibiting inductive loops at low frequencies.

1 Introduction

Electrochemical impedance spectroscopy (EIS) is an indispensable tool to describe complex
electrochemical systems in a unified and graphical way. In this approach any system is
described by a single complex-valued impedance function Z(ω). The basic theory of EIS
[19, 3, 4] says that this function possesses special analytic properties that are most concisely
expressed by the representation

Z(ω) =
1

iC0ω
+

∫ ∞

0

dσ(τ)

1 + iωτ
,

∫ ∞

0

dσ(τ)

1 + τ
< +∞, 0 < C0 ≤ ∞. (1)

Here σ is a positive Borel-regular measure on [0,+∞). It is often convenient to approximate
such measures by linear combinations of delta-functions, resulting in rational approximations
of Z(ω) [1]. Such approximations can be interpreted as impedances of electrical circuits made
of resistors and capacitors only. They are called the equivalent circuit models (ECM). One
easily verifiable feature of the representation (1) is the negativity of the imaginary part of
the impedance function.

The experimentally observed arcs in a Nyquist plot of the impedance with positive imag-
inary part in the low frequency part of the spectrum received the unfortunate moniker of
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an “inductive loop” [12, 8, 23, 21, 10]. It is generally agreed that magnetic effects play no
significant role in the functioning of most electrochemical systems and devices, and even
when they do, the inductive effects manifest themselves at the high end of the frequency
spectrum [7, 16, 6]. The explanation of inductive loops in the current literature [16, 6] by
means of ECMs with negative resistances and capacitances creates more problems than it
solves. If one permits negative resistances and capacitances, then arbitrary “experimental
data” can be matched by such an impedance function with any degree of precision due to
the Riesz theorem (see e.g. [17, 14, 15]). This is not surprising, since it is the passivity of
the system [22, 9, 20], violated by the the negative resistances and capacitances in ECMs,
that are responsible for the possibility of stable reconstruction of the impedance function.

A far more reasonable explanation of the experimental appearance of low frequency in-
ductive loops is the violation of the time-invariance assumption at time scales commensurate
with the inverses of low frequencies. This explanation is semi-explicit in [21, 16, 18], where
specific electrochemical processes altering the properties of the system on slow time scales
are identified.

When the time-invariance assumption is violated the input-output behavior of the system
can no longer be mathematically described by a well-defined impedance function at low fre-
quencies. In this paper we will show that if one applies a particular impedance measurement
procedure, delivering the correct impedance for any time-invariant system, the inductive
loops could be observed in non time-invariant systems.

The goal of this paper is to extend the classical EIS/ECM approach to electrochemical
systems with slowly “drifting” properties. In Section 3 we demonstrate that a single Voigt el-
ement with drifting properties may exhibit an inductive loop. In Section 4 we use asymptotic
analysis to extend the EIS/ECM approach to non time-invariant systems with slowly vary-
ing properties. The resulting impedance representation formula, though more complicated,
may still be used to reconstruct the impedance function values within the frequency band
containing experimental measurements by performing the classical Kramers-Kronig analysis
[2, 5, 11, 20] for high frequency data, while fitting the additional “drift” parameters using
the inductive loop low frequency data.

The paper is organized as follows. In Section 2 we discuss a measurement technique that
gives a good approximation of the true impedance function for time-invariant systems. We
then show in Section 3 that the same measurement technique for non time-invariant Voigt
elements can produce “inductive loop” data. Representing a general non time-invariant
electrochemical system by an ECM with non time-invariant Voigt elements connected in
series, gives us a mathematical model that can be analyzed. An asymptotic analysis applied
to each non time-invariant Voigt element leads us in Section 4 to a generalization of the EIS
theory that reduces to classical formulas at high frequencies and is capable of modeling low
frequency inductive loops.
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2 Impedance measurements

Let us assume that the input signal is the current

I(t) = I0 sin(ωt), t ∈ [0, T (ω)], T (ω) =
2πn(ω)

ω
, (2)

where n(ω) ∈ N should be as large as possible, so that the time T (ω) it takes to make
a measurement is still acceptable to whoever makes the measurements. Of course, this is
an issue only for low frequencies ω. Thus, we can measure the system response only for
frequencies ω ≥ ωmin = 2π/Tmax, where Tmax is the maximal admissible time for making low
frequency measurements. Hence, in the low frequency regime we always choose n(ω) = 1. At
high frequencies we use a different measurement strategy. We choose a fixed measurement
time T0 and set n(ω) =round(T0ω/2π). Hence, for all ω ≥ ωmin we define

n(ω) = max

{
1, round

(
T0ω

2π

)}
, ω ≥ ωmin. (3)

