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Abstract

Typically, the elastic and electrical properties of composite materials are strongly
microstructure dependent. So it comes as a nice surprise to come across exact formulae
for effective moduli that are universally valid no matter what the microstructure. Such
exact formulae provide useful benchmarks for testing numerical and actual experimen-
tal data, and for evaluating the merit of various approximation schemes. They can be
also regarded as fundamental invariances existing in a given physical context. Classic
examples include, Hill’s formulae for the effective bulk modulus of a two-phase mix-
ture when the phases have equal shear moduli, Levin’s formulae linking the effective
thermal expansion coefficient and effective bulk modulus of two-phase mixtures, and
Dykhne’s result for the effective conductivity of an isotropic two-dimensional polycrys-
talline material. Here we present a systematic theory of exact relations embracing the
known exact relations and establishing new ones. The search for exact relations is
reduced to a search for matrix subspaces having a structure of special Jordan algebras.
One of many new exact relations is for the effective shear modulus of a class of three-
dimensional polycrystalline materials. We present complete lists of exact relations for
3D thermo-electricity and for 3D thermo-piezo-electric composites which includes all
exact relations for elasticity, thermo-elasticity and piezo-electricity as particular cases.
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1 Introduction.

The main difficulty in predicting effective properties of composite materials is a (sometimes
strong) dependence on the microstructure. During this century there has been a sustained
effort to understand the nature of that dependence. To this end powerful bounding tech-
niques and various approximation schemes have been developed. Yet, we cannot claim that
we have a complete understanding of the question. We can divide the area into two branches:
geometry-independent and geometry-dependent results. The first tries to predict effective
properties of a composite without using any information about the geometric arrangement
of the phases, aside from perhaps the volume fractions occupied by the phases, while the sec-
ond tries to improve the results of the first when some information about the microstructure
is taken into account. Therefore, the first branch serves as a base for the more practi-
cally important second branch. Thus, if we want to make progress in our ability to predict
the effective properties of composites it is crucial that we gain more insight into the more
fundamental aspects of the problem.

Our basic paradigm is the computation of G-closures—the set of all possible effective
tensors obtainable by mixing a given set of materials (possibly in given volume fractions) [34,
37, 53]. Thus far the general G-closure problem has been regarded as hopelessly complicated.
This paper, however will create a tiny hope for further fundamental progress, as it presents
a simple new formula for the map L(x) −→ L∗, where L(x) and L∗ denote the local tensor
and the effective tensor respectively. Using this formula we were able to answer an even more
basic question: When does the G-closure have an interior and when does it degenerate into a
surface, creating what we call an exact relation. In fact, generically, the G-closure has a non-
empty interior. It is only in a few exceptional cases that the G-closure collapses to a surface.
In this paper we will produce complete lists of such cases for many physically important
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examples. These include among others: elasticity, piezo-electricity, thermo-electricity and
thermo-elasticity. The two most widely known examples of exact relations are due to Hill [25,
26] in elasticity and Keller [28], Dykhne [18] and Mendelson [40] (KDM) in 2D conductivity.
Hill’s exact relation says that a mixture of isotropic materials with constant shear modulus is
isotropic and has the same shear modulus. The KDM exact relation says in particular that
the effective conductivity of an isotropic 2D conducting polycrystal σ∗ =

√
det σ0, where

σ0 is the conductivity tensor of a pure crystal. More generally KDM reads as follows. If
σ∗ is the effective conductivity corresponding to the local tensor σ(x) then σ∗/ det σ∗ is the
effective conductivity for the local tensor σ(x)/ detσ(x).

The question that we address is whether there are any more beautiful relations like these
for other physical phenomena. The answer is an emphatic “yes” as evidenced by results of
Benveniste [4, 5, 6], Benveniste and Dvorak [8], Dunn [15], Dvorak [16, 17], Hashin [23], Levin
[33], Milgrom [41], Milgrom and Shtrikman [42, 43], Rosen and Hashin [47], Schulgasser [49]
and many others (see a review by Milton [45]). The purpose of this paper is to indicate
how all of these exact relations could be harvested in any physical context by applying our
general theory of exact relations, which we continue to develop following the earlier papers
of Grabovsky [19] and Grabovsky and Sage [22]. These papers established necessary and
sufficient conditions for stability of an exact relation under lamination and provided a method
for getting all such relations for problems of modest size. The stability under lamination
criterion served the purpose of proving that in many contexts there were no other exact
relations beyond the already established ones. In this paper we prove an algebraic sufficient
condition for stability under homogenization (not just lamination) and sharpen the method
of [22] to be applicable to much larger sized problems. In addition we extend the general
theory to exact relations which are not “rotationally invariant”, and to exact relations which
incorporate the volume fractions of the phases.

