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Abstract

In this paper we will review and extend the results of [21], which covered the case
of 3D thermo-piezoelectric polycrystals. In that context the settings of conductivity,
elasticity, pyroelectricity, piezoelectricity, thermo-electricity and thermo-elasticity can
be viewed as particular cases. We will consider a class of composites more general
than polycrystals, where the set of allowable materials is not constrained in any way.
In addition, the tensors of material properties are not assumed to be symmetric—an
assumption we made in [21]. For example, the Hall effect for conduction in a weak
magnetic field is described by a non-symmetric conductivity tensor. We explain the
step-by-step process of finding all exact relations for the simple example of 2D Hall
effect. The paper concludes with a discussion of new algebraic and geometric questions
posed by the theory of exact relations.

1 Introduction

Composite materials play an increasingly important role in our everyday life and technology.
They are used everywhere from skis and golf clubs to sensors and actuators in high tech
components. By “composite” we mean a perfectly bonded mixture of two or more materials,
where the mixing occurs on length scales much smaller than the human size but much larger
than the inter-atomic distances. The physical properties of a composite (thermal, electric,
elastic, etc.) are described by a tensor—the effective tensor of a composite. In order to create
a composite with desired properties two basic problems become important: prediction of the
effective properties of composite materials and determination of the effective tensor of a
given composite by as few measurements as possible.
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The problem of analytical prediction of effective properties of composite materials is
important for both practical and theoretical points of view. Understanding the effective
behavior mathematically may help save many costly and time consuming measurements,
or may prevent spending time and money on many trial-and-error approaches to material
design. Recent years have seen a lot of success in that direction. I would like to describe
in this chapter a theory of exact relations for effective moduli of composites. The theory
combines algebra, geometry, analysis and mechanics in a beautiful symbiosis. It also achieves
a high level of generality encompassing conductivity, elasticity, piezo-electricity and many
other coupled problem contexts. The theory and many of the physical results of this paper
are also discussed in the new book by Milton [39].

The principal difficulty in the prediction of effective properties is the universally rec-
ognized fact that the effective tensors of composites depend on the microstructure (spatial
arrangement of component materials), in general. Therefore, the object of importance is
the set of all possible effective properties of a composite made with given materials taken in
prescribed volume fractions (the so called G-closure set). Unfortunately, aside from a few
particular cases the G-closures are extremely difficult to compute analytically.

Exact relations are dependencies between various material properties that “survive” ho-
mogenization. For example, if we mix two isotropic elastic materials the resulting composite
does not have to be isotropic. So, the relations defining isotropy are not preserved under ho-
mogenization. Yet isotropy survives if both isotropic materials have the same shear modulus.
In fact the composite will also have that same shear modulus, no matter how the materials
are mixed. Statements about effective tensors that do not depend on the geometric arrange-
ment of the constituent materials are called exact relations. The example described above
is the exact relation due to Hill [22, 23] in 1963.

Exact relations and, more generally, G-closures provide the information about all com-
posites regardless of their origin, details and complexity of microstructure. If we want to
move beyond the G-closure and obtain a more detailed information about the effective ten-
sors of composites we need to distinguish composites according to the type of microstructure
they have.

One class of composites is where the (possibly infinitely many) scales of inhomogeneity are
well separated. For example, imagine a material that looks homogeneous to the naked eye.
Yet, when we examine this material under a microscope we may observe that it is in fact
composed of several seemingly homogeneous materials, each of which, upon examination
in a more powerful microscope, reveals to be composed of other seemingly homogeneous
materials, and so on for several, or possible infinite number of steps. We also assume that on
each step of our microscopic examination of an apparently homogeneous component, we find
a rather simple geometric arrangement of phases, each occupying regions of approximately
the same size. This broad class of composites is adequately described by the homogenization
theory, (see e.g. [5, 24]) which we briefly review in this paper.

On the other end of the spectrum are disordered media where the microstructure at one
point is almost uncorrelated to the microstructure at a somewhat distant point. In this
situation it is usually assumed that the composite is random, and the stochastic approach
[18, 30, 42] works well here.
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The third and a very important type of composite has the power law distribution of sizes
and properties of the constituents. The power law is the tell-tail sign of the self-organized
criticality—a theory proposed by Bak, Tang and Weisenfeld [3, 4]. According to this theory
many open systems with constant influx of energy self-organize into a poised state on the
border between order and chaos. Examples include earthquakes and sandpiles, extinction
of species and traffic jams [2]. I can speculate that the structure of real geological media
is self-organized critical. The upper crust of our home planet can be considered an open
system with constant energy flow from inner layers of Earth in the forms of seismic and
volcanic activity. As a result the Earth’s crust is a complicated multi-scale structure with
inhomogeneities on a vast range of scales. Under the microscope we can see tiny particles
making up clay, with a naked eye we can see small individual grains of sand, we can also
see boulders—the heterogeneities on the scale of meters. The scale staircase goes on and
on. The Earth’s crust is a heterogeneous mixture of materials on a continuous spectrum of
length scales from microscopic to global (continental plates, oceans). I would like to call such
composites critical. The appropriate mathematical tools for a rigorous discussion of effective
properties of such composites are only beginning to emerge. On the one hand there is a
non-rigorous renormalization group approach [27, 44], on the other there is a more rigorous
micro-mechanics based approach leading to non-local constitutive laws [10, 11, 41]. Yet,
hydrologists, for example, have to deal with the effective hydrolic permittivity of such media
as a rule [8].

As we mentioned earlier, we will focus on the microstructure-independent aspect of the
theory of composite materials, which applies to all composites equally well. The discussion
of the different types of composites was needed in order to place the subject of this paper in
a broader context.

2 G-closures

We start this discussion with the example of conductivity before we go on to the abstract
framework encompassing a variety of physical contexts.

The conduction of the electric current is described by the two fields, the electric field e

and the current field j. The two fields satisfy differential constraints: the electric field is
curl-free, the current field is divergence-free. The two fields are related via a tensorial Ohm’s
law. Thus, we have the following equations:

∇× e = 0, ∇ · j = 0, j = σe, (2.1)

where the 3× 3 matrix σ is symmetric and positive definite.
An n phase composite made with nmaterials σ1, . . . ,σn is a Borel measurable matrix field

σ(x), such that σ(x) ∈ D = {σ1, . . . ,σn}. An n phase polycrystal is a Borel measurable
matrix field σ(x), such that σ(x) ∈ D =

⋃
SO(3) ·σj. In general, we fix a set D (finite, or

infinite) of materials and consider the the set

D = {σ(x) ∈ L∞(Ω) | σ(x) ∈ D a.e. x ∈ Ω} (2.2)
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From the applied point of view one needs to solve the elliptic boundary value problem in
a domain Ω occupied by the composite.

{
∇ · (σ(x)∇φ) = f, x ∈ Ω
φ = 0, x ∈ ∂Ω.

(2.3)

However, if σ(x) has a very complicated geometry, the numerical solution of (2.3) is not
feasible. The fruitful idea is to represent the local conductivity tensor σ(x) as a member
in a sequence σǫ(x) for small ǫ. As ǫ → 0 the length scales in the microstructure become
more and more separated. In the limit, as ǫ → 0 the material properties are described by a
homogenized tensor σ∗(x), which may be much simpler than the local conductivity tensor.
This is especially true in the case of composites with inhomogeneities on the well-separated
length scales. If σ∗(x) is particularly simple then (2.3) may become solvable numerically.

Putting the practical questions aside and turning to mathematical justification of the
homogenization procedure, we need to answer the following question. Given a sequence of
bounded measurable functions σǫ(x) is there a sense in which we can say that σǫ → σ∗,
so that the solutions φǫ of (2.3) with σ = σǫ converges to the solution φ∗ of the homog-
enized equation? Such a notion was proposed by Spagnolo [45, 46] and further developed
by De Giorgi and Spagnolo [7]. Murat and Tartar [40](English translation of the French
original) extended G-convergence to the case of non-symmetric tensors σ and proved that
G-convergence of symmetric elliptic operators in (2.3) implies the convergence of fluxes

σǫ∇φǫ ⇀ σ∗∇φ∗ (2.4)

weakly in L2(Ω).
The non-symmetric tensors of material properties may arise in a variety of contexts. For

example the Hall effect in the electric current conduction in a very weak magnetic field is
governed by the same basic equations of conductivity (2.1), except the tensor σ is no longer
symmetric

σ = σs + π(r),

where σs is the symmetric and positive definite conductivity tensor, r is the Hall vector and
π is the “cross-product” mapping between vectors in R3 and 3× 3 skew symmetric matrices
such that for any {u,x} ⊂ R3 we have π(u)x = u× x.

Following Murat and Tartar, the name H-convergence is attached to the kind of G-
convergence, which is appropriate for non-symmetric material tensors.

Definition 1 A sequence of not necessarily symmetric tensors σǫ H-converges to σ∗ if for
any f in (2.3)
(i) φǫ ⇀ φ∗ weakly in H1

0 (Ω).
(ii) σǫ∇φǫ ⇀ σ∗∇φ∗ weakly in L2(Ω).