The Fourier transform of I(t) can be computed explicitly, but is an unwieldy expression,
except at the frequency ω of the input sinusoid:

Î(ω) = I0

∫ T (ω)

0

sin(ωt)e−iωtdt =
πI0n

iω
=

I0T (ω)

2i
. (4)

For linear, time-invariant (LTI) systems the output voltage U(t) must satisfy Û(ω) =

Z(ω)Î(ω), where the complex factor Z(ω) is called the impedance. Theoretically, when
I(t) = 0 for t > T (ω), the output voltage is still non-zero. However, in most cases it decays
exponentially fast and can therefore be neglected. In this case we have the approximation

Û(ω) ≈

∫ T (ω)

0

U(t)e−iωtdt. (5)

Since U(t) is measured, formula (5) can be used to estimate Û(ω) and thus, we have the
formula for estimating the impedance from the experimental data:

Z0(ω) =
2i

T (ω)

∫ T (ω)

0

U(t)e−iωtdt. (6)

If we apply formula (6) to an elementary Voigt circuit, consisting of a resistor R and a
capacitor C connected in parallel, we will not get the correct answer

ZV (ω) =
R

iθω + 1
, θ = RC. (7)

Figure 1 shows that Z0 is not a very good approximation for ZV , especially in the intermediate
frequency range. The remedy is to understand this discrepancy and then devise a way to
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Figure 1: Comparison of Z0(ω) and Z(ω) for an elementary Voigt circuit with R = 2kΩ,
C = 200µF .

correct for it. Using the explicit expression for Z0(ω) (which we don’t display here), we
discover that for an elementary Voigt circuit we have

Z0(ω) = ZV (ω)−

(
1

Tω
Im(ZV (ω)) +

i

T
Z ′

V (ω)

)(
1− e−

T
θ

)
, (8)

where Z ′
V (ω) denotes the derivative of ZV (ω) with respect to ω. Since relation (8) between

the measured and the true impedance function of an elementary Voigt circuit is linear, it
extends to all LTI systems.

We recall that in an LTI system the output (voltage U(t)) depends on the input (current
I(t)) via

U(t) = ρ0I(t) +

∫ t

−∞

I(τ)K(t− τ)dτ, (9)

where the function K(s) is called a memory kernel.

Theorem 2.1. Suppose that the memory kernel decays exponentially:

|K(s)| ≤
R0

θ
e−s/θ, s > T0. (10)

for some T0 < T (ω) for all ω. Then

∣∣∣∣Z0(ω)− Z(ω) +
1

Tω
Im(Z(ω)) +

i

T
Z ′(ω)

∣∣∣∣ ≤ R0

(
1 +

θ

T

)
e−T/θ, (11)

where

Z(ω) = ρ0 +

∫ ∞

0

K(s)e−iωsds (12)

is the true impedance of the system.

The proof can be found in Appendix A
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Thus, we are lead to a simple method for estimating the true impedance by making
measurements over a longer time T2 = 2πn2(ω)/ω > T1 = 2πn1(ω)/ω. Then, up to an
exponentially small error we must have

Z(ω) ≈ Zexp(ω) =
T2Z0(ω;T2)− T1Z0(ω;T1)

T2 − T1

. (13)

We still want to require that at high frequencies the time it takes to make a an impedance
measurement is fixed. Let us call it T ′

0, since we still want n1(ω) to be given by (3). In that
case

nmin
2 (ω) = n1(ω) + 1 ≤ n2(ω) ≤ max

{
2, round

(
T ′
0ω

2π

)}
= nmax

2 (ω). (14)

Thus, for measuring very low frequencies we set n1(ω) = 1 and n2(ω) = 2. When ω = 4π/T0

we have n1(ω) = 2, in which case we must require that n2(ω) ≥ 3. It follows that T ′
0 ≥ 3T0/2,

and therefore, nmax
2 (ω) > n1(ω). In practice, the experimenter can choose any integer n2(ω)

satisfying nmin
2 (ω) ≤ n2(ω) ≤ nmax

2 (ω), once the constant T ′
0 ≥ 3T0/2 has been set.

The correction method (13) can be interpreted as a directive to ignore the transient
response over the time interval [0, T1], effectively taking data during time interval [T1, T2].
Indeed, using formula (6), we have

Zexp(ω) =
2i

T2(ω)− T1(ω)

∫ T2(ω)

T1(ω)

U(t)e−iωtdt, T1,2(ω) =
2πn1,2(ω)

ω
. (15)

One convenient choice is n1 = n(ω) and n2 = 2n(ω), where n(ω) is given by (3), so that the
length of the time interval over which the data is taken is still T (ω) = 2πn(ω)/ω.

