
Exact relations for effective moduli of polycrystals.

1 Hilbert Space formalism.

Composite materials play an increasingly important role in our everyday life and
technology from skis and golf clubs to sensors and actuators in high tech components.
By “composite” we mean a perfectly bonded homogeneous mixture of two or more
materials on a length scale much smaller than human size and much larger than inter-
atomic distances. The physical properties of a composite (conducting, elastic, etc.)
are described by a tensor—the effective tensor of a composite. In order to create a
composite with desired properties two basic problems become important: prediction
of the effective tensors of composite materials and determination of the properties of
a given composite by as few measurements as possible.

The principal difficulty in prediction is the universally recognized fact that the
effective tensors of composites in general depend on the microstructure (spatial ar-
rangement of component materials). Therefore, the object of importance is the set
of all possible effective properties of a composite made with given materials taken in
prescribed volume fractions (a so called G-closure set). Unfortunately, aside from a
few particular cases the G-closures are extremely difficult to compute analytically.

Usually a G-closure has a non-empty interior in the space of all tensors of appropri-
ate type and may be described by a set of inequalities. On rare occasions researchers
have found that a G-closure has empty interior, i.e. becomes part of a hyper-surface.
The equations describing such a hyper-surface are called exact relations for effective
moduli of a composite. We will also use the same term for the hyper-surface itself.

When an exact relation is present the variability of an effective tensor with the
microstructure is affected drastically: at or near an exact relation the efforts of achiev-
ing certain properties by varying the microgeometry may be futile. At the same time
the number of expensive measurements needed to determine material moduli may be
significantly reduced. For such important materials as piezoelectrics the number of
constants needed for its description is 45 in general but it is only 9 on a 9-dimensional
exact relation.

There is a large plethora of known exact relations in various contexts (too large to
give a fair list of references). The two most famous ones are Keller-Dykhne-Mendelson
relation for 2-D conductivity: detσ∗ = const, [4, 16, 18], and Hill’s result for elasticity
that a mixture of isotropic materials with the fixed shear modulus is isotropic with
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the same shear modulus [13, 14]. All previously known exact relations have been
discovered by methods specific to particular applications. These methods were not
easily adaptable to every physical context and they by no means guaranteed that
there would be no more exact relations. Amazingly, there is a universally applicable
method that can produce a complete list of exact relations in virtually every setting.

Let us begin by reviewing the Hilber space formalism for equilibrium equations
in non-homogeneous media [21] (see also [3, 9, 15, 17, 25, 30] for similar formal ap-
proaches). Assume for simplicity that we are dealing with spatially periodic composite
with the period cell Q = [0, 1]3. The intensity fields and fluxes in the body take their
values in a certain finite dimensional tensor space T . For example, electric fields and
currents are vectors, so T = R3 for conductivity. All intensity fields and fluxes will be
assumed to belong to the ambient Hilbert space H = L2(Q)⊗T in addition to satis-
fying appropriate differential constraints, which place them in a corresponding closed
subspace of H. For example, electric fields belong to the subspace of curl-free fields,
while currents belong to the subspace of divergence-free fields, according to Maxwell’s
equations. In general the Hilbert space is split in the orthogonal sum H = E ⊕J ⊕U ,
where E and J are the subspaces of mean zero intensity fields and fluxes respectively,
and U ∼= T is the subspace of uniform fields. The orthogonal projection operator
Γ onto E is a pseudo-differential operator of degree zero and symbol Γ(~k), that is
an orthogonal projection operator onto a subspace Ê~k of T . Local properties of the
composite will be described by an L∞ mapping C(x) of Q into Sym(T ), the space of
symmetric operators on T . The function C(x) can also be viewed as an operator C
mapping L2(Q)⊗ T into L2(Q)⊗ T : for any f ∈ L2(Q)⊗ T

(Cf)(x) = C(x)f(x).

This formalism allows one to define effective properties of a composite with local
positive definite tensor C(x). Given e0 ∈ U , find unique e ∈ E ⊕ U and j ∈ J ⊕ U
such that 〈e〉 = e0 and j = Ce, where 〈e〉 denotes the mean value of e over the period
cell Q. Once this cell problem is solved we define

〈j〉 = C∗e0.

If one knows the solution for n =dimT linearly independent tensors {e1, . . . , en} ⊂ U ,
then C∗ will be completely determined.

One of the key tools is the Milton’s W-transformation [21] (independently derived
by Zhikov [31]). Let C0 be a reference medium and let Γ′(~n) denote the orthogonal

projection onto C
1/2
0 Ê~n. Define

W~n(C) =
[
(I − C−1/2

0 CC
−1/2
0 )−1 − Γ′(~n)

]−1
.

This transformation maps lamination formula [6, 28] into a convex combination.
Namely, if C∗ is an effective tensor of a laminate made with materials C1 and C2

taken in volume fractions θ1 and θ2 with lamination normal ~n then

W~n(C∗) = θ1W~n(C1) + θ2W~n(C2) (1.1)
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(see also [1, 27, 29] for other functions mapping lamination formula into convex com-
binations). A corollary is that for any direction ~n a W~n-image of any set stable under
lamination must be a convex set. The idea to use this property to study geometry of
sets stable under lamination is due to Francfort and Milton [5].