Murat and Tartar [40] noticed that for symmetric matrices σ the second condition is redun-
dant. It follows from the first.

The key result here is the Compactness theorem proved by De Giorgi and Spagnolo for
the case of symmetric σ and by Murat and Tartar in general. The theorem states that
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any sequence of uniformly positive definite and bounded matrix fields σǫ(x) contains an H-
convergent subsequence. In this connection the problem of the closure of the set D, defined
in (2.2) with respect to the H-convergence becomes important. In order to formulate a
fundamental result, we must first give the basic non-trivial example of an H-converging
sequence σǫ. Suppose that the matrix valued function σ(y) is periodic with a parallelepiped
of periods Q = [0, 1]3. We further assume that σ(y) is uniformly positive definite and
uniformly bounded. Then σǫ(x) = σ(x/ǫ) H-converges to a constant positive definite matrix
σ∗, defined via a solution of the so called periodic cell problem. We will write the cell problem
in the form that will be useful later.

∇ · j = 0, ∇× e = 0, j(y) = σ(y)e(y), (2.5)

where all functions and differential operators are Q-periodic. The equations (2.5) have a
unique solution, if we fix the mean value of the electric field e over the period cell. Suppose,
〈e〉 = e∗, where 〈·〉 denotes the average over the period cell Q. Then the unique field j

satisfying (2.5) depends linearly on e∗, and therefore, there exists a 3 × 3 matrix σ∗ such
that

σ∗e∗ = 〈j〉. (2.6)

Definition 2 Let D be the set of matrices representing conductivities of the materials con-
stituting the composite. Then the G-closure [31, 49] G(D) of the set of materials D is the
set of all effective tensors σ∗ of periodic composites made with materials from the set D.

Kohn and Dal Maso realized that the set G(D) is sufficient to describe the H-closure (closure
with respect to the H-convergence topology) of the set D defined in (2.2). The result has
been recently rigorously proved in a very general context by Raitums [43]. The theorem
states that the matrix field σ∗(x) is in the H-closure of D if and only if σ∗(x) ∈ G(D) for
a.e. x ∈ Ω.

Our primary interest is the G-closure sets of materials in a variety of physical contexts.
We must mention that the explicit form of the G-closure is known only in a very few cases
[15, 19, 20, 29, 32, 33, 34, 35, 37, 49]. Only the paper [15] characterizes G-closure sets for
arbitrary sets of materials D for 2D conducting polycrystals.

At this point we would like to make several remarks. Observe that the G-closure problem
is the problem of computing a subset in a finite dimensional space, given another subset of
the same space. Yet, it involves solving a periodic PDE problem (2.5). It would be nice, if
we can have a completely geometric description of how to construct G(D) knowing D, as
was done in [15] for 2D conducting polycrystals. The first step towards such a geometric
description in the general case was made in [16] for sets closed under lamination (it will be
the cornerstone of this paper), but a major new geometric breakthrough is still needed for
the method to be truly useful.

Another remark, is that G-closure lives in a rather high dimensional space (6D for con-
ductivity, 9D for Hall effect). Therefore, even if we have exact formulas for the boundary
of G(D), they are not immediately useful in applications without further (often very com-
plicated) algebra. Instead, a more useful goal would be an efficient numerical algorithm for
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computing quantities like
fD = min

σ∈G(D)
f(σ)

for a class of functions f . For each f the answer is a number fD—something an engineer
can relate to.

Getting closer to the subject of the paper, there is a fundamental dichotomy in the shapes
of G-closure sets. Most G-closure sets (aside from single points) have a non-empty interior.
In exceptional cases the G-closure sets lie on surfaces (of various codimensions). It is these
exceptional cases that we call exact relations and it is these cases that we are after. The
trick here is that we are no longer in the loosing game of computing the boundaries of the
G-closure sets. Instead, we just want to identify the surfaces that contain G-closure sets.
To give a trivial example, consider the Hall effect and assume that we are mixing materials
whose Hall tensors are all zero. From the physical point of view, it is obvious that Hall
effect will not arise in a composite if every component does not have it. Geometrically, a
six dimensional surface (all 3× 3 symmetric matrices) in a nine dimensional space (all 3× 3
matrices) is an exact relation. In identifying this exact relation we do not need to compute
any G-closure sets, yet the result is not entirely devoid of useful information.

3 Hilbert Space formalism

Milton [38] has observed that the periodic cell problems in various physical contexts follow
the same abstract pattern, which is best described using the language of Hilbert spaces (see
also [9, 18, 25, 28, 42, 50] for similar formal approaches). Milton observed that regardless of
the particular physics of the problem there are two fields E—the intensity field and J—the
flux field. They take their values in a certain finite dimensional tensor space T . For the Hall
effect example, the electric field e is the intensity field and the current field j is the flux
field (in fact the names are purely formal, since the theory is symmetric with respect to the
swapping of the fields). The fields are vectors, so T = R3 for the Hall effect. All intensity
fields and fluxes will be assumed to belong to the ambient Hilbert space H = L2(Q) ⊗ T .
The most important observation of Milton concerns the general structure of the differential
constraints satisfied by the fields E and J . If we denote U = R⊗T the subspace of constant
fields in H then the Hilbert space H is split into the orthogonal sum H = E⊕J ⊕U , where E
and J are the subspaces of mean zero intensity fields and fluxes respectively. The subspaces
E and J correspond to the differential constraints on E and J respectively. For that reason
Milton required that the orthogonal projection Γ onto E be local in Fourier space. In other
words there is a degree zero function Γ(k), such that for each k ∈ S2 the matrix Γ(k) is an
orthogonal projection onto a subspace Ek of T and such that

Γ̂f(k) =

{
Γ(k)f̂(k), if k 6= 0,
0, if k = 0.

The subspaces Ek cannot be arbitrary. For example, they have to be of the same dimension.
The basic O(3) symmetry of our space implies that the subspaces Ek are permuted by
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rotations. In other words, the vector space T is not just a linear space, it is a representation
space for the group O(3). For τ ∈ T we denote the action of R ∈ O(3) by R · τ . With this
notation we can write the basic property of the subspaces Ek: R ·Ek = ERk.We use the same
notation for the action of rotations on End(T ), the space of linear operators on T . For any
A ∈ End(T ) and any τ ∈ T we define R ·A by (R ·A)τ = R · (A(R−1 · τ )). With this
notation the basic property of the subspaces Ek can also be written as R · Γ(k) = Γ(Rk).
This last formula tells us that the function Γ(k) is uniquely determined by a single matrix
Γ0 = Γ((1, 0, 0)), which in turn is uniquely determined by a subspace E0 = E(1,0,0). The only
restriction on this subspace is that the subgroup O(2) of SO(3) that leaves e1 = (1, 0, 0)
direction invariant should leave the subspace E0 invariant. Thus, a standard representation
theory of SO(3) can give us a list of all possible subspaces E0 satisfying all of our constraints.
For example for T = R3, there are just two proper subspaces E0 satisfying our constraints.
One is Re1, while the other is its orthogonal complement. Thus, for k ∈ S2 there are two
choices for the function Γ(k). Either Γ(k) = k ⊗ k or Γ(k) = I − k ⊗ k, where I is a 3× 3
identity matrix. The first choice corresponds to the equations (2.5), and so does the second,
with e and j interchanged. Thus, in the context of conductivity, the equations (2.5) are the
only possibility consistent with a general Hilbert space framework described here.

The composite microstructure is given by an L∞ mapping L(x) of Q into End(T ). The
function L(x) can also be viewed as an operator L mapping H = L2(Q)⊗T into H: for any
f ∈ H we have (Lf)(x) = L(x)f(x).

The effective tensor L∗ is defined by analogy with (2.6):

J∗ = L∗E∗, (3.1)

where E∗ = 〈E〉 and J∗ = 〈J〉.

4 Lamination formula

In this section we derive a lamination formula that has the form of convex combination.
This formula was first derived by Milton [38] and independently by Zhikov [51]. Other linear
lamination formulas were derived by Backus [1] and Tartar [48] for elasticity. Their idea was
to rewrite the constitutive relation so that the continuous and discontinuous components of
the elastic fields are separated. The laminate of two materials L1 and L2 with layer normal
n and volume fractions θ1, θ2 (θ1+θ2 = 1) is a periodic stricture with the period cell shown in
Figure 1. More generally, a laminate is a function L(y) that depends only on y ·n. In order
to formulate the theorem we introduce the W-transformation of Milton [38]. Let L0 be a
reference medium which is assumed to be positive definite, but which otherwise is completely
arbitrary. Let Γ′(n) denote the non-orthogonal projection onto the subspace L0En along the
subspace Jn. In fact, the projection Γ′(n) is well defined as long as L0 is positive definite
on En (to ensure that L0En and Jn have trivial intersection). One can check that

Γ′(n) = L0(I − Γ(n) + Γ(n)L0)
−1Γ(n).

First define the S-transformation

S(L) = (I −LL−1
0 )−1. (4.1)
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Figure 1: The period cell of the laminate.