Theorem 2.2. Under assumptions of Theorem 2.1 we have the estimate

|Zexp(ω)− Z(ω)| ≤
T1

T2 − T1

R0

(
1 +

θ

T1

)
e−T1/θ +R0e

−T2/θ. (16)

The proof can be found is in Appendix A.
To see how formula (15) improves the evaluation of the impedance we take the same

Voigt circuit with R = 2kΩ, C = 200µF , shown in Figure 1, and compare Zexp(ω) and
Z(ω) = ZV (ω). The difference between the Nyquist plots of the two functions can no longer
be visualized as in Figure 1, since it is less that 0.01%, according to numerics, when we
choose n1 = n(ω) and n2 = 2n(ω).

3 Non time-invariant elementary Voigt circuits

In this section we examine elementary Voigt circuits made of a resistor and a capacitor
connected in parallel. Our main assumption is that the parameters R and C of the circuit
do not stay constant, but slowly change in time, instead. We will show that if we apply the
impedance measurement recipe from the previous section to such non time-invariant systems
we may obtain impedance curves with inductive loops.
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3.1 General theory

Let us start by considering an elementary Voigt circuit consisting of a resistor R = R(t) and
a capacitor C = C(t) connected in parallel. In such a circuit we have the Ohm’s laws for
each of the elements

IR(t) =
U(t)

R(t)
, IC(t) = C(t)U̇(t).

Combining this with the Kirchhoff’s law I(t) = IR(t) + IC(t) we obtain the constitutive
relation (i.e. dependence of I(t) on U(t)) in the form

I(t) =
U(t)

R(t)
+ C(t)U̇(t). (17)

Since we use the current as the input we need to solve (17) for U(t):

U(t) =

∫ t

−∞

I(s)

C(s)
exp

{
−

∫ t

s

dx

θ(x)

}
ds, θ = RC. (18)

The quantity θ is called the relaxation time of the Voigt circuit. Formula (15) gives the
experimentally measured “impedance” of a simple Voigt circuit with non time-invariant
elements:

Zexp(ω) =
2i

∆T

∫ T2

T1

e−iωt

∫ t

0

sin(ωs)

C(s)
exp

{
−

∫ t

s

dx

θ(x)

}
dsdt, ∆T = T2 − T1. (19)

For future reference we also have the following formula for the impedance of a non time-
invariant capacitor and resistor

ZC
exp(ω) =

2i

∆T

∫ T2

T1

e−iωt

∫ t

0

sin(ωs)

C(s)
dsdt =

2

∆Tω

∫ T2

T1

(e−iωt − 1)
sin(ωt)

C(t)
dt, (20)

ZR
exp(ω) =

2i

∆T

∫ T2

T1

e−iωtR(t) sin(ωt)dt. (21)

3.2 Explicit non time-invariant models

Let us now examine a particular model of the time dependence of R(t) and C(t). We assume
that R and C undergo an “exponential drift” from R− (resp. C−) at t = −∞ to R+ (resp.
C+) at t = +∞:

R(t) =
aR− +R+e

t/τ

a+ et/τ
, C(t) =

bC− + C+e
t/τ

b+ et/τ
, a, b > 0. (22)

The evolution law for R(t) is governed by two parameters: the time scale τ and the “current
position” a > 0 that tells us how far along R(t) is on the way from R− to R+. It is in 1-1

6



correspondence with R(0). The value a = 1 means R(0) is exactly half-way between R+ and
R−. Exact same comments apply to C(t). It is easy to calculate explicitly

−

∫ t

s

dx

θ(x)
=

τ

θ+

(
s− t

τ
+ κC ln

(
ρCe

−s/τ + 1

ρCe−t/τ + 1

)
+ κR ln

(
ρRe

−s/τ + 1

ρRe−t/τ + 1

))
, (23)

where

κC =
(a− ρC)(b− ρC)

ρC(ρC − ρR)
, κR =

(a− ρR)(b− ρR)

ρR(ρR − ρC)
, ρR =

aR−

R+

, ρC =
bC−

C+

, ρR 6= ρC .

We note a relation

κC + κR = 1−
θ+
θ−

, θ± = C±R±. (24)

If ρR = ρC = ρ, then

−

∫ t

s

dx

θ(x)
=

τ

θ+

(
s− t

τ
+ α ln

(
ρe−s/τ + 1

ρe−t/τ + 1

)
+

β(e−s/τ − e−t/τ )

(ρe−s/τ + 1)(ρe−t/τ + 1)

)
, (25)

where

α = 1−
θ+
θ−

, β =
(a− ρ)(b− ρ)

ρ
.