In order to place this paper in context, let us review some previous work on exact relations.
We already mentioned the KDM exact relation for 2D conductivity. In [19] we have shown
that there are no other exact relations there. We also showed that there are no exact relations
for 3D conductivity. In the same paper we proved that for 2D elasticity there are exactly
four exact relations, all previously known, see [1, 21, 25, 26, 35, 39]. Two among them
[25, 26] (see also [39]) were known to hold in 3D. In [22] we showed that the 3D analogue
of a third one is stable under lamination and that no other exact relations were possible. In
this paper we establish stability under homogenization of that third exact relations which we
term “rank-one plus a null-Lagrangian”, or RPN for short. We describe it a little later in the
introduction. Other exact relations are found in settings such as piezo-electricity [4, 6, 8],
thermo-elasticity [17, 23, 33, 47, 49], thermo-electricity [3, 41, 42, 43, 51] and thermo-piezo-
electricity [5, 15]. These papers suggested to us the immodest idea of going after all exact
relations in a general coupled field problem of the form (1.4) below, of which the above
examples are particular cases. In this paper we address all of these settings and produce
complete lists of exact relations in each of them.

The structure of the paper is the following. In Section 2 we provide several complete
lists of exact relations as evidence of the power of our methods. In Section 3 we develop
a general theory of exact relations, and in Section 4 we explore some of the corollaries
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that are universally valid regardless of the particular physical context to which the theory
applies. Unfortunately it is not that easy to pass from the the general theory to particular
applications. In Sections 5 and 6 we develop the tools needed to make that transition. In
order to keep this article of manageable size we do not treat 2D problems in Sections 5
and 6 (up to that point the analysis is the same in any number of space dimensions). It
is possible to develop an equally effective methodology for 2D based on the commutativity
of the rotation group SO(2). We illustrate our theory with several simple examples. The
most interesting one in our opinion is the “rank-one plus a null-Lagrangian” or RPN exact
relation for 3D elasticity. We state it now.

Let τ(x) denote the stress field and ǫ(x) denote the strain field. Let C(x) denote the
Hooke’s law relating the two tensor fields:

τ(x) = C(x)ǫ(x).

Suppose C(x) has the form

Cijkl(x) = 2µTijkl +Bij(x)Bkl(x),

where

Tijkl =
1

2
(δikδjl + δjkδil) − δijδkl (1.1)

is the null-Lagrangian (satisfying 〈∇u · T∇u〉 = 〈∇u〉 · T 〈∇u〉 for all periodic ∇u(x), where
〈·〉 denotes the average over the period cell). Then C∗ has the same form

C∗
ijkl = 2µTijkl +B∗

ijB
∗
kl. (1.2)

The analysis of this exact relation has appeared earlier in [20]1, where an abridged version
of our theory was presented and applied to the setting of 3D elasticity. The 2D analogue of
this exact relation was first discovered in [1] for the special case of an isotropic polycrystal,
with the local elasticity matrix C(x) = R(x) · C0 and R(x) ∈ SO(2). Later we generalized
this 2D result in [21] uncovering its RPN structure. The 3D result (1.2) was anticipated in
[22], where we proved its stability under lamination. The stability under homogenization
established here is completely new.

In order to approach our goals from the unifying point of view we need to have a general
framework that comprises such phenomena as conductivity, elasticity, thermo-electricity, etc.
Such a framework has been developed by Milton [44]. We will cover as much of it as needed
to introduce our notation.

