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Abstract

The set of all effective moduli of a polycrystal usually has a nonempty interior. When it
does not, we say that there is an exact relation for effective moduli. This can indeed happen
as evidenced by recent results [4, 10, 12] on polycrystals. In this paper we describe a general
method for finding such relations for effective moduli of laminates. The method is applicable
to any physical setting that can be put into the Hilbert space framework developed by Milton
[13]. The idea is to use the W -function of Milton [13] that transforms lamination formula into
a convex combination. The method reduces the problem of finding exact relations to a problem
from representation theory of SO(d) (d = 2 or 3) corresponding to a particular physical setting.
When this last problem is solved there is a finite amount of calculation required to be done in
order to answer the question completely. At present, each candidate relation has to be examined
separately in order to confirm the stability under homogenization. We apply our general theory
to the settings of conductivity and two-dimensional elasticity.

1 Introduction.

Recent years have seen a lot of progress towards a more precise characterization of effective properties
of composites. Yet, almost all of that progress is due to two approaches: use of variational principles
and the “translation method”. The former was pioneered by Hashin and Shtrikman [5], while the
latter was discovered independently by Lurie and Cherkaev [9, 11] in the former Soviet Union and
Murat and Tartar [15, 16] in France. The term “translation method” has been coined by Milton
[13] and has become a universally accepted term since. The two methods mentioned above have
brought about complete solutions to many G-closure problems [3, 4, 8, 9, 10, 11, 12, 16] as well
as many optimal bounds on important functionals such as energy or complementary energy. The
accumulated literature on the subject is too vast to allow a complete list (see, however, [13] for
a review and comparison of the two methods). The results were almost always inequalities that
the effective tensors had to satisfy. On rare occasions, however, researchers were discovering exact
relations, or equalities for effective tensors [1, 4, 6, 7, 10, 12]. These results were in large respect
byproducts of the inequalities derived using one of the two methods mentioned above.

This paper provides necessary conditions for an exact relation for effective tensors to hold by
finding all exact relations for effective moduli of laminates. The already known exact relations from
the literature above serve as a motivation to pose such a question. The key to the solution is a
general lamination formula [13, formula (4.11)] of Milton that transforms the process of lamination
into the process of taking convex combinations. The idea to use this formula in order to study the
geometry of sets stable under lamination is due to Francfort and Milton [2].
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Having outlined our sources we proceed to explain the idea. If there is an exact relation for
effective tensors then the corresponding G-closure (the set of all possible effective tensors) must have
empty interior. In all known such examples the G-closure lies on a smooth, even analytic manifold
M, possibly with boundary. The knowledge of the manifold itself is equivalent to establishing an
exact relation for effective tensors without finding any actual G-closures. Obviously, if a piece of a
manifold is stable under homogenization then the same piece must be stable under lamination. It
means that if one applies the mapping Wn from [2, formula (3.21)] to this piece of the manifold the
image must be a convex set. This convex set will have the same dimension as the original manifold
as the mapping Wn is a diffeomorphism. But a “dimensionally challenged” convex set must lie in
the hyperplane of the same dimension. This observation alone is hard to use as it must hold for
a continuum many mappings Wn labeled by a vector n on the unit sphere in R

d. The following
observation comes to the rescue. If we restrict ourselves to polycrystals then if C∗ ∈ M then so does
every rotation of C∗. Therefore, by theorem 1 below, we need to require that only the We1

image of
M lies in a hyperplane. Here e1 denotes the first standard basis vector. Thus we have arrived at a
remarkable conclusion that instead of searching for exact relations for effective moduli of laminates
we may look for rotationally invariant manifolds whose We1

image lies in the hyperplane of the same
dimension. These conditions on M are very restrictive. Every such manifold will contain a set stable
under lamination and will be a serious candidate for an exact relation on effective tensors obtained
by homogenization. The problem is that in general the lamination closure is different from G-closure
[14]. However, in this special case we conjecture that stability under lamination implies stability
under homogenization.

In the present paper we solve the above geometric problem and apply our solution to the cases of
d-dimensional conductivity and 2-dimensional elasticity. For the conductivity we discover the well
known 2-d result that the G-closure of the set of tensors with the same determinant belongs to the
set of tensors with the same determinant. We also discover, and this is new, that there are no other
exact relations for conductivity in any space dimension d > 2.

For the 2-dimensional elasticity we obtain 7 different exact relations. One of them was discovered
by Hill [6, 7]. Two were found in [10, 12] and two more were described in [4]. One more is obtained
as an intersection of the two manifolds from [4]. The last one appears to be new. It says that a
mixture of isotropic materials with zero bulk modulus is again isotropic with zero bulk modulus.

2 A geometric problem.

We begin by a brief (and sloppy) review of the general Hilbert space setting of homogenization, as
developed in [13], for readers familiar with that paper. Those who are unfamiliar with it we strongly
encourage to read sections 2-4 of [13].