A different drift model

R(t) = R0e
−t/τ +R∞(1− e−t/τ ), C(t) = C0e

−t/τ + C∞(1− e−t/τ ) (26)

is a limiting case of our model (22) with R+ = R∞, C+ = C∞, and

a, b → 0, R−, C− → ∞, aR− → R0 −R∞, bC− → C0 − C∞.

In this limit, however, the restriction that R− and C− are positive are no longer required,
since R(t) and C(t) are required to be positive only for t ≥ 0. In this drift model we can
still use (23) with

ρR →
R0

R∞

− 1, ρC →
C0

C∞

− 1, κR →
ρR

ρR − ρC
, κC →

ρC
ρC − ρR

,

provided ρR 6= ρC . If ρR = ρC = ρ, then we use formula (25) with α = 1 and β = ρ.
Once,

∫ t

s
θ(x)−1dx has been evaluated, we compute

U(t) =
I0
C+

∫ t

0

sin(ωs)
1 + be−s/τ

ρCe−s/τ + 1
exp

{
−

∫ t

s

dx

θ(x)

}
ds. (27)

The experimenatally measured impedance Zexp(ω) is then computed by means of formula
(15). The numerical evaluation of Zexp(ω) presents several challenges, since parameter τ
must be very large, relaxation times θ± are typically very small and ω can range from
10−6Hz to 106Hz, making some integrands highly oscillatory. These issues are addressed in
Appendix B. Figure 2 shows an inductive loop in the Nyquist impedance plot of a non time-
invariant Voigt element, with R(t) and C(t) given by (22), where R+ = 0.4kΩ, R− = 2kΩ,
a = 10, C+ = 1.6mF , C− = 0.8mF , b = 6, τ = 600s. The figure shows that at high
frequencies the impedance is very well captured by the impedance of the time-invariant
Voigt element with R = R(0), and C = C(0).
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Figure 2: An inductive loop in a non time-invariant Voigt element.

4 Slow parameter drift asymptotics

Assume that 1/τ = ǫ is a small parameter and that ω = ǫΩ, where the rescaled frequency Ω is
assumed to be fixed. We need to find the asymptotics of Z(ǫΩ) as ǫ → 0 and see if ℑ(Z(ǫΩ))
can indeed be positive. We now assume that R(t) = R0(ǫt) and C(t) = C0(ǫt), where R0(x)
and C0(x) are strictly positive, bounded smooth functions with bounded first derivatives on
R. Our goal is not only to obtain the asymptotics of Z(ω), defined by (6), as ǫ → 0, but
estimate the error between the actual impedance and its asymptotic approximation. We
obtain for the elementary Voigt circuit, using (18)

Zǫ(ω) =
2i

∆T

∫ T2

T1

e−iωt

∫ t

0

sin(ωs)

C0(ǫs)
exp

{
−

∫ t

s

dτ

θ(ǫτ)

}
dsdt, ∆T = T2 − T1.

When the drift time scale τ = 1/ǫ is large, the formula for Zǫ(ω) above can be simplified:

Zǫ(ω) =
iΩ

π∆n(ω)

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

e−iΩη
Im

(
R0(η)e

iΩη

1 + iωθ0(η)

)
dη +O(ǫ), (28)

where the order ǫ error O(ǫ) is uniform over the entire frequency spectrum.
Formula (28) shows that if the functions θ0(η) and R0(η) are constants, then the ap-

proximation becomes exact, as it reduces to the classical impedance of the elementary Voigt
circuit. One more simplification is possible in the asymptotics ǫ → 0. Specifically, we can
replace θ0(η) by θ(0) in (28). Our final asymptotics is

Z∗
ǫ (ω) = Z(ω,Ω) =

iΩ

π∆n(ω)

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

e−iΩη
Im

(
R0(η)e

iΩη

1 + iωθ0(0)

)
dη. (29)

For numerical evaluation of (29) we choose n1 = n(ω), n2 = 2n(ω) and change variables
of integration η = sn/Ω. Then, using the representation Im(z) = (z − z)/2i we obtain the
formula we use in the Matlab code to make Fig. 3:

Z∗
ε (ω) =

1

2π

∫ 4π

2π

R0

(
sn
Ω

)

1 + iωθ0(0)
ds−

1

2π

∫ 4π

2π

R0

(
sn
Ω

)
e−2ins

1− iωθ0(0)
ds. (30)
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Figure 3: The quality of the asymptotics of an inductive loop.