If we look at the formulations of conductivity and elasticity problems we may realize that
they have a very similar structure. Namely, both have a pair of physical fields: an electric
field and a current density for conductivity, and a strain and a stress fields for elasticity. In
general we may consider a pair of abstract fields E—the intensity field and J—the flux field.
They take values from a finite dimensional tensor space T and are related by a linear map
L:

J = LE,

1Full text is available at http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/16/16.html
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where L ∈ Sym+(T )—the space of symmetric positive definite linear maps on T . For
conductivity T = R

3 for elasticity T = Sym(R3). In our two examples the pair of fields must
satisfy differential constraints: kinematic compatibility for the intensity field and balance
equations for the flux field. These differential constraints can be transformed into local
constraints in Fourier space. In order to write this fact in terms of our general fields we
will restrict ourselves to the set of periodic composites. This presents no loss of generality
because of the unpublished localization theorem of Kohn and Dal Maso and because all we
are after are the G-closed sets of tensors in Sym+(T ).

Let Q = [0, 1]3 denote the period cell in R
3. Then {E, J} ⊂ H = L2(Q) ⊗ T , where

the tensor product is taken over R. Let U = R ⊗ T denote the set of constant fields. Then
the differential constraints can be stated as follows: there exist an orthogonal splitting of
H = E ⊕ J ⊕ U such that E ∈ E ⊕ U , J ∈ J ⊕ U and the orthogonal projection Γ onto the
subspace E is local in Fourier space:

Γ̂h(k) = Γ(
k

|k|)ĥ(k),

if k 6= 0, and Γ̂h(0) = 0 for any h ∈ H. Here Γ(n) is the orthogonal projection onto a
subspace En of T . For conductivity Γ(n) is given by Γ(n)e = (e · n)n for any e ∈ T = R

3,
and for elasticity Γ(n) is given by

Γ(n)ε = εn ⊗ n + n ⊗ εn − (εn · n)n ⊗ n

for any ε ∈ T = Sym(R3). In all physical settings the function Γ(n) has a rotational
invariance property:

R · Γ(n) = Γ(Rn) (1.3)

for any rotation R ∈ SO(3). Here R· denotes the natural action of the rotation group on
an appropriate tensor space. For example, for any x ∈ R

3 R · x = Rx, for any ξ ∈ Sym(R3)
R · ξ = RξR−1, and so on. The rotational invariance property will turn out to be extremely
useful later on.

An ultimate example that we have in mind is the coupled problem involving n1 electric
fields, n2 elastic fields and n0 temperature fields:

E(x) = (ǫ1(x), . . . , ǫn2
(x), d1(x), . . . , dn1

(x), θ1, . . . , θn0
),

J(x) = (τ1(x), . . . , τn2
(x), e1(x), . . . , en1

(x), ζ1(x), . . . , ζn0
(x)),

J(x) = L(x)E(x),

(1.4)

The fields di are divergence free, while the fields ei are curl-free. The elastic strains ǫi
and stresses τi satisfy the usual differential constraints. The scalar entropy fields ζi do not
obey any differential constraints, and the temperature increments θi from some reference
temperature are constant scalars (independent of x). In this case the space T is a direct
sum of n0 copies of R, n1 copies of R

3 and n2 copies of Sym(R3). The projection operator
Γ(n) is a direct sum of n0 + n1 + n2 projection operators corresponding to the individual
blocks in E(x).
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2 A plethora of exact relations.

In this section we focus on 3D exact relations. We have organized our lists in the order of
increasing complexity. We start with pyro-electricity and conclude with thermo-piezo-electric
composites and a link between two uncoupled elasticity problems. We do not address 3D
conductivity and elasticity in this section. There are no exact relations for 3D conductivity
[19], while the case of 3D elasticity is worked out in Examples 5.8 and 6.4 in this paper as
an illustration of our methods (see also [20]).

The number of exact relations (or rather the number of infinite families of exact relations)
explodes as we increase the size of the problem. For the simplest examples we are able to
list all exact relations, but it would be a cumbersome task to do so for the larger ones.
In this latter instance we omit the obvious exact relations (for example those that follow
from the fact that the thermal expansion tensor can not influence the effective elasticity
matrix in a thermo-elastic composite). We also omit some (but not all) exact relations
that can be obtained as intersections of the other ones. In fact most exact relations in this
section are particular cases of the exact relations for thermo-piezo-electric composites listed
in Section 2.5. Still we included some of them for the convenience of the reader. At the same
time we took care that all the omitted exact relations are reconstructible from the listed
ones.