Let Hs = L2(Q), where the unit cube Q represents a period cell in R
d. This space has the

orthogonal splitting
Hs = Us ⊕Fs (2.1)

into the space of uniform (constant) and fluctuating functions. We then define a Hilbert space

H = Hs ⊗ T , (2.2)

where T is an l-dimensional vector space of tensors over R
d. Then

H = U ⊕ F , U = Us ⊗ T , F = Fs ⊗ T . (2.3)

Examples of T include (but are not limited to) R
d for conductivity and Sym(Rd) for elasticity,

where Sym(V ) denotes the space of selfadjoint linear operators on the linear space V . In the former
example l = d in the latter l = d(d + 1)/2. The inner product in H is determined by the inner
product (u, v) in T . It is important to assume that this inner product does not depend on the choice
of an orthonormal basis in R

d. Thus the rotation group SO(d) has a representation into SO(T ),
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which we will denote Θ(R) for R ∈ SO(d). Now we assume that we have an orthogonal splitting of
F into the scale-free, rotation-invariant, local in Fourier space subspaces (see [13] for definitions):

F = E ⊕ J . (2.4)

Let Γ1(k̂) and Γ2(k̂) be projection operators onto E and J respectively in the Fourier space. These

operators are functions of k̂ = k/|k|, which is equivalent to E and J being scale-free and local in
Fourier space. The rotation invariance is equivalent to

Γi(Rk̂) = Θ(R)Γi(k̂)[Θ(R)]T , i = 1, 2, R ∈ SO(d). (2.5)

These conditions are satisfied for elasticity and conductivity settings [13]. Now we introduce the
Milton’s Wn function. For any n ∈ R

d, |n| = 1, the function Wn is defined on an open dense subset
D ⊂ Y = Sym(T ) with values in Y by [2, formula (3.21)]

Wn(S) = [S − Γ1(n)]−1, (2.6)

where S is related to the Hooke’s law tensor C by [13, formula (4.6)]

S = (I − C

c0

)−1, (2.7)

where I is the identity in algebra Y and c0 is an arbitrary scalar. The formula for S is not important
here except for the fact that if the coordinate system in R

d is rotated by R
T ∈ SO(d) then S changes

to Θ(R)S[Θ(R)]T . This formula will be used in section 5 to translate our results from S variables
to C variables.

Lemma 1

Wn(Θ(R)S[Θ(R)]T ) = Θ(R)WRT n(S)[Θ(R)]T .

The proof follows from (2.5) and (2.6).
The key to our analysis is the theorem of Milton [13, formula (4.11)] or [2, formula (3.22)] that

the set G of tensors is stable under lamination if and only if Wn(G) is convex for any direction n.
The main drawback of this theorem is that one has to “check” convexity for each n, i.e. infinitely
many times. This small problem is is easily corrected by an additional assumption of rotational
invariance of our set G. This assumption is satisfied by every polycrystalline G-closure.

Definition 1 The set G ⊂ Y = Sym(T ) is called rotationally invariant if for any S ∈ G and any
R ∈ SO(d) we have Θ(R)S[Θ(R)]T ∈ G.

Theorem 1 Suppose G is rotationally invariant and We1
(G) is convex. Then G is stable under

lamination.

In view of this theorem it is convenient to denote the mapping We1
as W .

Proof. Due to the Milton’s theorem all we need to show is that Wn(G) is convex for any direction
n. Let {S1, S2} ⊂ G we will show that for any λ ∈ (0, 1) and any n ∈ R

d, |n| = 1 there exists S∗ ∈ G
(depending on n and λ) such that Wn(S∗) = λWn(S1) + (1 − λ)Wn(S2). Let R ∈ SO(d) be such
that Rn = e1. Then by lemma 1 we have

Θ(R)
(

λWn(S1) + (1 − λ)Wn(S2)
)

[Θ(R)]T = λW (Θ(R)S1[Θ(R)]T ) + (1 − λ)W (Θ(R)S2[Θ(R)]T ).

(2.8)
By the rotational invariance of G we conclude that

{Θ(R)S1[Θ(R)]T , Θ(R)S2[Θ(R)]T } ⊂ G.
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Thus, by convexity of W (G) there exists S0 ∈ G such that the right hand side of (2.8) is equal to
W (S0). Then by applying lemma 1 again we have

W (S0) = Θ(R)Wn([Θ(R)]T S0Θ(R))[Θ(R)]T . (2.9)

Once again the rotational invariance of G implies that

S∗ = [Θ(R)]T S0Θ(R) ∈ G.