For the model (22) we compute

1

2π

∫ 4π

2π

R0

(sn
Ω

)
ds = R+ +

(R+ −R−)Ω

2πn
ln

(
1 +

a(e−
4πn
Ω − e−

2πn
Ω )

1 + ae−
2πn
Ω

)
.

In the high frequency regime

R0

(sn
Ω

)
= R0

(
ǫsT0

2π

)

We can therefore, use a linear approximation R0(x) ≈ bR+mRx, when x ∈ [ǫT0, 2ǫT0], where
the parameters bR and mR are found from the least squares fit. In that case

1

2π

∫ 4π

2π

R0

(sn
Ω

)
e−2insds ≈

imR

2Ω
.

Figure 3 shows the Nyquist plot of Z∗
ǫ (ω) superimposed on the computed “measured”

impedance corresponding to the model (22). The difference between the two graphs is
not detectable at the scale of the entire Nyquist plot, shown in the left panel of the figure.
The right panel shows the blown-up portion of the plot containing the inductive loop. The
overall relative error of the asymptotic approximation (29) is about 0.1%. In the figure we
used (22) with the same parameter values as in Figure 2.

Now, if we have a general electrochemical system exhibiting parameter drift, then the
measured impedance can be represented as

Zexp(ω) =
iΩ

π(n2(ω)− n1(ω))

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

e−iΩη
Im
(
Z(ω, η)eiΩη

)
dη +O(ǫ), (31)

where for each η ∈ R the function ω 7→ Z(ω, η) is a classical (instantaneous) impedance
function, provided there is no leading capacitance in the ECM. In the presence of the leading
capacitance, the term

ZC
exp(ω) =

iΩ

π(n2(ω)− n2(ω))

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

(e−iΩη − 1)
sin(Ωη)

iωC0(η)
dη

must be added to the right-hand side of (31).
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If we approximate the instantaneous impedance function Z(ω, ǫt) by a finite Voigt circuit
ECM [1]

Z(ω, η) = R0(η) +
N∑

j=1

Rj(η)

1 + iωθ(η)
,

then, up to a uniform, over the entire spectrum, order ǫ error, we have

Zexp(ω) =
iΩ

π(n2(ω)− n1(ω))

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

e−iΩη
Im
(
Z0(ω, η)eiΩη

)
dη +O(ǫ), (32)

where

Z0(ω, η) = R0(η) +
N∑

j=1

Rj(η)

1 + iωθ(0)
. (33)

If Rj(η) in (33) are modeled according to (26),

Rj(η) = Rj(0) + ∆Rj

(
1− e−µjη

)
, j = 0, . . . , N, (34)

then the integral in (32) can be computed explicitly:

Zexp(ω) =
N∑

j=0

{
Rj(0) + ∆Rj

1 + iωθj(0)
+ ∆RjF

(ǫµj

ω
, ωθj(0)

)}
+O(ǫ), (35)

where θ0 = 0, and

F (W, v) = i
e−2πn1W − e−2πn2W

π(n2 − n1)W

v(W + i)− 1

(1 + v2)(W + 2i)
.

Typically, one would choose n1(ω) = n(ω) and n2(ω) = 2n(ω), where n(ω) is given by (3).
At low frequencies n(ω) = 1, while at high frequencies 2πn(ω)/ω can be replaced with a
constant T0.

5 Conclusions and discussion

In this paper we have proposed an explanation of the inductive loop phenomena observed
in experiments. The hypothesis is that the act of the impedance measurement of an elec-
trochemical system might speed up slow processes, such as corrosion and charge diffusion,
altering the properties of the system on time scales commensurate with the inverses of the fre-
quencies at which the impedance is measured. The modeling and analysis of these processes
can lead to specific drift laws that can be used to validate our general theory.

A natural question is whether our theory makes it apparent how the time-dependent
nature of the system causes the occurrence of inductive loops. By way of the answer we refer
to formula (30) and set ω = 0, n(ω) = 1. Then we obtain

Im(Z(ǫΩ)) ≈
1

2π

∫ 4π

2π

R0

( s
Ω

)
sin(2s)ds (36)
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While R0(u) is a strictly positive, smooth real function, the sign of the integral in (36) is
the outcome of balancing positive and negative contributions of the oscillatory integrand.
For example, if R0(u) is a decreasing function, then positive contributions will always be
larger than the negative ones and inductive loops will be present. Conversely, if R0(u) is an
increasing function, no inductive loops will be produced. If the slowly oscillating sinusoidal
current input causes a corresponding in-phase oscillation of R0, the inductive loop effect
could be several times stronger.