2 Main Ideas.

Now we are ready to describe our method. Suppose that we have a hyper-surface
in Sym(T ) that is stable under homogenization. Then it must also be stable under
lamination and its W~n-image must be convex. In addition the W-map is a diffeomor-
phism, so it maps k-dimensional hyper-surfaces (or simply k-surfaces) into k-surfaces.
But a convex k-surface must be a part of a k-plane. Thus we need to identify all those
k-surfaces that are mapped into planes by the Milton’s W-transformation. In fact
it will be easier to identify the corresponding k-planes. Once this is done the exact
relation is obtained by taking inverse of the W map. To make life a little easier we
may choose the reference medium C0 to lie on the exact relations manifold. Then
the k-planes will in fact be k-dimensional subspaces of Sym(T ). Let us denote such
a subspace by Π.

We may also make an additional very natural assumption that we do not restrict
the spatial orientation of the constituent materials. A composite with this property
is called a polycrystal. Then the sought after surfaces must possess an additional
property of rotational invariance. In most physical contexts the subspaces E and J
possess a rotational invariance property as well:

Γ(R · ~n) = R · Γ(~n), (2.2)

where R· denotes natural action of the rotation group SO(3) on the appropriate
tensor space. This natural assumption facilitate the analysis by making methods
from representation theory of the rotation group SO(3) relevant. The transformed
tensor Γ′ will also satisfy (2.2) if we choose C0 to be isotropic.

In order to formulate our first result we introduce a rotationally invariant subspace

A = Span{R · Γ′ −Q · Γ′ : R,Q ∈ SO(3)}, (2.3)

where Γ′ = Γ′(~e1), for example. The following theorem is proved in [10] in a slightly
different form.

Theorem 1 A subspace Π corresponds to an exact relation stable under lamination
if and only if it is rotationally invariant and satisfies

(ΠAΠ)sym ⊂ Π, (2.4)

where the product of subspaces is understood as a linear span of all possible products
of elements from the respective subspaces and Xsym is a subspace of all symmetric
matrices in X.
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This theorem can be used to identify all possible exact relations in a given phys-
ical context. The rotational of Π allows to use methods from the representation
theory of the rotation group SO(3), [12], and significantly reduce the dimensionality
of equations (2.4).

All physically interesting spaces correspond to problems that couple n0 scalar
fields, n1 electric fields and n2 elastic fields:

T = Rn0 ⊗ 1⊕ Rn1 ⊗ R3 ⊕ Rn2 ⊗ Sym(R3). (2.5)

Unfortunately, in general the number of rotationally invariant subspaces is infinite and
has quite a few parameters. So, the simpleminded checking of all possible cases is not
possible in problems larger than 3-D elasticity. Therefore, we need to understand the
algebraic structure of (2.4) in order to proceed. One useful observation is that if the
subspaces X and Y are rotationally invariant then so is XY . Then one can try to
identify the resulting subspace in the complete classification of rotationally invariant
subspaces. This approach allows us to handle many parameters in a systematic
algebraic fashion. We hope to create a Maple program that produces a list of exact
relations for any given problem in finite time.

Another important question is about stability under homogenization. We have
proved the following theorem [11]:

Theorem 2 Let Π′ be a rotationally invariant subspace in End(T ), the set of all
linear maps of T into T , such that

Π′AΠ′ ⊂ Π′. (2.6)

Then the subspace Π of symmetric operators in Π′ corresponds to an exact relation
stable under homogenization.

It is known [23] that there are sets closed under lamination yet not closed under
the homogenization. It is not yet known if there are exact relations that are stable
under lamination but not under homogenization. The practical utility of (2.6) is
similarly limited by the infinite number of invariant subspaces. Again, a theoretical
understanding of the nature of (2.6) becomes necessary. For example (2.6) implies
that Π′A is an algebra and a rotationally invariant subspace at the same time.

We have applied the above theory to two and three dimensional elasticity ob-
taining a complete list of exact relations [12] and confirming their stability under
homogenization [11]. We have also looked at two and three dimensional piezoelectric-
ity and obtained a partial list of exact relations [12] and showed their stability under
homogenization [11]. At present we don’t know if there are any more piezoelectric
exact relations. It is important to be able to treat situations with coupled fields, the
richest source of numerous exact relations [2, 7, 8, 19, 20, 24, 26], because they often
can be thought of as correspondences between different physical problems.

Another possible direction of investigation is using rotational invariance together
with methods of Francfort and Milton [5] to improve on their result for sets stable
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under lamination and having non-empty interior. The problem can be formulated
as looking for a convex function H(W ) such that h(C) = H(W (C)) is rotationally
invariant. Then all sets Lc = {C : h(C) < c} will be stable under lamination. For
the case of conductivity, the rotational invariance can be shown to be equivalent to

h(C) = F (Tr(C), . . . ,Tr(Cn)),

where F is a smooth function of n variables. Convexity can be ensured locally by
requiring ∇∇H(W0) > 0 at a fixed point W0 = W (C0). This results in a set of
inequalities for some constants involving F and its derivatives at a point. It is still
not clear how to investigate stability under homogenization of such sets.

There is a natural connection between sets stable under lamination and quasi-
convex translations [22]. We would like to explore this connection in our particular
case of exact relations (that don’t quite fit in the framework of [22]) as well as in the
case of conducting polycrystals. The rotational invariance of the set entails rotational
invariance properties of the translations, cutting the number of free parameters (a
major nuisance for the translation method) significantly. It is still not clear whether
these translation can be used to prove stability under homogenization.
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