Thus,
Wn(S∗) = λWn(S1) + (1 − λ)Wn(S2) (2.10)

and the theorem is proved. 2

Now we are ready to consider the problem in the title of the paper and reduce it to a geometric one.
Mathematically we are looking for smooth (real analytic) manifolds M ⊂ D (possibly with boundary)
that contain sets G stable under lamination. Suppose the manifold has dimension k < N = l(l+1)/2,
then so does its diffeomorphic image W (M). Assume that G has a nonempty interior in the induced
topology of the manifold (otherwise there are more exact relations than the co-dimension of the
manifold). Then so does W (G). But W (G) is convex. Therefore W (G) ⊂ Πk, where Πk is a
k-hyperplane in the Euclidean space Y =Sym(T ), dimY = N . Moreover W (G) has a non-empty
interior in the induced topology of Πk. There is one more restriction that comes from physics.

Definition 2 The operator S ∈ Y is called isotropic if for any R ∈ SO(d)

Θ(R)S[Θ(R)]T = S.

We require the set G to have at least one isotropic point in its interior (in the induced topology)
because regardless of the anisotropy of the original materials we can always arrange them to form an
isotropic composite. Thus we will be looking for manifolds M that have rotation-invariant subsets
G with nonempty interior in the induced topology of M containing an isotropic point, and such that
W (G) ⊂ Πk. In the next section we completely solve this geometric problem.

3 Solution of the geometric problem.

3.1 A necessary condition.

We are going to study the geometry of the manifold in a small (but finite) neighborhood of the
isotropic tensor S0 ∈ M. Let us introduce a new notation that will simplify some of our formulas.
The action of R ∈ SO(d) on S ∈ Y given by Θ(R)S[Θ(R)]T defines a representation of SO(d) into
SO(Y). Let us denote this representation by g(R), or simply g, when there is no confusion:

g(R)S = Θ(R)S[Θ(R)]T . (3.1)

Let G be the corresponding subgroup of SO(Y):

G = {g(R) ∈ SO(Y) : R ∈ SO(d)}. (3.2)

Let TSM denote the tangent space to M at S. Let L denote TS0
M the tangent space at the isotropic

tensor S0 ∈ M. Since M is an embedded manifold in Y, the tangent space L can be identified with
a linear subspace of Y .

Theorem 2 The subspace L ⊂ Y is G-invariant.

Proof. Let γ(t) ∈ M be a smooth curve with γ(0) = S0. Let X ∈ L denote the tangent vector to
γ at t = 0. By rotational invariance γ̃(t) = gγ(t) is a smooth curve in M

1with γ̃(0) = S0. Therefore
the tangent vector to γ̃ at t = 0 must also belong to L:

X ∈ L ⇐⇒ gX ∈ L. (3.3)

The theorem is proved. 2

1Notice that the global group G maps a small neighborhood of S0 in M into a small neighborhood of S0 in M.
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Remark 1 Notice that the same theorem applies to the tangent space at S0 to the N−1 dimensional
boundary of the polycrystalline G-closure with non-empty interior. Because of the fixed dimension,
N − 1, there are not many choices for L. In the case of d-dimensional conductivity L is defined
uniquely. For the d-dimensional elasticity there is a one-parameter family of choices. Unfortunately,
there are cases where all such points S0 are singular points of the boundary of the G-closure and do
not have a tangent space.

Theorem 2 immediately restricts L to just “a few” special choices. For example in the setting of
d-dimensional conductivity there are only two choices for L: the space of isotropic dxd matrices or
the space of trace-free symmetric dxd matrices. In the setting of 2-D elasticity one can easily figure
out the 10 choices for L from [1, formulas (2.24)–(2.26)] (see Appendix for the list).

Now we observe that since SO(d) is a compact Lie group then the orthogonal complement of L is
also G-invariant. Moreover, we may split Y into the orthogonal sum of subspaces (of which L will be
a partial sum) on each of which G acts irreducibly. Therefore we may choose an orthonormal basis for
Y such that it may be grouped into bases for the subspaces entering the orthogonal decomposition
of Y into the irreducible subspaces. Let us assume that the first k basis vectors span L and will
be denoted L1, L2, . . . , Lk. The rest of the basis spanning the orthogonal complement L⊥ will be
denoted by K1, K2, . . . , KN−k.

Let U be a neighborhood of S0 in M. Then W (U) must be a neighborhood of W (S0) in the
hyperplane Πk. The diffeomorphism W between U and W (U) induces a linear isomorphism W∗

between the corresponding tangent spaces. Therefore, the tangent space of Πk at W (S0) will have
a basis (not orthonormal in general)

Pi = W∗Li, i = 1, 2, . . . , k. (3.4)

But for a hyperplane we have

Πk = Span(P1, . . . , Pk) + W (S0). (3.5)

Since
W (S) = [S − Γ]−1, (3.6)

where Γ = Γ1(e1), we can compute W∗X explicitly. For every X ∈ L

W∗X = −[S0 − Γ]−1X [S0 − Γ]−1. (3.7)

We see that W∗ is a self-adjoint operator on Y . Therefore

Mj = W∗
−1Kj, j = 1, . . . , N − k (3.8)

is a basis (not orthonormal in general) of the orthogonal complement of Span(P1, . . . , Pk):

(Pi, Mj) = (W∗Li, W∗
−1Kj) = (Li, Kj) = 0.