2.1 Pyro-electric composites.

There is a single (and almost trivial) exact relation for pyro-electric composites. Suppose
that the constitutive equation is

e(x) = ρ0d(x) + p(x)θ,

where the notation is consistent with (1.4). We assume that the local dielectric tensor ρ−1
0

is constant, so that the inhomogeneity is only in the pyro-electric coupling moduli p(x) =
[p1(x), p2(x), p3(x)]. Taking the averages we obtain a formula for the effective pyro-electric
tensor:

〈e〉 = ρ0〈d〉 + 〈p〉θ,
where 〈·〉 denotes the average over the period cell Q, so that ρ∗ = ρ0 and p∗ = 〈p〉.

2.2 Thermo-electric composites.

The constitutive equation for the linear thermo-electric effect can be formulated as a linear
relation between a pair of curl-free intensity fields e1(x) and e2(x) and a pair of divergence-
free flux fields d1(x) and d2(x) (see [13] for the physical meaning of intensity fields and
fluxes) effected by a symmetric tensor L(x).


 d1(x)

d2(x)


 = L(x)


 e1(x)

e2(x)


 , (2.1)
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where L(x) is the two by two symmetric positive definite block-matrix. Each block of L(x)
is a three by three matrix. If the material is isotropic then all four blocks are scalar multiples
of the three by three identity matrix.

We have the following four exact relations.

1. If

L(x) =


σ(x) 0

0 σ(x)


 ,

where σ(x) is symmetric positive definite three by three matrix. Then

L∗ =


 σ

∗ 0

0 σ∗


 .

This exact relation is trivial.

2. If

L(x) =


σ(x) −ν(x)

ν(x) σ(x)


 ,

where ν(x) is a skew-symmetric three by three matrix, such that L(x) is positive
definite. Then

L∗ =


σ

∗ −ν∗

ν∗ σ∗


 ,

where ν∗ is a skew-symmetric matrix again. This exact relation corresponds to complex
conductivity since (2.1) can be written as

d1(x) + id2(x) = (σ(x) + iν(x))(e1(x) + ie2(x)).

See the review article [10] and references therein for a discussion of the physical inter-
pretation of complex conductivity.

3. Let n = [n1, n2] be a fixed unit vector in R
2 and let

L(x) =


 σ0I + n2

1σ(x) ν0I + n1n2σ(x)

ν0I + n1n2σ(x) γ0I + n2
2σ(x)


 ,

or using a tensor product notation

L(x) =


σ0 ν0

ν0 γ0


⊗ I + (n ⊗ n) ⊗ σ(x),

where σ(x) is the three by three symmetric matrix field such that L(x) is positive
definite. Then

L∗ =


σ0 ν0

ν0 γ0


⊗ I + (n ⊗ n) ⊗ σ∗.
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This is a family of uniform field relations parameterized by n (see Section 4.1) called
that way because for any uniform field e ∈ R

3 and any x ∈ Q

L(x)


−n2e

n1e


 = L0


−n2e

n1e


 ,

where

L0 =


 σ0I ν0I

ν0I γ0I


 .

Thus, taking averages over Q we get the result. In the special case of an isotropic
composite made of two isotropic materials we can get a simpler form of this exact
relation. Suppose that L1 and L2 are isotropic tensors of the two constituents and that
det(L1 − L2) = 0. Let L∗ denote the isotropic effective tensor of the composite. Then
det(L∗ − L1) = 0 and det(L∗ − L2) = 0.

4. Suppose that the four blocks comprising L(x) are linearly dependent, i.e. there are
four constants cij , i, j = 1, 2 such that

c11L11(x) + c12L12(x) + c21L
T
12(x) + c22L22(x) = 0.

Then the same relation holds for L∗ as well:

c11L
∗
11 + c12L

∗
12 + c21(L

∗
12)

T + c22L
∗
22 = 0.

This exact relation is due to Milgrom and Shtrikman [43] (see also Milgrom [41]). See
Examples 4.14 and 5.1 for a more general discussion.