Now, define
Wn(L) = [S(L)− Γ′(n)]

−1
. (4.2)

Theorem 4.1 Let L(y) be the laminate with the normal n and let L0 be an arbitrary
positive definite reference medium (positive definite on En is enough). Then

〈Wn(L(y))〉 = Wn(L
∗).

The proof is analogous to the proof of the corresponding theorem in [21, Theorem 3.1] for
symmetric matrices.

Proof: Taking the average of the polarization field P = (L − L0)E we obtain P ∗ =
(L∗−L0)E

∗. These relations can also be written using the S-transformation defined in(4.1):

L0E = −S(L)P , L0E
∗ = −S(L∗)P ∗. (4.3)

Applying the projection operator Γ′ to P we obtain

Γ′(n)(P − P ∗) = −L0(E −E∗).

Substituting the values for L0E and L0E
∗ from (4.3) we obtain

Γ′(n)(P − P ∗) = S(L)P − S(L∗)P ∗.

Solving for P and using the definition of the W-transformation we obtain

P (y) = Wn(L(y))(Wn(L
∗))−1P ∗.

Taking averages we get
P ∗ = 〈Wn(L(y))〉(Wn(L

∗))−1P ∗.

The Theorem now follows because the constant field P ∗ can be arbitrary.
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For the Hall effect En = Rn and the requirement that L0 is positive definite on En = Rn

for all n is equivalent toL0 being positive definite. (For elasticity the corresponding condition
is equivalent to the Legendre-Hadamard condition for L0.) In this case

Γ′(n) =
L0n⊗ n

L0n · n
. (4.4)

The W-transformation maps the classical lamination formula [17, 49] into a convex com-
bination. Namely, if L∗ is an effective tensor of a laminate made with materials L1 and L2

taken in volume fractions θ1 and θ2 with lamination normal n then

Wn(L
∗) = θ1Wn(L1) + θ2Wn(L2). (4.5)

A corollary is that for any direction n a Wn-image of any set stable under lamination
must be a convex set. The idea to use this property to study geometry of sets stable under
lamination is due to Francfort and Milton [16].

5 The main ideas

Theorem 4.1 implies that if a set G is G-closed then Wn(G) is a convex set for all n ∈ S2. If,
on the other hand Wn(G) is a convex set for all n ∈ S2 then the set G is L-closed (or stable
under lamination). In almost all cases the G-closure and L-closure coincide, however there
is an example of Milton of a set that is L-closed but not G-closed [39]. In any case, from the
practical point of view L-closure would provide a very good approximation to the G-closure.
Thus, the geometric problem of finding the smallest set G(D) containing D and such that
Wn(G(D)) is convex replaces the problem of solving the cell problem. In the important
polycrystalline case, the geometric problem admits a very attractive formulation. (Is there
an attractive answer?)

Assume that if a material L is in D then all of its rotations {R · L | R ∈ SO(3)} are
also in D. If we choose an isotropic reference medium then we can easily verify that

R ·Wn(L) = WRn(R ·L). (5.1)

It follows then, that if a set G ⊂ End(T ) is rotationally invariant and Wn(G) is convex for
a single choice of n then Wn(G) is a convex set for all n ∈ S2. Thus, we can fix one unit
vector n, for example n = (1, 0, 0) and consider just one mapW (L) = Wn(L). The question
is this:

Find the smallest rotationally invariant set G(D) containing a given set D such
that W (G(D)) is convex.

We can ask a different question.

Can we characterize convex functions g(K) such that the functions f(L) =
g(W (L)) are rotationally invariant, f(R ·L) = f(L) for all R ∈ SO(3)?
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This question sounds very similar to the one answered by Chandler Davis [6]. Davis proved
that a rotationally invariant function defined on hermitean matrices is convex if and only
if its restriction to the diagonal matrices is convex. The method of Davis does not apply
to our problem because the action of SO(3) on the W variables is no longer linear. Yet, a
similar result is hoped for. We conjecture that there is a subspace in End(T ) transversal
to the action of the rotation group SO(3), such that the convexity of the restriction of g to
this transversal is equivalent to the convexity of g. (Of course, the restriction of g to the
transversal has to be invariant under the action of the finite Weil subgroup S3 of SO(3).) It
is our guess that the geometric results of [15] can be reformulated in terms of convexity in
the transversal.

6 Exact relations

We now turn to another implication of convexity discussed in Section 5 above. If we are
searching for submanifolds M of End(T ) corresponding to exact relations, then convexity
of the submanifolds Πn = Wn(M) is equivalent to saying that Πn are affine subspaces of
End(T ). Observe now that Wn(L0) = 0. Thus, choosing L0 to lie on M we make sure that
Πn is a subspace for each n. The following theorem gives necessary conditions for M to be
an exact relation.

Theorem 6.1 Suppose the submanifold M is an exact relation. Then the subspaces Πn =
Wn(M) do not depend on n. Moreover, this single subspace Π is closed with respect to the
family of Jordan multiplications, defined by

K1 ∗A K2 =
1

2
(K1AK2 +K2AK1), (6.1)

where A can be any matrix from the subspace

A = Span{Γ′(n)− Γ′(e1) | n ∈ S2}. (6.2)

The proof of this theorem follows word for word the proof of the corresponding theorem in
[21, Theorem 3.5] for the symmetric case. From now on we will say that a theorem is proved
in [21] if the proof for the general case is the same as for the symmetric case with obvious
modifications.

Another important question is about stability under homogenization. To this end, in
[21], we have derived a formula for the effective tensor L∗.

Theorem 6.2 Let L∗ be the effective tensor for the composite with the local tensor L(x).
Then for any n ∈ S2

Wn(L
∗) = 〈(I−WnΛn)

−1Wn(L(x))〉, (6.3)

where I denotes the identity operator on the Hilbert space H = L2(Q) ⊗ End(T ), Wn de-
notes the multiplication operator on H: (WnH)(x) = Wn(L(x))H(x) and Λn is defined by
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Λ̂nH(k) = An(k)Ĥ(k), where

An(m) =

{
Γ′( m

|m|
)− Γ′(n), if m 6= 0,

0, if m = 0.
(6.4)

Using this formula we can prove the following rather messy necessary and sufficient condition
for a subspace Π to correspond to an exact relation.

Theorem 6.3 For v = (l1, . . . , lk) ∈ (Z3)k and for σ ∈ Sk—permutation of k elements we
define

σ(v) = (lσ(1), . . . , lσ(k)) ∈ (Z3)k. (6.5)

Let O(v) = {σ(v) ∈ (Z3)k | σ ∈ Sk} be the orbit of v under the action of the permutation
group Sk. The subspace Π ⊂ End(T ) corresponds to an exact relation if and only if for any
k ∈ N, any n ∈ S2, any v = (l1, . . . , lk) ∈ (Z3)k such that

k∑

i=1

li = 0 (6.6)

and for any function K : Z3 → Π we have

∑

(p1, . . .pk) ∈ O(v)

(
k−1∏

s=1

K(ps)An(
s∑

j=1

pj)

)
K(pk) ∈ Π, (6.7)

where An is defined in (6.4) above.

The analogous theorem was formulated in [21, Theorem 3.9], where some steps of the proof
were indicated. Unfortunately, the formulation of the theorem was not entirely correct.
The sum in the formula [21, (3.38)] corresponding to (6.7) extended over the set Sk of all
permutations, instead of the elements of the orbit O(v). In [21] the theorem was not used
anywhere else and was included only for the purposes of a discussion. Here we give the
correct formulation and a complete proof of the theorem.

Proof: The proof is based on the formula (6.3) and the analyticity properties enjoyed
by the effective tensor. In [21, Appendix] we have shown that the map Wn is an analytic
diffeomorphism, defined everywhere on the set of positive definite matrices. Therefore, all
exact relation manifolds M, being analytic images of subspaces Π, are analytic. Also, if we
take an analytic family Lλ(x) of local tensors, it will generate an analytic family of effective
tensors L∗

λ [18]. The principle of analytic continuation implies that if L∗
λ ∈ M for some

small interval of λ then L∗
λ ∈ M for all λ in the interval of analyticity of L∗

λ. This argument
shows that if we want to prove that M is an exact relation, then it is enough to show that M
satisfies necessary conditions of Theorem 6.1 and that for one choice of n ∈ S2 and for any
W (x) = Wn(L(x)) ∈ Π sufficiently small, we have W ∗ = Wn(L

∗) ∈ Π. We can ensure that
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W (x) is sufficiently small if we choose the values of L(x) sufficiently close to the reference
medium L0 ∈ M.