Thus we can give Πk a dual definition:

Πk = {X ∈ Y : (X, Mj) = (W (S0), Mj), j = 1, . . . , N − k}. (3.9)

This notation allows us to formulate the two conditions on M by a single formula. For any v =
(λ1, . . . , λk) ∈ R

k

k
∑

i=1

λiPi + W (S0) ∈ Πk

therefore for small v

W−1

(

k
∑

i=1

λiPi + W (S0)
)

∈ M. (3.10)
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By rotational invariance

gW−1

(

k
∑

i=1

λiPi + W (S0)
)

∈ M

for any g ∈ G. Thus

W

[

gW−1

(

k
∑

i=1

λiPi + W (S0)
)

]

∈ Πk.

So, by (3.9) we get the desired formula

(

Mr, W

[

gW−1

(

k
∑

i=1

λiPi + W (S0)
)

])

= (Mr, W (S0)) (3.11)

for all r = 1, . . . , N −k, for any v from a small neighborhood N of zero in R
k and for any g ∈ G. We

remark that (3.10) shows that L generates the sought after manifold M if it satisfies the invariance
relation (3.11).

3.2 Necessary and sufficient conditions.

Let A denote the Lie algebra of G. Since we think of G as a subgroup of SO(Y), we would like
to think of A as a subalgebra of linear operators on Y. Let {a1, . . . , am} be a basis for A, where
m = d(d − 1)/2 is the dimension of SO(d). The action of A on Y is determined by (3.1):

aαS = [Aα, S] = AαS − SAα, α = 1, . . . , m (3.12)

for any S ∈ Y, where A1, . . . , Am form a basis of a Lie algebra of a representation Θ(R). Since we
think of {Θ(R) : R ∈ SO(d)} as a subgroup of SO(T ), we would like to think of operators Aα as a
basis of a subalgebra of Hom(T , T ) the algebra of linear operators on T . Notice that Y is another
such subalgebra. Therefore the products in (3.12) make sense. Then we have the following necessary
and sufficient conditions for L to generate the manifold M with desired properties.

Theorem 3 The manifold M generated by a G-invariant subspace L by (3.10) satisfies (3.11) if and
only if the following finite collection of identities are satisfied:

(Aα, [W0, LiKrLj]) = 0, α = 1, . . . , m, r = 1, . . . , N − k, i, j = 1, . . . , k (3.13)

Proof. Let us prove first that the conditions above are necessary. Initially we will obtain three
sets of conditions and then prove that two of them are always satisfied. The third one will then be
reduced to (3.13).

Observe that if we let g ∈ G to be the identity then the equation (3.11) is identically satisfied
for every v = (λ1, . . . , λk) ∈ R

k. Then it is a natural idea to differentiate (3.11) with respect to g at
the identity using the explicit formula (3.6) for W . The equation (3.11) becomes




{

(
k
∑

i=1

λigPi + gW0)
−1 + gΓ − Γ

}−1

, Mr



 = (Mr, W0), v ∈ N , r = 1, . . . , N − k. (3.14)

Differentiating in g ∈ G at the identity, we obtain


aαW0 − W0(aαΓ)W0 +

k
∑

i=1

λi(aαPi − Pi(aαΓ)W0 − W0(aαΓ)Pi) −
k
∑

i,j=1

λiλjPi(aαΓ)Pj , Mr



 = 0

(3.15)
for all α = 1, . . . , m. Since (3.15) must be valid for every v ∈ N we get the promised three sets of
conditions:

(aαW0 − W0(aαΓ)W0, Mr) = 0, (3.16)
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(aαPi − Pi(aαΓ)W0 − W0(aαΓ)Pi, Mr) = 0, (3.17)

(Pi(aαΓ)Pj + Pj(aαΓ)Pi, Mr) = 0. (3.18)

In order to simplify these conditions we would like to express them in terms of basis operators
Li and Kr and Aα instead of Pi and Mr and aα. This is easily accomplished by the formulas (3.4),
(3.6), (3.7), (3.8) and (3.12). We obtain

([Aα, S0], Kr) = 0, (3.19)

(Aα, W0LiKrS0 − S0KrLiW0) = (Aα, ΓW0LiKr − KrLiW0Γ), (3.20)

(Aα, [Γ, W0LiKrLjW0 + W0LjKrLiW0]) = 0, (3.21)