One open question, not directly addressed in the paper is capturing the time scale τ
over which the system’s properties change. A crude estimate would be the inverse frequency
at which the imaginary part of the impedance hits zero. For example, in the simulation
corresponding to Figure 2 the time scale τ = 600s, while 2π/ω0 = 610s, where Im(Z(ω0)) =
0. Our simulation of the time-dependent elementary Voigt circuit shows that the deviations
from the classical model start at frequencies ω as large as two orders of magnitude over
τ . They become vividly pronounced at frequencies on the order of 1/τ and persist over
frequencies an order of magnitude lower.

Finally, whether or not the inductive loop data can give additional information about the
system beyond the time scale τ depends on whether the drift model (34) is acceptable. In
this case one should be able to use the algorithm in [13] applied to the high frequency data
to compute parameters Rj(0), θj(0) and N . The intermediate and low frequency data can
then be used in a non-linear least squares fit to to estimate drift parameters µj and ∆Rj.
Future research into the inductive loops should address these questions.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DMS-2005538.

A Mathematical proofs

A.1 Proof of Theorem 2.1 and 2.2

For I(t) = χ[0,T (ω)](t) sin(ωt) we have, making a change of variables s = t− τ ,

U(t) = ρ0 sin(ωt) +

∫ t

0

K(s) sin(ω(t− s))ds, 0 ≤ t ≤ T (ω).

We can then write

U(t) = ρ0 sin(ωt) +

∫ ∞

0

χ(s,+∞)(t)K(s) sin(ω(t− s))ds,

so that we can substitute this into (6) and switch the order of integration. We obtain

Z0(ω) = ρ0 +
2i

T (ω)

∫ T (ω)

0

K(s)

(∫ T (ω)

s

sin(ω(t− s))e−iωtdt

)
ds.

Computing the inner integral we obtain

Z0(ω) = ρ0 +

∫ T (ω)

0

K(s)

(
e−iωs −

ωse−iωs − sin(ωs)

2πn

)
ds.

11



Using formula (12) for the true impedance, we compute

Z(ω)−
1

2πn(ω)
Im(Z(ω))−

iω

2πn(ω)
Z ′(ω) = ρ0 +

∫ ∞

0

K(s)

(
e−iωs +

sin(ωs)− ωse−iωs

2πn

)
ds.

Therefore

Z(ω)−
Im(Z(ω))

ωT (ω)
−

i

T (ω)
Z ′(ω)−Z0(ω) =

∫ ∞

T (ω)

K(s)

(
e−iωs +

sin(ωs)− ωse−iωs

2πn

)
ds. (37)

For s ≥ T (ω) = 2πn/ω we have ωs ≥ 2πn. Denoting x = ωs and A = 1/(2πn), we estimate

|e−ix + A(sin x− xe−ix)| ≤ |1− Ax|+ A = Ax− 1 + A ≤ Ax,

since Ax ≥ 1 and A ≤ 1/(2π) < 1. Hence,

∣∣∣∣Z0(ω)− Z(ω) +
Im(Z(ω)) + iωZ ′(ω)

2πn(ω)

∣∣∣∣ ≤
1

T (ω)

∫ ∞

T (ω)

s|K(s)|ds.

Using the exponential decay (10) of the memory kernel we obtain the estimate

∣∣∣∣Z0(ω)− Z(ω) +
Im(Z(ω)) + iωZ ′(ω)

2πn(ω)

∣∣∣∣ ≤ R0

(
1 +

θ

T (ω)

)
e−

T (ω)
θ , (38)

proving (11).
Let us now prove Theorem 2.2. We compute,

Zexp(ω)− Z(ω) =
T1

T2 − T1

∫ T2

T1

K(s)

(
e−iωs +

sin(ωs)− ωse−iωs

2πn1

)
ds−

∫ ∞

T2

K(s)e−iωsds.

Uisng estimate (38) we obtain

|Zexp(ω)− Z(ω)| ≤
T1(ω)

T2(ω)− T1(ω)
R0

(
1 +

θ

T1(ω)

)
e−

T1(ω)
θ +R0e

−
T2(ω)

θ .

A.2 Proof of the asymptotic foormula (31)

Let us analyze the asymptotic behavior of Zǫ(ω). We first change variables in the innermost
integral σ = ǫτ :

Zǫ(ω) =
2i

∆T

∫ T2

T1

e−iωt

∫ t

0

sin(ωs)

C0(ǫs)
exp

{
−
1

ǫ

∫ ǫt

ǫs

dσ

θ(σ)

}
dsdt.