Let ΠC = {K1 + iK2 | {K1,K2} ⊂ Π} be the complexification of Π. The analytic
continuation principle also implies that if Π corresponds to an exact relation then so does
ΠC in the sense that if W (x) ∈ ΠC then also W ∗ ∈ ΠC, where W ∗ is computed from
W (x) by the formula (6.3). The argument is due to Milton (private communication). Let
Wλ(x) = W1(x) + λW2(x), where W1(x) ∈ Π and W2(x) ∈ Π are assumed to be small
enough. Then, since Π corresponds to an exact relation we conclude that for real values of
λ in some finite interval, we have W ∗

λ ∈ Π. Let P ∈ End(T ) be such that Tr (PK) = 0 for
all K ∈ Π. Then the function f(λ) = Tr (PW ∗

λ ) is analytic in λ and is zero on an interval
on the real axis. Since W is assumed to be small, the region of analyticity of f(λ) in the
complex plane includes λ = i. Thus, we conclude that Tr (PW ∗

i ) = 0 for all real matrices
P such that Tr (PK) = 0 for all K ∈ Π. But

ΠC = {K ∈ EndC(T ) | Tr (PK) = 0 ∀P : Tr (PW ) = 0 ∀W ∈ Π}.

Thus, W ∗
i ∈ ΠC.

If W (x) is complex-valued and sufficiently close to zero then we can expand (6.3) in a
convergent power series:

W ∗ = 〈W (x)〉+ 〈WΛnW (x)〉+ . . .+ 〈(WΛn)
kW (x)〉+ . . . (6.8)

where W is the operator of multiplication by W (x). It follows from the argument above
that M is an exact relation if and only if each term of the expansion (6.8) belongs to ΠC,
when W (x) ∈ ΠC is small enough.

Let Tk(x) = (WΛn)
kW (x). Taking Fourier transform of Tk(x) = W (x)(ΛnTk−1)(x)

and using induction in k, we can prove that

T̂k(m) =
∑

l1 + . . .+ lk = m

(
k−1∏

s=1

Ŵ (ls)An(
k∑

j=s+1

lj)

)
Ŵ (lk),

where m, lj ∈ Z3. Thus, we get

〈(WΛn)
kW (x)〉 = T̂k(0) =

∑

l1 + . . .+ lk = 0

(
k−1∏

s=1

Ŵ (ls)An(
s∑

j=1

lj)

)
Ŵ (lk). (6.9)

Observe that the sum in (6.9) can be split into parts. The summation in each part goes
over all the distinct permutations of the same set of vectors lj. In order to say this more
rigorously we define the action of the permutation group Sk on (Z3)k by (6.5). Thus, (Z3)k

splits into the disjoint union of orbits of the group action. Let Z denote the set of orbits,
whose elements satisfy the constraint (6.6) (invariant under the group action). Then we can
write

〈Tk〉 =
∑

O ∈ Z

∑

(l1, . . . , lk) ∈ O

(
k−1∏

s=1

Ŵ (ls)An(
s∑

j=1

lj)

)
Ŵ (lk). (6.10)
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IfM is an exact relation then we can choose an arbitrary k-tuple (l1, . . . , lk) ∈ (Z3)k satisfying
(6.6) and let

W (x) =
k∑

j=1

Kje
ilj ·x,

where {K1, . . . ,Kk} ⊂ Π are arbitrary. Then we will obtain (6.7). Conversely, if (6.7) is
satisfied for all {K1, . . . ,Kk} ⊂ Π then, by the analytic continuation principle, it is satisfied
for all {K1, . . . ,Kk} ⊂ ΠC. Thus, each term under the exterior sum in (6.10) is in ΠC.
Therefore, W ∗ ∈ ΠC and is real, so W ∗ ∈ Π. The Theorem is proved.

The above theorem does provide algebraic conditions for Π that guarantee that Π corre-
sponds to an exact relation. The practical utility of such a theorem is minimal, since it
is virtually impossible to check infinitely many conditions that are as complicated as (6.7).
Therefore, in [21] we proved a convenient sufficient condition for Π to correspond to an exact
relation. In order to formulate it we introduce the following terminology. The expression
K1A1K2A2K3A3 . . .Kj−1Aj−1Kj will be called a j-chain. We say that a subspace Π sat-
isfies a j-chain property if for every {K1, . . . ,Kj} ⊂ Π and every {A1, . . . ,Aj−1} ⊂ A we
have

K1A1K2A2 . . .Kj−1Aj−1Kj +KjAj−1Kj−1 . . .A2K2A1K1 ∈ Π. (6.11)

We remark that if Π is a subspace corresponding to an exact relation then Theorem 6.1 says
that Π satisfies a 2-chain property. Now the analogue of the sufficient condition established
in [21] can be formulated as follows.

Theorem 6.4 If Π satisfies the j-chain property for j = 2, 3 and 4, then Π corresponds to
an exact relation.

Proof: In [21, proof of Lemma 3.7] we proved that if Π satisfies the j-chain property
for j = 2, 3 and 4, then Π satisfies the j-chain property for all j ≥ 2. It remains to show
that if Π satisfies the j-chain property for every j ≥ 2 then (6.7) will be satisfied.

Let η be the permutation defined by η(j) = k + 1− j. The permutation η is an element
of order two in the group Sk. It acts on O(v) and splits O(v) in a disjoint union of orbits.
If an orbit contains two elements then their sum has the form (6.11). If the orbit contains a
single element then this element is 1/2 of the sum of two copies of itself, which is again of
the form (6.11).

In two space dimensions, however, we can say a little bit more.

Theorem 6.5 In two space dimensions the 3-chain property is necessary for stability under
homogenization.

Proof: We will show that in 2D the necessary and sufficient condition (6.7) from
Theorem 6.3 for k = 3 implies the 3-chain property.

Let n = (1, 0). Fix {N,M} ⊂ Z \ {0}. Choose k ∈ Z2 to be linearly independent with
n. and define l1 = Mk, l2 = −Nn−Mk, so that l3 = −l1 − l2 = Nn. Observe that l1, l2
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and l3 are distinct and that according to (6.4), A(l3) = A(l1 + l2) = 0. For simplicity we
use A(·) notation instead of An(·), since n = (1, 0) is fixed. Condition (6.7) for k = 3 then
becomes

K2A(Mk +Nn)K3A(k)K1 +K1A(k)K3A(Mk +Nn)K2 ∈ Π

for all {K1,K2,K3} ⊂ Π. Now, if we fix k ∈ Z2, let l1 = Mk and vary {M,N} ⊂ Z \ {0}
then we observe, that the vectors {(Mk + Nn)/|Mk + Nn| : {M,N} ⊂ Z \ {0}} form a
dense subset of the unit circle. (The same construction does not yield a dense subset of the
unit sphere in 3D.) Therefore, by continuity, we conclude that for any {q1, q2} ⊂ S1 we have

K2A(q2)K3A(q1)K1 +K1A(q1)K3A(q2)K2 ∈ Π

for all {K1,K2,K3} ⊂ Π, which easily implies the 3-chain condition.

We remark that in all the examples that we have worked out so far our sufficient condition
was satisfied whenever the necessary conditions in Theorem 6.1 were.

We would like to conclude this section by stating the results and problems obtained in
[21] for the symmetric case. For a subspace X of End(T ) let Xsym denote the set of symmetric
parts of matrices in X . If Π ⊂ Sym(T ) then Theorem 6.1 can be restated as follows.

Theorem 6.6 If the subspace Π ⊂ Sym(T ) corresponds to an exact relation then it satisfies

(ΠAΠ)sym ⊂ Π. (6.12)

The sufficient condition for Π to correspond to an exact relation stated in Theorem 6.4 can
be cast into a more attractive algebraic form. Let Π′ ⊂ End(T ) be the smallest associative
algebra containing the Jordan algebra Π. In other words Π′ is the smallest subspace in
End(T ) containing Π that satisfies

Π′AΠ′ ⊂ Π′. (6.13)

Theorem 6.4 can then be restated as follows.

Theorem 6.7 If the subspace Π ⊂ Sym(T ) solves (6.12) and has the additional property
that Π = Π′

sym, then Π corresponds to the exact relation.

The important open question is whether every Jordan algebra Π (understood in the sense of
(6.12)) is the set of all symmetric matrices of the smallest associative algebra Π′ (understood
in the sense of (6.13)) containing Π. The question, in other words, is “Are sufficient conditions
necessary?”.

7 Finding exact relations

The preceding section established simple algebraic conditions that the subspace Π has to
satisfy in order to correspond to an exact relation. Now the question is: can we characterize
all solutions Π of

K1AK2 +K2AK1 ∈ Π, (7.1)
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for all {K1,K2} ⊂ Π and all A ∈ A. Unfortunately, at present we do not have an efficient
way to solve equation (7.1). In this section we will discuss an inefficient way of solving (7.1)
for 2D Hall effect. The method simply consists of picking a matrix and computing by brute
force the smallest Jordan algebra Π containing that matrix. Then we compute all other
Jordan algebras extending the smallest one, again, by brute force. This method is applicable
to rather small dimensional cases (or small block-dimensional as in [21]).