Now we use (3.6) to get
ΓW0 = −I + S0W0, (3.22)

where I denotes the identity in the algebra Y . Applying (3.22) to (3.20) and (3.21) we get:

([Aα, S0], W0LiKr + KrLiW0) = ([Aα, Li], Kr), (3.23)

(Aα, [W0, Li, KrLj]) = ([Aα, S0], W0LiKrLjW0). (3.24)

First we observe that [Aα, S0] = 0 because Aα commutes with the isotropic tensor S0 for every
α = 1, . . . , m. Then we observe that [Aα, Li] is a linear combination of basis operators Li, because
L is a G-invariant subspace. Thus

([Aα, Li], Kr) = 0

and (3.19) and (3.23) are identically satisfied, while (3.24) is reduced to (3.13).
Now let us show sufficiency, which is a corollary of the connectedness of SO(d). The derivation

of our equations is equivalent to saying that if S ∈ M and a ∈ A then aS ∈ TSM, where M is given
by (3.10). Then for a given a ∈ A consider a smooth vector field X(S) in the neighborhood of S0

on M:
X(S) = aS. (3.25)

Now fix S and consider a curve ξ(t) = exp(at)S. Obviously, this curve solves the ODE:

{

ξ̇(t) = X(ξ(t)),
ξ(0) = S.

(3.26)

Therefore ξ(t) ∈ M for small t. Since the exp map is surjective on the small neighborhood of identity
in a Lie group G, we conclude that there exists a neighborhood U of the identity in G such that for
every g ∈ U we have gS ∈ M. It remains to note two facts. One is that the whole group G maps
a small neighborhood of S0 ∈ M into a small neighborhood of S0, and the other one is that for a
connected Lie group any neighborhood of the identity generates the whole group. Thus gS ∈ M for
any g ∈ G and for any S sufficiently close to S0.2

In conclusion we will describe a subclass of solutions of (3.13).

Theorem 4 A left (and right) annihilator of a G-invariant subspace is a G-invariant subspace sat-
isfying (3.13).

Proof. Let Λ be a G-invariant subspace. Define

L = {L : LΛ = 0}. (3.27)

Observe that L is a G-invariant subspace. Indeed,

0 = g(LΛ) = (gL)(gΛ) = (gL)Λ.
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Now let us write down the definition of the orthogonal complement to L:

K = {K : (K, L) = 0, ∀L : LΛi = 0, i = 1, . . . , dimΛ}, (3.28)

where Λi’s form a basis for Λ. The definition of K suggests a reformulation based on the Fredholm
alternative. Let

λ : Y → Hom(T , T )dimΛ, (λY )i = Y Λi, (3.29)

where Hom(T , T ) denotes the space of all linear operators on T . Then by Fredholm alternative
(3.28) is equivalent to

K = {K : K = λ∗Z, Z ∈ Hom(T , T )dim Λ}, (3.30)

where λ∗ : Hom(T , T )dimΛ → Y is the adjoint map of λ. It is easy to calculate that

λ∗Z =

dimΛ
∑

i=1

(

ZiΛi + ΛiZ
T
i

)

. (3.31)

Finally, (3.27), (3.31) imply that for any {L1, L2} ⊂ L and for any K ∈ K

L1KL2 = 0. (3.32)

Thus an invariant subspace L given by (3.27) satisfies (3.13). 2

If the subspace L in the above theorem is non-trivial then so is the annihilator of L that contains
at least Λ. Thus the theorem produces pairs of mutually annihilating subspaces satisfying (3.13).
In section 5 summary items 1(a) and 3(b) form such a pair.

4 An example: conductivity.

In the case of conductivity we have

T = R
d, Θ(R) = R, Γ = e1 ⊗ e1, Y = Sym(Rd), S0 = s0I. (4.1)

Therefore,

W0 =
1

s0

I +
e1 ⊗ e1

s0(s0 − 1)
. (4.2)

Applying the conditions (3.13) for this particular setting we obtain that e1 must be an eigenvalue
of all matrices LiKrLj + LjKrLi.

It will follow from general results of part II of this paper that

Y = {tI : t ∈ R} ⊕ {A : TrA = 0} (4.3)

is the required decomposition of Y into a direct sum of G-invariant irreducible subspaces. In di-
mensions 2 and 3 this fact follows from the well-known form of isotropic Hooke’s law: κ times the
projection onto the scalar matrices plus µ times the projection onto the trace-free matrices. Shur’s
lemma then implies the decomposition (4.3). Thus we have just two choices for L.

Let
L = {tI : t ∈ R}. (4.4)

Then for an exact relation to hold we need to require that e1 be an eigenvector for Kr, i.e. for any
trace-free matrix. This is clearly false in any space dimension.