Next we change variables ξ = ǫs in the integral with respect to the s variable:

Zǫ(ω) =
2i

∆Tǫ

∫ T2

T1

e−iωt

∫ tǫ

0

sin(ωξ/ǫ)

C0(ξ)
exp

{
−
1

ǫ

∫ ǫt

ξ

dσ

θ(σ)

}
dξdt.

12



Finally, we change variables in the outermost integral η = ǫt:

Zǫ(ω) =
2i

∆Tǫ2

∫ T2ǫ

T1ǫ

e−iΩη

∫ η

0

sin(Ωξ)

C0(ξ)
exp

{
−
1

ǫ

∫ η

ξ

dσ

θ(σ)

}
dξdη,

where Ω = ω/ǫ could be large, when ω is not very small, but could also be of order 1, when
ω is of order ǫ.

The main approximation idea is to realize that

Eǫ(ξ, η) = exp

{
−
1

ǫ

∫ η

ξ

dσ

θ(σ)

}

is exponentially small when η− ξ is not very small. However, when η ≈ ξ, then θ(σ) ≈ θ(η),
which means that

Eǫ(ξ, η) ≈ E0
ǫ (ξ, η) = exp

{
−
η − ξ

θ(η)ǫ

}
.

To make this approximation quantitative we use the inequality

ex2 − ex1

x2 − x1

< emax{x1,x2},

which is a consequence of convexity of the exponential function. Hence,

|Eǫ(ξ, η)− E0
ǫ (ξ, η)| ≤

Lθ−1(η − ξ)2

2ǫ
exp

{
−
η − ξ

Mθǫ

}
= ǫLB

(
η − ξ

ǫ

)
,

where

Mθ = max
t∈R

θ(t), Lθ−1 = max
t∈R

∣∣∣∣
(

1

θ(t)

)′∣∣∣∣ , B(x) =
x2

2
exp

{
−

x

Mθ

}
.

Thus, we can replace Zǫ(ω) with its approximation

Z(1)
ǫ (ω) =

2i

∆Tǫ2

∫ T2ǫ

T1ǫ

e−iΩη

∫ η

0

sin(Ωξ)

C0(ξ)
E0

ǫ (ξ, η)dξdη.

Moreover, we also have

|Zǫ(ω)− Z(1)
ǫ (ω)| ≤

2Lθ−1

mC∆Tǫ

∫ T2ǫ

T1ǫ

∫ η

0

B

(
η − ξ

ǫ

)
dξdη,

where
mC = min

t∈R
C(t).

Changing variables in the inner integral x = (η − ξ)/ǫ we obtain

|Zǫ(ω)− Z(1)
ǫ (ω)| ≤

2Lθ−1ǫ

mC

∫ ∞

0

B(x)dx =
ǫM3

θLθ−1

mC

.
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The function E0
ǫ (ξ, η) is exponentially small when ξ is not very close to η. However, when ξ

is very close to η we can replace C0(ξ) with C0(η). Hence we have

Z(1)
ǫ (ω) ≈ Z(2)

ǫ (ω) =
2i

∆Tǫ2

∫ T2ǫ

T1ǫ

e−iΩη

C0(η)

∫ η

0

sin(Ωξ)E0
ǫ (ξ, η)dξdη.

Moreover,

|Z(1)
ǫ (ω)− Z(2)

ǫ (ω)| ≤
2LC−1

∆Tǫ2

∫ T2ǫ

T1ǫ

∫ η

0

(η − ξ) exp

{
−
η − ξ

ǫMθ

}
dξdη,

where

LC−1 = max
t∈R

∣∣∣∣
(

1

C(t)

)′∣∣∣∣ .

Changing variables x = (η − ξ)/ǫ in the inner integral we obtain the bound

|Z(1)
ǫ (ω)− Z(2)

ǫ (ω)| ≤
2LC−1

∆T

∫ T2ǫ

T1ǫ

∫ ∞

0

x exp

{
−

x

Mθ

}
dxdη = 2LC−1M2

θ ǫ.

Now, the inner integral in Z
(2)
ǫ (ω) can be evaluated explicitly:

∫ η

0

sin(Ωξ) exp

{
−
η − ξ

θ(η)ǫ

}
dξ =

ǫθ sin(Ωη)− ǫ2θ2Ωcos(Ωη) + ǫ2θ2Ωe−η/(ǫθ)

1 + ǫ2θ2Ω2
.