Let us assume that we have a composite made with two isotropic thermo-electric ma-
terials

Li =


σiI νiI

νiI γiI


 ,

where I is a three by three identity matrix, i = 1, 2. We can easily find three numbers
c1, c2 and c3 such that the vector c = [c1, c2, c3] is orthogonal to the two vectors
l1 = [σ1, γ1, ν1] and l2 = [σ2, γ2, ν2]. Then our exact relation tells us that the vector
l∗ = (σ∗, γ∗, ν∗) made with components of the isotropic effective tensor L∗ is also
orthogonal to c. In other words, the three vectors l1, l2 and l∗ are linearly dependent,
i.e.

det

∣∣∣∣∣∣∣∣∣

σ∗ γ∗ ν∗

σ1 γ1 ν1

σ2 γ2 ν2

∣∣∣∣∣∣∣∣∣
= 0.
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2.3 Thermo-elastic composites.

The properties of thermo-elastic materials can be represented by a block-vector L(x) =
[C(x), α(x)], so that τ(x) = C(x)ǫ(x)+α(x)θ, where ǫ(x) and τ(x) denote the elastic strain
and stress fields respectively, while the uniform field θ represents a constant temperature
change from some reference temperature. Thus C(x) has the meaning of an elasticity tensor
and α(x) is a three by three matrix of thermal stress coefficients. We would like to mention
a curious remark made by R. Lakes that if one allows void volume or slip interfaces, one can
obtain arbitrarily high thermal expansion coefficients as well as negative ones [29, 30, 50].

1. Let C(x) = 2µ0T + B(x) ⊗ B(x) and α(x) = α0I + q(x)B(x) then C∗ and α∗ have
the same form.

2. Another exact relation is obtained if we replace q(x) in item 1 by ν0TrB(x). This
exact relation is due to Hashin [23], Rosen and Hashin [47] and Schulgasser [49].

3. Suppose that C(x)I = κ0I + a0α(x), then C∗ = κ0I + a0α
∗. This exact relation is due

to Laws [32] see also [7, 17].

4. Suppose that C(x) = 2µ0Is + κ(x)I ⊗ I and α(x) is isotropic (but still depends on
x), where Is is defined on the next page. As we have mentioned at the beginning
of this section, the effective elastic tensor C∗ does not depend on the local thermo-
elastic coefficient α(x). Therefore, according to Hill’s relation [25, 26] mentioned in
the introduction C∗ will be isotropic with the same shear modulus µ0 and the effective
bulk modulus κ∗ given by the famous Hill’s formula

(3κ∗ + 4µ)−1 = 〈(3κ(x) + 4µ)−1〉. (2.2)

Our new thermo-elastic exact relation says that the effective thermal stress coefficient
α∗ will always be isotropic and

α∗

3κ∗ + 4µ0

= 〈 α(x)

3κ(x) + 4µ0

〉. (2.3)

5. If in the previous item we assume in addition that there are constants a0 b0 and c0
such that a0α(x) + b0κ(x) = c0 then a0α

∗ + b0κ
∗ = c0. In particular for a two-phase

composite this exact relation can be written as

det

∣∣∣∣∣∣∣∣∣

α1 α2 α
∗

κ1 κ2 κ
∗

1 1 1

∣∣∣∣∣∣∣∣∣
= 0.

This exact relation is due to Levin [33].
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2.4 Piezo-electric composites.

A 3D piezo-electric material is described by a symmetric nine by nine matrix L(x), which
can be represented as a two by two block matrix

L(x) =


C(x) P (x)

P T (x) ρ(x)


 ,

so that 
 τ(x)

e(x)


 = L(x)


 ǫ(x)

d(x)


 ,

where ǫ(x) and τ(x) denote the elastic strain and stress fields respectively, while e(x) and
d(x) denote the electric field and the electric displacement respectively. Thus ρ(x)−1 has the
meaning of a dielectric tensor, while P (x) is a six by three matrix of piezo-electric coupling
moduli. The remaining notation is consistent with the previous section.

Our exact relations have a nice block representation. Two of them are relatives of the
elastic exact relation RPN (1.2), while the other two are uniform field relations (UFR)
discussed in Section 4.1.

1. Let

L(x) =


 2µT + A(x) ⊗ A(x) A(x) ⊗ w(x)

w(x) ⊗A(x) ρ0I + w(x) ⊗ w(x)


 .

Then L∗ has the same form:

L∗ =


 2µT + A∗ ⊗ A∗ A∗ ⊗ w∗

w∗ ⊗A∗ ρ0I + w∗ ⊗ w∗


 .