Let
L = {A : TrA = 0}. (4.5)

Then for an exact relation to hold we need to require that

e1 is an eigenvector for LiLj + LjLi. (4.6)
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If d > 2 then we can easily choose two different trace free matrices L1 and L2 such that Tr(L1L2) = 0
that violate (4.6). In particular, if d = 3 we can take

L1 =





0 0 0
0 0 1
0 1 0



 , L2 =





0 0 1
0 0 0
1 0 0



 . (4.7)

Then

L1L2 + L2L1 =





0 1 0
1 0 0
0 0 0



 . (4.8)

For d > 3 we can take the two matrices L′

1 and L′

2 that contain L1 and L2 as their upper left 3x3
blocks with the rest of the elements zero. Then L′

1L
′

2 will contain (4.8) as its upper left 3x3 block
with the rest of the elements zero.

If d = 2 then it is easy to check that L given by (4.5) satisfies (4.6). This means that for d = 2
the subspace L given by (4.5) generates a manifold corresponding to the exact relation for effective
moduli of laminates. The equation of this manifold is

Tr(W−1

0
W (S)W−1

0
) = Tr(W−1

0
) (4.9)

A simple Maple calculation then gives the well-known result:

detσ∗ = constant. (4.10)

5 An example: two-dimensional elasticity.

In the case of 2-d elasticity we have

T = Sym(R2), Y = Sym(T ). (5.1)

For any A ∈ T we let
Θ(R)A = RAR

T . (5.2)

It will be convenient to represent elements of Y by symmetric 3x3 matrices in the following orthonor-
mal basis of T [1, 10, 12]:

B1 =
1√
2

[

1 0
0 1

]

, B2 =
1√
2

[

1 0
0 −1

]

, B3 =
1√
2

[

0 1
1 0

]

. (5.3)

Then

S0 =





s1 0 0
0 s2 0
0 0 s2



 , Γ =
1

2





1 1 0
1 1 0
0 0 2



 . (5.4)

The decomposition of Y into the orthogonal sum of irreducible subspaces is easily inferred from
[1, formulas (2.24)–(2.26)]:

Y = L1 ⊕ L2 ⊕ L3 ⊕ L4, (5.5)

where

L1 = Span(X1), L2 = Span(X2), L3 = Span(X3, X4), L4 = Span(X5, X6), (5.6)

and

X1 =











cos t 0 0

0
1√
2

sin t 0

0 0
1√
2

sin t











, X2 =











− sin t 0 0

0
1√
2

cos t 0

0 0
1√
2

cos t











,
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(5.7)

X3 =





0 1 0
1 0 0
0 0 0



 , X4 =





0 0 1
0 0 0
1 0 0



 , X5 =





0 0 0
0 1 0
0 0 −1



 , X6 =





0 0 0
0 0 1
0 1 0



 .

Finally the one-dimensional Lie algebra of the representation Θ(R) is spanned by

A1 =





0 0 0
0 0 1
0 −1 0



 (5.8)

in the basis (5.3).
Now we are ready to check conditions (3.13). There are 10 choices for L (since L1 becomes

L2 when parameter t is replaced by t + π/2). For each of the ten choices we compute the scalars
pαrij = (Aα, [W0, LiKrLj]) using a Maple program. These scalars depend on components si of S0

and a parameter t. We get an exact relation whenever we can choose the values of the parameters to
make the array pαrij identically zero. We list the ten arrays computed by Maple in the Appendix.
Examining each of the ten tables we easily pick out all those cases (7 in total) for which pαrij = 0
for all α, r, i and j. Below we give a summary of what we have discovered. We have translated our
results from the S variables to the actual Hooke’s laws C by means of (2.7). We will use H to denote
the corresponding manifold in C variables. We still represent elasticity tensors as 3x3 matrices in
the basis (5.3).

Summary.

1. dimM= 1

(a) L =Span(X1) for sin t = 0.
This case corresponds to the result of Hill [6, 7] that an effective Hooke’s law of a composite
made of components with the same shear modulus has that same shear modulus.

(b) L =Span(X2) with sin t = 0 and (S0)11 = 1.
This relation says that a mixture of isotropic materials with zero bulk modulus is again
isotropic with zero bulk modulus.

2. dimM= 2

(a) L =Span(X3, X4) with (S0)11 = 1
This case describes a family of manifolds

Ht = {C = c ⊗ c + t2T | c2

1 = t2 + c2

2 + c2

3}, (5.9)

where

T =





−1 0 0
0 1 0
0 0 1



 (5.10)

and c1, c2 and c3 are coordinates of the 2 by 2 symmetric matrix c in the basis (5.3).
This manifold contains only degenerate Hooke’s laws. It is the intersection of items 3(a)
and 4 below.