We observe that the first two terms can be combined nicely, and

Z(2)
ǫ (ω) =

2i

∆Tǫ

∫ T2ǫ

T1ǫ

e−iΩη
Im

(
R0(η)e

iΩη

1 + iωθ0(η)

)
dη +∆ǫ(ω) = Z(3)

ǫ (ω) + ∆ǫ(ω),

where

∆ǫ(ω) =
2iΩ

∆T

∫ T2ǫ

T1ǫ

e−iΩη θ2e−η/(ǫθ)

C0(η)(1 + ǫ2θ2Ω2)
dη.

We estimate

|∆ǫ(ω)| ≤ 2Ωǫ max
η∈[T1ǫ,T2ǫ]

θ(η)2e−η/ǫθ(η)

C0(η)(1 + ǫ2θ(η)2Ω2)
≤ MRe

−T1/Mθ .

Z
(3)
ǫ (ω) can be written as a two-scale impedance function (28).
In order to prove a simplified formula (29) we estimate

|Z(3)
ǫ (ω)− Z∗

ǫ (ω)| ≤
Ω

π∆n(ω)

MRLθ

1 +m2
θω

2

∫ 2πn2(ω)/Ω

2πn1(ω)/Ω

ωηdη =
2πǫ(n1 + n2)MRLθ

1 +m2
θω

2
.

If we choose n1 = n and n2 = 2n, then in the regime n(ω) = 1 we get the bound

|Z(3)
ǫ (ω)− Z∗

ǫ (ω)| ≤ 6πǫMRLθ.
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If n(ω) > 1, then n(ω) = T0ω/2π, and we obtain

|Z(3)
ǫ (ω)− Z∗

ǫ (ω)| ≤
3ǫT0ωMRLθ

1 +m2
θω

2
≤

3ǫT0MRLθ

2mθ

.

Hence, we obtain a uniform in the entire spectrum bound

|Zǫ(ω)− Z∗
ǫ (ω)| ≤ Mǫ

for some constant M that depends on the parameter functions R0(s) and C0(s), and that
scales like Rθ.

B Numerical evaluation of the impedance in explicit

drift models

The key to the effective numerical computation of Zexp(ω) for explicit drift models (22)
and (26) is a non-dimensionalization of all quantities. We therefore begin by rescaling the
variable of integration in the definition (19) of Z(ω), t = nt̂/ω.

Z(ω) =
i

I0π

∫ 4π

2π

U

(
nt̂

ω

)
e−int̂dt̂,

where we have chosen n1 = n(ω), n2 = 2n(ω), and where n(ω) is given by (3). We then
observe that U(t) has the form

U(t) =
I0
C+

∫ t

0

sin(ωs)f
(s
τ

)
e

τ
θ+
[g( s

τ )−g( t
τ )]ds, (39)

where

f(u) =
be−u + 1

ρCe−u + 1
, g(u) = u+ κR ln(ρRe

−u + 1) + κC ln(ρCe
−u + 1),

provided ρC 6= ρR. If ρC = ρR = ρ, then we use

g(u) = u+ α ln(ρe−u + 1)−
β

ρ(ρe−u + 1)
.

We therefore, rescale the variable of integration s = nŝ/ω in (39):

U

(
nt̂

ω

)
=

I0n

C+ω

∫ t̂

0

sin(nŝ)f

(
nŝ

ωτ

)
e

τ
θ+
[g( nŝ

ωτ )−g( nt̂
ωτ )]dŝ

Hence, we obtain the formula we use in our Matlab code

Z(ω) =
in

πC+ω

∫ 4π

2π

e−int̂

(∫ t̂

0

sin(nŝ)f

(
nŝ

ωτ

)
e

τ
θ+
[g( nŝ

ωτ )−g( nt̂
ωτ )]dŝ

)
dt̂. (40)
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In the frequency band where n(ω)/ω ≈ T0, we approximate, assuming that τ is large,

f

(
nŝ

ωτ

)
≈ bf +mf

nŝ

ωτ
, g

(
nŝ

ωτ

)
≈ bg +mg

nŝ

ωτ
,

where the slopes mf and mg, and intercepts bf and bg are found from linear least squares fits
of f(x) and g(x), x ∈ [T0/τ, 2T0/τ ]. Then, all integrals in (40) can be computed explicitly.
Up to exponentially small terms

Z(ω) ≈
bfR+

mg + iωθ+
+

1

2ωτ

mfR+

mg + iωθ+

(
3T0ω + 3i−

4im2
g

m2
g + ω2θ2+

)
, n(ω) > 1,

where in the final expression we replaced n(ω) with T0ω/(2π), which is valid exactly in the
high frequency regime.
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