2. Let

L(x) =


 2µT + A(x) ⊗ A(x) A(x) ⊗ w(x)

w(x) ⊗A(x) ρ(x)


 .

Then L∗ has the same form:

L∗ =


 2µT + A∗ ⊗ A∗ A∗ ⊗ w∗

w∗ ⊗A∗ ρ∗


 .

Our next two exact relations say that if we choose A(x) = a(x)I in items 1 and 2 then
A∗ = a∗I.

3. Let

L(x) =




2µIs + κ(x)I ⊗ I I ⊗ w(x)

w(x) ⊗ I ρ0I +
3(w(x) ⊗ w(x))

4µ+ 3κ(x)


 .
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Then

L∗ =




2µIs + κ∗I ⊗ I I ⊗ w∗

w∗ ⊗ I ρ0I +
3(w∗ ⊗ w∗)

4µ+ 3κ∗


 .

Moreover
w∗

4µ+ 3κ∗
= 〈 w(x)

4µ+ 3κ(x)
〉. (2.4)

4. Let

L(x) =


 2µIs + κ(x)I ⊗ I I ⊗ w(x)

w(x) ⊗ I ρ(x)


 .

Then

L∗ =


 2µIs + κ∗I ⊗ I I ⊗ w∗

w∗ ⊗ I ρ∗


 ,

where Is denotes the orthogonal projector onto the space of symmetric trace-free three
by three matrices and I always denotes a three by three identity matrix. It is curious
to note that when ρ(x) does not have the form as in item 3 no volume average relations
like (2.4) hold.

5. Let C(x) have I as an eigenvector with a fixed eigenvalue κ: C(x)I = κI and assume
that P T (x)I = 0 then C∗I = κI and (P ∗)T I = 0.

2.5 Thermo-piezo-electric composites.

The physical properties of such materials are characterized by ten by ten symmetric positive
definite matrices. We will focus, however only on those components that relate elastic stress
τ(x) and electric field e(x) to strain ǫ(x), electric displacement d(x) and a temperature
increment θ from a reference temperature.

τ(x) = C(x)ǫ(x) + P (x)d(x) + α(x)θ

e(x) = P T (x)ǫ(x) + ρ(x)d(x) + p(x)θ,

(2.5)

where the notation is consistent with the previous sections.
Group 1. Group 1 contains four exact relations. One of them is the following.

C(x) = 2µ0T +B(x) ⊗B(x), P (x) = B(x) ⊗ w(x),

α(x) = α0I + q(x)B(x), p(x) = q(x)w(x),

ρ(x) = ρ0I + w(x) ⊗ w(x),

(2.6)

where T is given by (1.1) and B⊗B denotes the linear map from Sym(R3) to Sym(R3) acting
by (B ⊗ B)A = Tr(AB)B. Similarly, B ⊗ u denotes the linear map from R

3 to Sym(R3)
acting by (B ⊗ u)v = (v · u)B. The quantities µ0, q, α0 and ρ0 are scalars. This exact
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relation says that the effective constitutive relation corresponding to (2.5) will have the form
(2.6) provided the local tensors have the same form. In order to obtain the three other exact
relations in this group we may choose p(x) and/or ρ(x) to be arbitrary, independent of w(x).
Group 2. Group 2 contains two exact relations. One of them is the following.

C(x) = 2µ0T +B(x) ⊗B(x), P (x) = B(x) ⊗ w(x),

α(x) = α0I + ν0Tr(B(x))B(x), p(x) = ν0Tr(B(x))w(x),

ρ(x) = ρ0I + w(x) ⊗ w(x),

(2.7)

The other exact relation in this group is obtained by choosing ρ(x) independent of w(x). The
latter exact relation was first obtained by Dunn for two-phase composites [15]. In Dunn’s
paper the relation is not given in the form (2.7), partly because Dunn used different notation:

ǫ(x) = S(x)τ(x) + g(x)d(x) + ∆(x)θ

e(x) = −gT (x)τ(x) + β(x)d(x) + γ(x)θ.

(2.8)

In these variables Dunn’s relation has a very simple form. If

∆(x) = a0S(x)I + b0I and γ(x) = 0

then the same relation holds for the effective tensors. It is curious that a non-linear exact
relation of type (2.7) can be transformed into a linear one (the effective tensors lie on an
affine subspace) in new but physically meaningful variables.