For 2D Hall effect the space T = R2. Let

L0 = σ0 + αS, (7.2)

be the positive definite reference medium, where σ0 is the symmetric part of L0 and

S =

[
0 1
−1 0

]
. (7.3)

We recall that for the Hall effect the matrix Γ′(n) is given by (4.4). Therefore, the subspace
A defined in (6.2) is

A = {A ∈ End(R2) | TrA = 0, ALT
0 = L0A

T}. (7.4)

7.1 Solving (7.1)

Observe that the equation (7.1) behaves nicely with respect to the following “change of
variables”. Let X and Y be invertible matrices. Let Π = XΠY then Π solves (7.1) if and
only if Π solves (7.1) with A replaced by A = Y −1AX−1. Applying this observation to

X = σ
−1/2
0 , Y = L0X (7.5)

we obtain that A is the space of trace-free symmetric 2× 2 matrices. From now on we will
work only with subspaces A and Π and therefore, we will rename them A and Π, respectively,
for notational convenience. We will return to the original notation when we will have solved
the equation (7.1). Thus, A now denotes the subspace of 2×2 symmetric trace-free matrices.

Observe that for X = R and Y = RT , where R is a 2× 2 rotation matrix, the equation
KAK ⊂ Π, K ∈ Π remains invariant. Now fix K ∈ Π. We can find a rotation R ∈ O(2)
such that

R ·K = K0 =

[
1 β
−β α

]
. (7.6)

Thus, without loss of generality, Π contains a matrix K0 of the form (7.6). We have
[

1 β
−β α

] [
s t
t −s

] [
1 β
−β α

]
=

[
(1 + β2)s (α + β2)t+ β(1− α)s

(α + β2)t− β(1− α)s −(α2 + β2)s

]
.

(7.7)
Case I: There exists K0 ∈ Π with α + β2 6= 0.

In this case we easily see from (7.7) (setting s = 0, t = 1) that

[
0 1
1 0

]
∈ Π. Consequently,

[
0 1
1 0

] [
s t
t −s

] [
0 1
1 0

]
=

[
−s t
t s

]
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implies that A ⊂ Π. Simple manipulations show that the right hand side of (7.7) is equal to
(1− α)sK0 mod A. Thus, we get that Π contains the subspace A and the matrix

K ′
0 =

[
(1 + α)/2 β

−β (1 + α)/2

]
. (7.8)

Case I(a): There exists K0 ∈ Π such that α 6= −1, in addition to α + β2 6= 0.
Then we infer that [

1 β′

−β′ 1

]
∈ Π,

where β′ = 2β/(1 + α). Again an easy calculation shows that

[
1 β′

−β′ 1

] [
s t
t −s

] [
x y
y −x

]
+

[
x y
y −x

] [
s t
t −s

] [
1 β′

−β′ 1

]
= 2(sx+ty)

[
1 β′

−β′ 1

]
(mod A).

Thus, the minimal subspace Π satisfying (7.1) in the Case I(a) is a 3D subspace

Π = A⊕

[
1 β′

−β′ 1

]
R. (7.9)

Since this subspace is of codimension 1, there are no larger proper subspaces containing Π.
We note that (7.9) gives a one parameter family of solutions Π, labeled by β′ ∈ R.

Case I(b): α = −1 for all K0 ∈ Π.
Then, returning to (7.8) we obtain that

[
0 β
−β 0

]
∈ Π.

Now if allK0 ∈ Π are symmetric then β = 0 for allK0 ∈ Π and Π = A or Π = Sym(R2)—the
space of symmetric 2× 2 matrices.

If there is K0 ∈ Π which is non-symmetric, then

Π = A⊕

[
0 1
−1 0

]
R. (7.10)

This subspace is of codimension 1 and therefore is not contained in any other proper subspace.

Case II: α = −β2 for all K0 ∈ Π. In this case we easily see that

Π =

[
1 β
−β −β2

]
R (7.11)

is a one-parameter family of 1D solutions of (7.1). Now we would like to see if there are other
solutions Π containing (7.11). Let K1, not a multiple of K0, be in Π. Then for all λ ∈ R

the matrices K(λ) = K1 + λK0 belong to Π and to the Case II (we have already analyzed

16



Case I). Thus, K(λ) can be reduced to the form (7.11) with a different β by a rotation and
scaling:

K(λ) = µ(λ)Rλ

[
1 β(λ)

−β(λ) −β(λ)2

]
RT

λ .

It will be convenient to represent K1 in the form K1 = P + γS, where P is a symmetric
matrix and S is given by (7.3). Taking the antisymmetric part in the formula for K(λ) we
obtain µ(λ)β(λ) = γ + λβ, while taking the determinant of the symmetric part of K(λ) we
get:

detP + λ(p22 − β2p11)− λ2β2 = −µ(λ)2β(λ)2,

for all λ ∈ R. Thus, we obtain the following equations for γ and for the components pij of
P :

p11p22 − p212 = −γ2, p22 − β2p11 = −2γβ.

Eliminating p22 we get (p11β − γ)2 = p212. So either

p12 = p11β − γ (7.12)

or
p12 = γ − p11β (7.13)

Assume first that K1 satisfies (7.12) Then

K1 =

[
p11 p11β

p11γ − 2γ p11β
2 − 2γβ

]
.

Now observe that

K1 − p11K0 = 2(p11β − γ)

[
0 0
1 β

]
.

Notice that if γ = p11β then K1 = p11K0 in contradiction to our assumption that K1 is not
a multiple of K0. Thus, we conclude that

Π1 = Span

{[
0 0
1 β

]
,

[
1 β
0 0

]}
⊂ Π. (7.14)

One may easily check that Π1 is a one-parameter family of 2D solutions.
Making a similar analysis for the case (7.13) we obtain a solution Π2 ⊂ Π, where

Π2 = Span

{[
1 0
−β 0

]
,

[
0 1
0 −β

]}
. (7.15)

If Π contains Π1 but is larger than Π1 then our previous analysis shows that K ∈ Π must
be either in Π1 or in Π2. But Π1

⋃
Π2 is not a subspace.

In summary, a proper subspace Π is a solution of (7.1) if and only if it is a rotated image
of either A, Sym(R2), (7.9), (7.10), (7.11), (7.14) or (7.15). We can now state the result.
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Theorem 7.1 If a proper subspace Π in the space of all 2× 2 matrices satisfies (7.1) with
A being the space of symmetric, trace-free 2 × 2 matrices then Π is a subspace from the
following list.

1. Sym(R2)—The space of symmetric matrices

2. Π0—The space of trace-free matrices

3. A—The space of symmetric, trace-free matrices

4. Πβ =

{[
a b
c d

]
: a+ d = β(b− c)

}
, β 6= 0.

5. Πa = {v ⊗ a | v ∈ R2}

6. ΠT
a

7. Πa, b = R(a⊗ b)

Observe that in our list items 1 and 2 are limiting cases of the item 4: Πβ → Π0, when
β → 0 and Πβ → Sym(R2), when β → ∞. We also observe that A is the intersection of
Πβ1

and Πβ2
for any β1 6= β2. Also Πa, b = Πb

⋂
ΠT

a . Thus, we need to focus only on three
subspaces from items 4, 5 and 6.

7.2 Checking sufficient conditions

According to Theorem 6.4 and our discussion above we need to check the 3 and 4-chain
property of subspaces Π from items 4, 5 and 6 in the list above. Indeed, the intersection of
subspaces satisfying these properties must also satisfy them. The subspaces Πa and ΠT

a are
closed with respect to associative multiplication: K1AK2 ∈ Π whenever {K1,K2} ⊂ Π.
Thus the j-chain property is clearly satisfied for those subspaces. The actual checking needs
to be done only for the subspaces Πβ. The checking can be easily done with Maple—the
symbolic algebra package. And indeed, we find that Πβ does satisfy 3 and 4-chain properties.

7.3 Returning to L variables

Now that we have a list of subspaces Π corresponding to exact relations, we need to return
to L variables. At the first glance the task before us is simply to compute

M = {L0 − [I +KΓ′(n)]−1KL0 | K ∈ Π}, (7.16)

which is the inverse of W-transformation. However, we quickly realize that in order to get
explicit results, the computation in (7.16) is not so easy. Fortunately, we can often simplify
our job and sometimes avoid it altogether. One obvious observation that we have already
made is that if we have computed two exact relations then there is no need to compute their
intersection.

18



In [21] we identified an especially simple class of exact relations: uniform field relations
(UFR). In general these are defined as

M = {L ∈ End(T ) | La1 = b1, . . . ,Las = bs}, (7.17)

for fixed uniform fields {a1, . . . ,as, b1, . . . , bs} ⊂ T . These are easily recognizable at the
level of subspaces Π.

Theorem 7.2 The uniform field relations (7.17) are in one-to-one correspondence with
subspaces V ⊂ T . The corresponding subspace Π is the annihilator of V :

Π = {K ∈ End(T ) | Kv = 0 ∀v ∈ V }.

The subspaces Πa are annihilators of subspaces Va = Ra⊥, where a⊥ = Sa. Thus, the exact
relations corresponding to subspaces Πa are the sets of positive definite matrices L such that
Lu = v for fixed vectors {u,v} ⊂ R2. Obviously ΠT

a corresponds to the same class of exact
relations, where L is replaced with LT .

The only exact relation here where we do need to compute something is Πβ. The following
theorems were proved in [21] to facilitate our task.