(b) L =Span(X5, X6)
Here we have a two-parameter family of manifolds Hκ,t. The manifolds contain Hooke’s
laws of square symmetry with a given bulk modulus κ and variable shear moduli µ1 and
µ2 that satisfy

(
1

κ
+

1

µ1

)(
1

κ
+

1

µ2

) = t. (5.11)

This case was treated by Lurie and Cherkaev in [10].
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3. dimM= 3

(a) L =Span(X1, X3, X4) with sin t = 0
This case describes a one-parameter family of manifolds

Ht = {C = c ⊗ c + tT | c ∈ Sym(R2)}. (5.12)

This exact relation was discussed in [4]. Item 1(a) is contained here as a submanifold.

(b) L =Span(X2, X5, X6) with sin t = 0
Here we have a one-parameter family of manifolds Hκ. The manifolds contain Hooke’s
laws of square symmetry with a given bulk modulus κ. This exact relation was discovered
in [12]. Item 2(b) is contained here as a submanifold.

4. dimM= 5, L =Span(X2, X3, X4, X5, X6) with sin t = 0 and (S0)11 = 1
Here we have a single manifold

H = {C : detC = 0} (5.13)

passing through isotropic tensors with bulk modulus equal to zero. This exact relation was
described in [4, section 4.3]. Item 1(b) is contained here as a submanifold.
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rem 2. He also wishes to thank Professors A. Treibergs and D. Sage for useful discussions.
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A Appendix.

Here we give the results of the Maple program computing arrays pαrij = (Aα, [W0, LiKrLj]) for all
possible choices of rotationally invariant subspaces L in the context of Section 5. We display only
elements with i ≤ j since pαrij = pαrji. The array elements depend on 3 parameters s1 ≥ 0, s2 > 0
and t ∈ [0, 2π). Below each array we list all values of the parameters, if any, that make all array
entries vanish.

1. L = L1.
p1,1,1,1 = 0
p1,2,1,1 = 0

p1,3,1,1 = − cos( t )
√

2 sin( t )

2 s1 s2 − s1 − s2
p1,4,1,1 = 0

p1,5,1,1 = − 1 − cos( t )2 − s1 + s1 cos( t )2

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
This array becomes zero if sin t = 0, or if cos t = 0 and s1 = 1. The first possibility corresponds
to the result of Hill [6, 7], the second—to a new exact relation.

2. L = L1 ⊕ L2.
p1,1,1,1 = 0
p1,1,1,2 = 0
p1,1,2,2 = 0

p1,2,1,1 = − cos( t )
√

2 sin( t )

2 s1 s2 − s1 − s2

p1,2,1,2 = − 1

2

√
2
(

−1 + 2 cos( t )2
)

2 s1 s2 − s1 − s2

p1,2,2,2 =
cos( t )

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,3,1,1 = 0
p1,3,1,2 = 0
p1,3,2,2 = 0

p1,4,1,1 = − −s1 + s1 cos( t )2 + 1 − cos( t )2

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,4,1,2 =
sin( t ) cos( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,4,2,2 =
cos( t )2 ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
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This array can never become zero because of the entries (1,2,1,1) and (1,2,1,2).

3. L = L3.
p1,1,1,1 = 0

p1,1,1,2 =
cos( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,2,2 = 0
p1,2,1,1 = 0

p1,2,1,2 = − sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,2,2,2 = 0
p1,3,1,1 = 0
p1,3,1,2 = 0
p1,3,2,2 = 0
p1,4,1,1 = 0
p1,4,1,2 = 0
p1,4,2,2 = 0

This array becomes zero if s1 = 1. This is the intersection of the two exact relations from [4].

4. L = L4.
p1,1,1,1 = 0
p1,1,1,2 = 0
p1,1,2,2 = 0
p1,2,1,1 = 0
p1,2,1,2 = 0
p1,2,2,2 = 0
p1,3,1,1 = 0
p1,3,1,2 = 0
p1,3,2,2 = 0
p1,4,1,1 = 0
p1,4,1,2 = 0
p1,4,2,2 = 0

This case corresponds to the exact relation discovered by Lurie and Cherkaev [10].
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5. L = L1 ⊕ L3.
p1,1,1,1 = 0
p1,1,1,2 = 0

p1,1,1,3 =
1

2

cos( t ) sin( t )

2 s1 s2 − s1 − s2
p1,1,2,2 = 0

p1,1,2,3 = − sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,3,3 = 0
p1,2,1,1 = 0
p1,2,1,2 = 0

p1,2,1,3 =
1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,2,2,2 = 0
p1,2,2,3 = 0
p1,2,3,3 = 0

p1,3,1,1 = − −s1 + s1 cos( t )2 + 1 − cos( t )2

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,3,1,2 = − 1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,3,1,3 = 0
p1,3,2,2 = 0
p1,3,2,3 = 0
p1,3,3,3 = 0

This array becomes zero if sin t = 0. It corresponds to the exact relation discovered by
Grabovsky and Milton [4].