We would like to note that there are no formulas in the two groups above that express
effective tensors through the volume averages of local tensors. Such formulas will be present
in the next group of six exact relations. Since these formulas distinguish the individual
members of this group, we are forced to list them separately.
Group 3.

1.
C(x) = 2µ0Is + κ(x)I ⊗ I, P (x) = I ⊗ w(x),

α(x) = (α0 + q(x)(κ(x) + 4µ0/3))I, p(x) = q(x)w(x),

ρ(x) = ρ0I +
3w(x) ⊗ w(x)

4µ0 + 3κ(x)
.

(2.9)

Moreover,

〈 w(x)

3κ(x) + 4µ0
〉 =

w∗

3κ∗ + 4µ0
, 〈q(x)〉 = q∗. (2.10)

2. If we replace ρ(x) by an arbitrary tensor field ρ(x) then the first relation (2.10) disap-
pears, while the second one still holds.

3. If instead we replace p(x) by an independent choice p(x), leaving ρ(x) as in (2.9) then
the first relation (2.10) is still true but the second scalar formula is replaced by a new
vectorial one:

〈 3α(x)

3κ(x) + 4µ0
w(x)〉 − 〈p(x)〉 =

3α∗

3κ∗ + 4µ0
w∗ − p∗. (2.11)
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4. If however we combine changes proposed in items 2 and 3, then we will obtain a new
exact relation but with no volume average formulas like (2.10).

5.
C(x) = 2µ0Is + κ(x)I ⊗ I, P (x) = I ⊗ w(x),

α(x) = (α0 + q0κ(x))I, p(x) = q0w(x),

ρ(x) = ρ0I +
3w(x) ⊗ w(x)

4µ0 + 3κ(x)
.

(2.12)

Moreover the formulas (2.10) are still valid (with the second formula being trivially
true).

6. If we replace in (2.12) the dielectric tensor ρ(x)−1 by an arbitrary tensor field indepen-
dent of w(x) and κ(x) then we get a new exact relation, but there are no longer any
volume average formulas to supplement (2.12).

There are two other exact relations that do not belong to any of the groups above.
Group 4.

1. Suppose that for all x

C(x)I = a0α(x) + κ0I, P T (x)I = a0p(x), (2.13)

then the effective tensors C∗, P ∗, α∗ and p∗ satisfy the same relation. Here a0 and κ0

are scalar constants. This exact relation belongs to the class of uniform field relations
described in Section 4.1.

2. Let C(x) = C0 be isotropic and constant and let P (x) = 0. Then the effective tensors
have the same properties. Moreover, α∗ = 〈α(x)〉.

2.6 Links between two uncoupled elasticity problems.

In two space dimensions we would like to mention the link based on two-dimensional duality
due to Berdichevsky [9] (see also [24] for some extensions). In three space dimensions there
is a single and different link based on the RPN exact relation (1.2). Let C1(x) = 2µ1T +
A1(x) ⊗ A1(x) and let C2(x) = 2µ2T + A2(x) ⊗ A2(x). For a three by three symmetric
matrix A let A′ = A− I(TrA)/3. Assume that for any x ∈ Q A′

1(x) is a scalar multiple of
A′

2(x). According to the RPN exact relation for 3D elasticity C∗
i = 2µiT +A∗

i ⊗A∗
i , i = 1, 2.

Then our new result says that A∗
1
′ is a scalar multiple of A∗

2
′.

3 A general theory of exact relations.

3.1 Lamination formula.

In this section we derive a linear lamination formula which is best suited to our needs.
This formula first appeared in the papers of Milton [44] and Zhikov [54]. Other linear
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lamination formulas were derived by Bacus [2] and Tartar [52] based on the idea to rewrite
the constitutive relation so that the continuous and discontinuous components of the elastic
fields are separated. In what follows we will use bold font to denote operators on a Hilbert
space.