Theorem 7.3 Fix n ∈ S2. Let M be such that K(Γ′(n)−M )K ∈ Π for all K ∈ Π. Then
the invertible transformation WM = [S(L)−M ]−1 maps M into Π.

Recall that in our example of 2D Hall effect we found it easier not to work with subspaces
Π and A directly, but rather with subspaces Π = XΠY and A = Y −1AX−1. Accordingly,
we fix n and define Γ = Y −1Γ′(n)X−1.

Theorem 7.4 Let M be such that

K(Γ−M )K ∈ Π (7.18)

for all K ∈ Π then the invertible transformation WM = [Y −1S(L)X−1 − M ]−1 maps M

into Π.

Applying this theorem to the case at hand with X and Y defined by (7.5), we obtain the
inversion formula that we will use:

L = σ0 + αS − σ
1/2
0 [I +KM ]−1Kσ

1/2
0 , (7.19)

where σ0 and α are related to the reference medium L0 via (7.2). The utility of (7.19) is in
the fact that it allows us to compute the manifold

M = {[I +KM ]−1K | K ∈ Π}

using simplified objects M and Π. The actual exact relation is just an affine image of M.
In our example Γ = u ⊗ u, where u = σ

1/2
0 n/|σ1/2

0 n|. For Π = Sym(R2) we easily see
that M = 0 satisfies (7.18). So the exact relation M says that if we mix materials with the
same Hall coefficient r0 then the mixture will have the same Hall coefficient r0.
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Now let us compute the exact relation corresponding to Πβ. Here M = 0 does not work,
so we choose M = Γ = u ⊗ u. Observe that the choice M = Γ always satisfies conditions
of Theorem 7.4. In our simple example of 2D Hall effect the choice M = Γ is still simple
enough for practical purposes. In other contexts such as elasticity, thermo-electricity or other
coupled problems the matrix Γ is not so simple, and other choices for M work (see [21] for
such formidable examples as 3D thermo-piezo-electricity). Observe that the subspace Πβ is

a hyperplane defined by the equation Tr (KQ) = 0, where Q =

[
1 −β
β 1

]
. Solving (7.19)

for K, we obtain

K =
[
(P −L′)−1 − u⊗ u

]−1
, (7.20)

where L′ = σ
−1/2
0 Lσ

−1/2
0 , P = I + α′S and α′ = α detσ

−1/2
0 . Since the answer does

not depend on the choice of the vector u, we can set u = (1, 0) and simplify the equa-
tion Tr (KQ) = 0 with Maple. The result is written most conveniently in terms of the
conductivity tensor σ and Hall coefficient r, so that L = σ + rS:

detσ + (r − α− β
√
detσ0)

2 = (1 + β2) detσ0. (7.21)

The exact relation we obtain can be written most concisely as

M = {(σ, r) | detσ + (r − r0)
2 = const}. (7.22)

This relation was first derived by Milton [37] (see also [14]). When β → 0 the exact relation
(7.21) still retains the form (7.22). If β → ∞ the exact relation (7.21) becomes r = r0, first
derived by Stroud and Bergman [47]. We note that the intersection of exact relations (7.22)
and r = 0 results in the well-known Keller-Dykhne-Mendelson exact relation [13, 26, 36].

7.4 Exact relations with volume fractions

Very often exact relations are supplemented by other relations involving volume averages.
For example, Hill’s exact relation for elasticity mentioned in the Introduction has an extra
part:

(3κ∗ + 4µ)−1 = 〈(3κ(x) + 4µ)−1〉, (7.23)

where µ is the common shear modulus, κ(x) and κ∗ are the local and effective bulk moduli
respectively. In order to obtain these additional relations we need to compute the derived
Jordan ideals for each subspace Π satisfying (7.1).

Definition 3 The derived Jordan ideal of the solution Π of (7.1) is the subspace

Π2 = Span{K1 ∗A K2 | {K1,K2} ⊂ Π, A ∈ A},

where the Jordan multiplication ∗A is defined in (6.1).

20



Theorem 7.5 Let Π2 be the derived Jordan ideal of Π and suppose Π2 6= Π. Let N be the
orthogonal complement of Π2 in Π. Then we have

PNWM (L∗) = PN 〈WM (L(x))〉, (7.24)

where PN denotes the orthogonal projection onto N and M satisfies conditions of Theo-
rem 7.3.

We have actually computed the derived Jordan ideals for each subspace Π when we were
computing all the solutions of the equation (7.1). The reader may go back and verify that
for each solution Π for the 2D Hall effect we have Π2 = Π. The simplest context where
nontrivial derived Jordan ideals appear is 2D elasticity, which is a bit more involved, and
therefore less suitable for the purposes of the present review than 2D Hall effect. We refer
the reader to [21], where there are plenty of exact relations with nontrivial derived Jordan
ideals and corresponding volume average relations.

7.5 Links between uncoupled problems

Now we can ask the following question: Is there a link between conducting and thermal
properties of a composite? More generally, is there a link between L∗ and F ∗—the effective
tensor for f(L(x)). This question has also been investigated in [21], where f is some non-
linear map between End(T1) and End(T2). The answer uses the concept of Jordan ideal.

Definition 4 A subspace K of a solution Π of (7.1) is called a Jordan ideal in Π if
K1 ∗A K2 ∈ K for all A ∈ A, all K1 ∈ K and all K2 ∈ Π.

For example, the derived Jordan ideal is a Jordan ideal. As is customary in algebra, an ideal
is good for factoring over it. Let F = Π/K be the factor space in the sense of vector spaces.
Then F has a set of well-defined Jordan multiplications:

K1 ∗A K2
def
=K1 ∗A K2,

for all A ∈ A and all {K1,K2} ⊂ Π, where K ∈ F denotes the equivalence class of K.
In order to treat the links between uncoupled problems we need to discuss coupled prob-

lems, at least in passing. As we have argued in Section 3, each physical context gives rise to
a vector space T where the pair of relevant physical fields take their values. If we have two
problems with spaces T1 and T2 then the vector space T corresponding to a coupled problem
is T = T1 ⊕ T2. Exact relations for the coupled problem would correspond to subspaces of
End(T1 ⊕ T2).

Definition 5 The links between uncoupled problems are those exact relations for the coupled
problem whose subspaces Π lie in the “block-diagonal” part End(T1)⊕End(T2) of End(T1⊕T2).

The technical difficulty is that in general A 6= A1 ⊕ A2. In [21] we were able to avoid this
difficulty by focusing on polycrystals, where we were able to replace the subspace A by a
single matrix Γ̃. Nevertheless, we can still state the general theorem.

In what follows we use notation [A,B] for

[
A 0
0 B

]
in order to save space.
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Theorem 7.6 Let Π ⊂ End(T1)⊕ End(T2) be an exact relation. Define

Π1 = {K1 ∈ End(T1) : [K1,K2] ∈ Π for some K2 ∈ End(T2)},
Π2 = {K2 ∈ End(T2) : [K1,K2] ∈ Π for some K1 ∈ End(T1)}.

K1 = {K1 ∈ End(T1) : [K1,0] ∈ Π},

K2 = {K2 ∈ End(T2) : [0,K2] ∈ Π}.

(7.25)

Then the subspaces Πj of End(Tj), j = 1, 2 are Jordan algebras in the sense of equation (7.1).
The subspaces Kj ⊂ Πj, j = 1, 2 are Jordan ideals. There is a natural linear isomorphism
Φ : F1 = Π1/K1 → Π2/K2 = F2 defined by the rule K2 = Φ(K1), whenever [K1,K2] ∈ Π.
The map Φ is well-defined and satisfies an important additional condition:

Φ(K1 ∗A1
K ′

1) = Φ(K1) ∗A2
Φ(K ′

1) (7.26)

for every {K1,K
′
1} ⊂ Π1 and every [A1,A2] ∈ A.

Please, note that if [A1,A2] ∈ A then, in general, A2 is not determined by A1 uniquely, nor
A1 and A2 are independent. Therefore, the linear isomorphism Φ with the property (7.26)
is Jordan algebras homomorphism.

For the specific example of 2D Hall effect we simply used the brute force Maple computa-
tion to figure out the subspace A. Let L0 = [L1,L2] be the reference medium through which
the link M passes. As before it will be convenient to work not with the subspace A directly
but with the subspace A = Y −1AX−1, where X = [σ

−1/2
1 ,σ

−1/2
2 ] and Y = [L1,L2]X.

Then A is described in terms of A0 = {A ∈ Sym(R2) | Tr (A) = 0}, depending on what L1

and L2 are.

Theorem 7.7 Let σj, j = 1, 2 be the symmetric parts of Lj. If there is a scalar s > 0 such
that σ2 = sσ1 then A = {[A,A] : A ∈ A0}. Otherwise, A = A0 ⊕A0.