6. L = L1 ⊕ L4.
p1,1,1,1 = 0
p1,1,1,2 = 0

p1,1,1,3 =
cos( t ) sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,2,2 = 0
p1,1,2,3 = 0
p1,1,3,3 = 0
p1,2,1,1 = 0
p1,2,1,2 = 0

p1,2,1,3 = − cos( t )

2 s1 s2 − s1 − s2
p1,2,2,2 = 0
p1,2,2,3 = 0
p1,2,3,3 = 0

p1,3,1,1 = − cos( t )
√

2 sin( t )

2 s1 s2 − s1 − s2

p1,3,1,2 =
cos( t )

2 s1 s2 − s1 − s2
p1,3,1,3 = 0
p1,3,2,2 = 0
p1,3,2,3 = 0
p1,3,3,3 = 0

This array becomes zero if cos t = 0. It corresponds to the exact relation of Lurie, Cherkaev
and Fedorov [12].
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7. L = L3 ⊕ L4.
p1,1,1,1 = 0

p1,1,1,2 =
cos( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,1,3 = 0

p1,1,1,4 = − 1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,1,2,2 = 0

p1,1,2,3 =
1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,1,2,4 = 0
p1,1,3,3 = 0
p1,1,3,4 = 0
p1,1,4,4 = 0
p1,2,1,1 = 0

p1,2,1,2 = − sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,2,1,3 = 0

p1,2,1,4 = − 1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,2,2,2 = 0

p1,2,2,3 =
1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,2,2,4 = 0
p1,2,3,3 = 0
p1,2,3,4 = 0
p1,2,4,4 = 0

This array can never be zero because of the entries (1,1,2,3) and (1,2,1,4).

8. L = L1 ⊕ L3 ⊕ L4.

p1,1,1,1 = 0
p1,1,1,2 = 0

p1,1,1,3 =
1

2

cos( t ) sin( t )

2 s1 s2 − s1 − s2
p1,1,1,4 = 0

p1,1,1,5 =
cos( t ) sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,2,2 = 0

p1,1,2,3 = − sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2
p1,1,2,4 = 0

p1,1,2,5 = − 1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,1,3,3 = 0

p1,1,3,4 =
1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,1,3,5 = 0
p1,1,4,4 = 0
p1,1,4,5 = 0
p1,1,5,5 = 0

This array is zero if cos t = 0 and s1 = 1. This case corresponds to the exact relation described
in [4, section 4.3].
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9. L = L1 ⊕ L2 ⊕ L3.

p1,1,1,1 = 0
p1,1,1,2 = 0
p1,1,1,3 = 0

p1,1,1,4 =
1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,1,2,2 = 0
p1,1,2,3 = 0

p1,1,2,4 =
1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,1,3,3 = 0
p1,1,3,4 = 0
p1,1,4,4 = 0

p1,2,1,1 = − −s1 + s1 cos( t )2 + 1 − cos( t )2

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,2,1,2 =
cos( t ) sin( t ) ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,2,1,3 = − 1

2

√
2 sin( t )

2 s1 s2 − s1 − s2
p1,2,1,4 = 0

p1,2,2,2 =
cos( t )2 ( s1 − 1 )

2 s1 s2 2 − 3 s1 s2 + s1 − s2 2 + s2

p1,2,2,3 = − 1

2

√
2 cos( t )

2 s1 s2 − s1 − s2
p1,2,2,4 = 0
p1,2,3,3 = 0
p1,2,3,4 = 0
p1,2,4,4 = 0

This array can never be zero because of the entries (1,1,1,4) and (1,1,2,4).
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10. L = L1 ⊕ L2 ⊕ L4.
p1,1,1,1 = 0
p1,1,1,2 = 0
p1,1,1,3 = 0

p1,1,1,4 = − cos( t )

2 s1 s2 − s1 − s2
p1,1,2,2 = 0
p1,1,2,3 = 0

p1,1,2,4 =
sin( t )

2 s1 s2 − s1 − s2
p1,1,3,3 = 0
p1,1,3,4 = 0
p1,1,4,4 = 0

p1,2,1,1 = − cos( t )
√

2 sin( t )

2 s1 s2 − s1 − s2

p1,2,1,2 = − 1

2

√
2
(

−1 + 2 cos( t )2
)

2 s1 s2 − s1 − s2

p1,2,1,3 =
cos( t )

2 s1 s2 − s1 − s2
p1,2,1,4 = 0

p1,2,2,2 =
cos( t )

√
2 sin( t )

2 s1 s2 − s1 − s2

p1,2,2,3 = − sin( t )

2 s1 s2 − s1 − s2
p1,2,2,4 = 0
p1,2,3,3 = 0
p1,2,3,4 = 0
p1,2,4,4 = 0

This array can never be zero because of the entries (1,1,1,4) and (1,1,2,4).
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