Now that we know the subspace A, we can apply Theorem 7.6. First consider the case
when σ1 and σ2 are not multiples of one another. Then we can set A2 = 0 in (7.26) and,
recalling that Φ is a bijection, conclude that for every {K1,K

′
1} ⊂ Π1 and every A1 ∈ A0

we have K1 ∗A1
K ′

1 = 0. The meaning of that last relation is that the ideal K1 contains the
derived ideal Π2

1. But we have already verified that there are no non-trivial derived ideals
in the context of 2D Hall effect. In this case we have to conclude that K1 = Π1 resulting in
the trivial link: [L1(x),L2(x)]

∗ = [L∗
1,L

∗
2] with no relation between L∗

1 and L∗
2.

Now let us assume that σ2 = sσ1. Here we will get some interesting results. We begin
by finding all pairs of nested exact relations from the list in Theorem 7.1 (to what the space
End(R2) is added) and checking if the smaller subspace in each pair is a proper Jordan ideal
of the larger. The checking is routine and may be automated with Maple even for problems
of large size. We find that none of the subspaces from Theorem 7.1 is a Jordan ideal in any
of the other subspaces, including End(R2). Thus, we must necessarily have that K1 and K2

are zero subspaces and that Φ is a Jordan isomorphism Φ : Π1 → Π2

Φ(K1 ∗A K2) = Φ(K1) ∗A Φ(K2) (7.27)
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for all A ∈ A0.
We will now describe how to find all the Jordan isomorphisms Φ between the subspaces

Π1 and Π2 satisfying (7.1). The method here is based on a nice relation between 2 × 2
matrix algebra and complex arithmetic. To a complex number z = a + ib we associate a
vector π(z) = (a, b) ∈ R2 and two 2× 2 matrices:

φ(z) =

[
a −b
b a

]
and ψ(z) =

[
a b
b −a

]
.

In the remaining part of this section the bold lower case letter will denote a 2D vector
corresponding to a complex number denoted by the same non-bold letter. In situations
where such simplified notation is inadequate we will use notation π(·) defined above.

The functions φ and ψ enjoy many special properties. For example,

φ(z)u = π(zu), ψ(z)u = π(zu).

As a corollary we have the following multiplicative identities:

φ(z1)φ(z2) = φ(z1z2), φ(z1)ψ(z2) = ψ(z1z2), ψ(z1)φ(z2) = ψ(z1z2), ψ(z1)ψ(z2) = φ(z1z2).

Observe that if Φ is the Jordan isomorphism between Π1 and Π2 then dimΠ1 = dimΠ2.
Therefore, our strategy is to go through every dimension 1 through 4 and determine all
Jordan isomorphisms between subspaces Π from Theorem 7.1 of that dimension.

Dimension 1. All 1D solutions of (7.1) have the form Πa, b.

Proposition 1 The linear mapping Φ : Πa, b → Πc,d, defined by Φ(a ⊗ b) = c ⊗ d, is a
Jordan isomorphism between Πa, b and Πc,d if and only if ab = cd.

Proof: For every A ∈ A0 we have

(a⊗ b)A(a⊗ b) = (Aa · b)a⊗ b.

Applying the mapping Φ to this relation and using the property (7.27) we obtain

(c⊗ d)A(c⊗ d) = (Aa · b)c⊗ d.

Thus, we must have
Aa · b = Ac · d (7.28)

for every A ∈ A0. Now observe that A0 = {ψ(z) | z ∈ C}. Therefore equation (7.28)
becomes ℜ(z(ab− cd)) = 0 for every z ∈ C. Thus, Φ is a Jordan isomorphism if and only if
ab = cd.

Dimension 2. There are three classes of 2D solutions of (7.1). We denoted them A0, Πa and
ΠT

a .
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Proposition 2 There are no Jordan isomorphisms between A0 and Πa and between A0

and ΠT
a . The only Jordan isomorphism between A0 and A0 is the identity mapping.

Proof: Suppose Φ is the Jordan isomorphism between A0 and Πa. Then there exists
a non-singular matrix V such that Φ(ψ(u)) = V u ⊗ a for all u ∈ C. Applying the Jordan
isomorphism Φ to

ψ(u)ψ(z)ψ(u) = ψ(u2z), (7.29)

we obtain
(V u⊗ a)ψ(z)(V u⊗ a) = V π(u2z)⊗ a.

Therefore (ψ(z)a·V u)u = u2z, which implies that uz must be real for all {u, z} ⊂ C. This is
impossible, and therefore, the Jordan isomorphism Φ between A0 and Πa does not exist. The
Jordan isomorphism between A0 and ΠT

a is also impossible. Indeed the mapping K → KT

is the Jordan isomorphism between Πa and ΠT
a . If there was a Jordan isomorphism between

A0 and ΠT
a then there would be a Jordan isomorphism between A0 and Πa, which, we proved,

does not exist.
Now let Φ be the Jordan isomorphism from A0 to itself. Then there exists a real-linear

invertible mapping ϑ : C → C such that Φ(ψ(u)) = ψ(ϑ(u)). Applying Φ to (7.29) we
get (ϑ(u))2z = ϑ(u2z). The linear map ϑ has the form ϑ(u) = θ1u + θ2u for some complex
numbers θ1 and θ2. Equating the coefficients at z and z in

(θ1u+ θ2u)
2z = θ1u

2z + θ2u
2z,

we obtain that θ2 = 0 and θ1 = 1. Thus, Φ(ψ(u)) = ψ(u) for all u ∈ C.

Proposition 3 The unique Jordan isomorphism Φ between Πa and Πb is given by

Φ(v ⊗ a) = φ(a/b)v ⊗ b. (7.30)

The unique Jordan isomorphism Φ between Πa and ΠT
b is given by

Φ(v ⊗ a) = b⊗ φ(a/b)v. (7.31)

The unique Jordan isomorphism Φ between ΠT
a and ΠT

b is given by

Φ(a⊗ v) = b⊗ φ(a/b)v. (7.32)

Proof: For a linear isomorphism Φ between Πa and Πb there exists a non-singular
matrix V such that Φ(v ⊗ a) = V v ⊗ b. Applying Φ to

(v ⊗ a)ψ(z)(v ⊗ a) = (ψ(z)a · v)v ⊗ a,

we obtain
(V v ⊗ b)ψ(z)(V v ⊗ b) = (ψ(z)a · v)V v ⊗ b.
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Therefore, for every z ∈ C we have V Tψ(z)b = ψ(z)a. The map V as a map on C can be
written as follows

π−1(V u) = v1u+ v2u

for some complex numbers v1 and v2. Therefore, we have

v1zb+ v2zb = za.

Equating coefficients at z and z we obtain that v2 = 0 and v1 = a/b. Thus, (7.30) gives the
unique Jordan isomorphism between Πa and Πb.

Now, if Φ is a Jordan isomorphism between Πa and ΠT
b then τ ◦Φ is the Jordan isomor-

phism between Πa and Πb, where τ(K) = KT . Hence there is a unique Jordan isomorphism
between Πa and ΠT

b given by (7.31). Similarly, if Φ is a Jordan isomorphism between ΠT
a

and ΠT
b , then τ ◦ Φ ◦ τ is a Jordan isomorphism between Πa and Πb.

Dimension 3. The 3D solutions of (7.1) are the subspaces Πβ from Theorem 7.1.

Proposition 4 For any pair {β1, β2} ⊂ R ∪ {∞} there are two Jordan isomorphisms be-
tween Πβ1

and Πβ2
given by

Φ(K) = φ(eiα/2)Kφ(eiα/2), and Φ(K) = φ(ieiα/2)Kφ(ieiα/2), (7.33)

where α is the unique solution in [0, π) of

tan(α) =
β2 − β1
1 + β1β2

.

Proof: Suppose Φ is the Jordan isomorphism between Πβ1
and Πβ2

. Observe that
A0 ⊂ Πβ for any β. We conclude that Φ(A0) = A0, since A0 is not isomorphic to any
other Jordan algebra but itself. Moreover, the restriction of Φ to A0 must be the identity
map. Observe that any matrix K ∈ Πβ1

can be written as K = xφ(eiγ1) + ψ(u), where
β1 = − cot γ1. Any linear map Φ from Πβ1

into Πβ2
that is identity on A0 has the form

Φ(xφ(eiγ1) + ψ(u)) = axφ(eiγ2) + ψ(u+ xp).

for some a ∈ R and p ∈ C. Here β2 = − cot γ2. Applying the Jordan isomorphism Φ to

(xφ(eiγ1) + ψ(u))ψ(z)(xφ(eiγ1) + ψ(u)) = 2xℜ(zu)φ(eiγ1) + ψ(x2z + u2z),

we obtain

(axφ(eiγ2)+ψ(u+xp))ψ(z)(axφ(eiγ2)+ψ(u+xp)) = 2xaℜ(zu)φ(eiγ2)+ψ(x2z+u2z+2xℜ(zu)p).

Since any 2 × 2 matrix can be uniquely written as φ(z1) + ψ(z2) we obtain, by equating
arguments of φ,

ℜ(zu) = ℜ(zu+ xzp).

It follows, therefore, that p = 0. Equating arguments of ψ we get

x2z + u2z = a2x2z + u2z.

It follows that either a = 1 or a = −1, corresponding to the two Jordan isomorphisms given
by (7.33).
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Dimension 4.

Theorem 7.8 If Φ is a Jordan isomorphism of End(R2), then either Φ(K) = φ(eiα)Kφ(eiα)
or Φ(K) = φ(eiα)KTφ(eiα). Moreover, all Jordan isomorphisms between Π1 and Π2—
solutions of (7.1) are restrictions of the Jordan isomorphisms of End(R2) to Π1.

Before proving the theorem. We remark that all Jordan isomorphisms Φ of End(R2) have
the property

Φ(K1AK2) = Φ(K1)AΦ(K2),

for all A ∈ A0. Therefore, all the j-chain properties are obviously satisfied. Thus, all the
links that we find are stable under homogenization.

Proof: Let Φ be the Jordan isomorphism of End(R2). If we restrict Φ to a 3D subspace
{xφ(eiγ) + ψ(u) | x ∈ R, u ∈ C} then we have, according to Proposition 4

Φ(xφ(eiγ) + ψ(u)) = xφ(eiαeiγ) + ψ(u).

Therefore, for every γ ∈ [0, π), every x ∈ R and u ∈ C

Φ(xφ(eiγ) + ψ(u)) = xφ(eiα(γ)eiγ) + ψ(u).

But Φ is linear and therefore there are complex numbers p1 and p2 such that Φ(φ(z)) =
φ(p1z + p2z). Consequently, eiα(γ)eiγ = p1e

iγ + p2e
−iγ. Thus, for every γ ∈ [0, π) we have

|p1+p2e
−2iγ| = 1. This equation says geometrically that the circle centered at p1 with radius

|p2| is a subset of the unit circle. There are only two possibilities: p1 = 0, |p2| = 1 or p2 = 0,
|p1| = 1. Thus, either Φ(φ(v) + ψ(u)) = φ(eiαv) + ψ(u) or Φ(φ(v) + ψ(u)) = φ(eiαv) + ψ(u).
In the matrix notation, either Φ(K) = φ(eiα/2)Kφ(eiα/2), or Φ(K) = φ(eiα/2)KTφ(eiα/2),
and the first part of the theorem is proved.

We have already described all the Jordan isomorphisms between solutions of (7.1). It
is now a simple matter to check that each one of the Jordan isomorphisms described in
Propositions 1–4 is indeed a restriction of one of the Jordan isomorphisms of End(R2).

We remark that the group of all Jordan isomorphisms of End(R2) is isomorphic to O(2).
Another remark is that Theorem 7.8 saves us a lot of work. All we have to do is to compute
the links between uncoupled problems for End(R2). Any other link is just a restriction
of the global link to one of the exact relations computed before. We also observe that
the Jordan isomorphism τ(K) = KT corresponds to the link (L(x)T )∗ = (L∗)T , which
is a theorem of Murat and Tartar [40] that says that if Lǫ(x) H-converges to L∗(x) then
(Lǫ(x))T H-converges to (L∗(x))T . If we combine this link with the links corresponding to
Φ(K) = φ(eiα)Kφ(eiα) we will obtain the links corresponding to Φ(K) = φ(eiα)KTφ(eiα).
All we have to do now is to apply the method of Section 7.3 to the subspace

Π = {[K, φ(eiα)Kφ(eiα)] : K ∈ End(R2)}.

According to the formula (7.20) we define L′
1 = σ

−1/2
1 L1σ

−1/2
1 , P1 = I + α1S and L′

2 =

(1/s)σ
−1/2
1 L2σ

−1/2
1 , P2 = I + α2S. Then the link between L1 and L2 has the form:

[
(P2 −L′

2)
−1 − u⊗ u

]−1
= φ(eiα)

[
(P1 −L′

1)
−1 − u⊗ u

]−1
φ(eiα). (7.34)

26



The relation between L1 and L2 does not depend on the choice of the unit vector u. Indeed,
we can rewrite (7.34) as

(P2 −L′
2)

−1 = φ(e−iα)(P1 −L′
1)

−1φ(e−iα) + u⊗ u− φ(e−iα)u⊗ φ(eiα)u.

Now we use our complex calculus to show that u⊗u−φ(e−iα)u⊗φ(eiα)u does not depend
on the choice of the unit vector u. Indeed, a rank-1 matrix a⊗ b can be written as (φ(ab)+
ψ(ab))/2. Thus, we have

u⊗ u− φ(e−iα)u⊗ φ(eiα)u = (φ(1) + ψ(u2))/2− (φ(e−iαueiαu) + ψ(e−iαueiαu))/2,

and therefore

L′
2 = P2 −

[
φ(e−iα)(P1 −L′

1)
−1φ(e−iα) + sin(α)φ(ie−iα)

]−1
. (7.35)

We examine the right hand side of (7.35) with Maple and after a lengthy investigation obtain
the link in terms of the conductivity tensors σ and the Hall coefficient r:

σ2 = c0
σ1

(r0 − r1)2 + detσ1

, r2 = c0
r0 − r1

(r0 − r1)2 + detσ1

+ q0, (7.36)

where c0 > 0, r0 and q0 are constants. This link was first obtained by Dykhne [12] in a
particular case of an isotropic composite made with two isotropic phases. In its present form
the link was first derived by Milton [37]. The links corresponding the the remaining Jordan
isomorphisms can be obtained by combining (7.36) with the link L2 = LT

1 . In other words,
the other set of links has the form (7.36) but with r1 replaced by −r1:

σ2 = c0
σ1

(r0 + r1)2 + detσ1

, r2 = c0
r0 + r1

(r0 + r1)2 + detσ1

+ q0, (7.37)

Following Milton [37], we observe that the trivial exact relation “r1(x) = 0 implies r∗1 = 0”
transforms into the relation (7.22) according to the link (7.36) (or (7.37)).

Restricting the links to the case of conductivity we obtain the well-known result [36, 39]

(σ(x)/ detσ(x))∗ = σ∗/ detσ∗.

It is possible to play further with the links and exact relations, applying them to the case of
two-phase composites, polycrystals and such. We will not pursue this and stop here.

8 Conclusions

Our theory of exact relations permitted us to derive the following microstructure independent
results for effective properties of composites in the context of 2D Hall effect. All of them
were previously known (see [12, 14, 37, 47]). In a weak magnetic field the local conducting
properties of a 2D composite are described by the non-symmetric positive definite 2 × 2
matrix field L(x) = σ(x) + r(x)S. We have obtained the following complete list of results.

27



1. If L(x)a = b for all x ∈ Q then L∗a = b.

2. If r(x) = r0 then r∗ = r0.

3. If L∗ is the effective tensor for L(x) then (L∗)T is the effective tensor for L(x)T .

4. If (r(x)− r0)
2 + detσ(x) = c0 for all x ∈ Q then (r∗ − r0)

2 + detσ∗ = c0.

5. If L∗ = σ∗ + r∗S is the effective tensor for L(x) = σ(x) + r(x)S then L̂∗ = σ̂∗ + r̂∗S

is the effective tensor for L̂(x) = σ̂(x) + r̂(x)S, where

σ̂(x) = c0
σ(x)

(r0 − r(x))2 + detσ(x)
, r̂(x) = c0

r0 − r(x)

(r0 − r(x))2 + detσ(x)
+ q0

and

σ̂∗ = c0
σ∗

(r0 − r∗)2 + detσ∗
, r̂∗ = c0

r0 − r∗

(r0 − r∗)2 + detσ∗
+ q0.

Technically speaking, there are other results, but all of them are consequences of the ones
listed above. Our theory also guarantees that there are no other microstructure-independent
equalities.

Throughout this paper we have described several important open questions in the theory.
We summarize them here.

• The polycrystalline G-closures possess an important convexity property that was the
cornerstone of the present paper. Can it be used to obtain a finite geometric algorithm
for constructing G-closures? Such construction was found by Francfort and Milton [15]
for 2D conducting polycrystals, suggesting the positive answer to our question. For
more detailed discussion see Section 5.

• The equation (7.1) has to be solved in each physical setting to determine all the exact
relations there. So far we have been able to solve this equations for the problems of
modest size, where the brute force approach works. Yet, the equation (7.1) says that
the subspace Π has a special structure of Jordan algebra. Can this structure be used
to help solve the equation? In fact, our result [21, Theorem 5.2] suggests that the
question is meaningful.

• Finally, there is a question of whether the sufficient conditions for a manifold to be an
exact relation are also necessary. See the more detailed formulation of this question at
the end of Section 6.
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sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I,, volume
704 of Lecture Notes in Mathematics, pages 364–373. Springer-Verlag, Berlin, 1979.

[49] L. Tartar. Estimation fines des coefficients homogénéisés. In P. Kree, editor, E. De
Giorgi colloquium (Paris, 1983), pages 168–187, London, 1985. Pitman Publishing Ltd.

[50] J. R. Willis. Elasticity theory of composites. In H. G. Hopkins and M. J. Sewell, editors,
Mechanics of solids, pages 653–686. Pergamon Press, Oxford, New York, 1982.

[51] V. V. Zhikov. Estimates for the homogenized matrix and the homogenized tensor.
Russian Math Surveys, 46(3):65–136, 1991.

32