Recall the “cell problem” for finding effective properties for periodic composites char-
acterized by the local tensor of physical properties L(x) [44]: Find a pair of fields e ∈ E ,
J ∈ J ⊕ U such that

J = L(e+ E0), (3.1)

where the operator L : H → H is given by Lh = L(x)h(x) and E0 is the given mean value
of the intensity field E = e+ E0. Then the effective tensor L∗ is defined by

J0 = L∗E0 = 〈L(x)E(x)〉, (3.2)

where J0 = 〈J〉 is the mean value of the flux field J .
It is not very convenient to have such a definition of the effective tensor L∗, where we

have to remember what the subspaces E and J are. Instead we are going to rewrite the
equations relating L∗ to L directly. Before we do so, we are going to derive a lamination
formula that will turn out to be the cornerstone of our analysis. To this end let us fix a
reference medium L0 ∈ Sym+(T ) and let Γ′ be the orthogonal projection onto the subspace

L
1/2
0 E ⊂ H. We still have

Γ̂′h(k) = Γ′(
k

|k|)ĥ(k),

if k 6= 0, and Γ̂′h(0) = 0 for any h ∈ H. Here Γ′(n) is the orthogonal projection onto a

subspace E ′
n

= L
1/2
0 En of T . If we choose the reference medium L0 to be isotropic then the

rotational invariance property (1.3) is preserved for Γ′(n):

R · Γ′(n) = Γ′(Rn) (3.3)

We will not need the rotational invariance for awhile, so L0 can be completely general until
then.

Now we consider a laminate material with parameters L1, L2, θ1, θ2 = 1− θ1 and n (see
fig. 1). Let us consider the W -transform of L(x) first introduced in [44]:

Wn(L) = [(I − L
−1/2
0 LL

−1/2
0 )−1 − Γ′(n)]−1. (3.4)

In (3.4) we may choose L0 to be any symmetric and positive definite operator on T . In
fact it is sufficient to require only that L0 be positve definite on En for each n. However,
in this paper we use only positive definite reference media. Under such a choice of L0

the transformation Wn(L) is well defined and injective on all of Sym+(T ). We prove this
statement in Theorem A.1 in the Appendix.

Theorem 3.1 If L(x) is the laminate with parameters L1, L2, θ1, θ2 = 1 − θ1 and n as in
fig. 1 and L∗ is its effective tensor, then

Wn(L∗) = θ1Wn(L1) + θ2Wn(L2).
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Figure 1: The period cell of the laminate.

Proof: The most important observation is that in the laminate both L(x) and the
fields E(x) and J(x) depend on x · n only. Then we have

Γ′F = Γ′(n)f(x) = Γ′(n)(F (x) − F0), (3.5)

provided F depends only on x · n. We use subscript 0 to denote the mean value of a field
and lower case to denote mean zero part of a field (e.g. F = F0 + f , etc.).

Now we can begin the proof by introducing the polarization field

P (x) = (L(x) − L0)E(x). (3.6)

If we take the average of (3.6) we get from (3.2)

P0 = (L∗ − L0)E0. (3.7)

Now let us change coordinates by L
1/2
0 . We let E ′ = L

1/2
0 E, J ′ = L

−1/2
0 J , P ′ = L

−1/2
0 P ,

L′ = L
−1/2
0 LL

−1/2
0 . Then (3.6) and (3.7) become

P ′(x) = (L′(x) − I)E ′(x) = J ′(x) − E ′(x) (3.8)

and
P ′

0 = (L∗′ − I)E ′
0, (3.9)

where L∗′ = L
−1/2
0 L∗L−1/2

0 . Applying the operator Γ′ to (3.8) we get

Γ′P ′ = −e′(x), (3.10)
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since J ′ ∈ (L
1/2
0 E)⊥. Now we apply (3.5) to (3.10) and obtain using (3.9)

E ′(x) = E ′
0 + e′(x) = (L∗′ − I)−1P ′

0 − Γ′(n)(P ′(x) − P ′
0). (3.11)

We also have from (3.8)
E ′(x) = (L′(x) − I)−1P ′(x). (3.12)

In order to simplify our formulas we use Bergman-Milton S-transformation

S(L) = (I − L
−1/2
0 LL

−1/2
0 )−1. (3.13)

Then equating the right hand sides in (3.11) and (3.12) we get

[S(L∗) − Γ′(n)]P ′
0 = [S(L(x)) − Γ′(n)]P ′(x). (3.14)

Then we get by solving (3.14) for P ′(x) and taking averages:

P ′
0 = 〈P ′(x)〉 = 〈Wn(L(x))〉 [S(L∗) − Γ′(n)]P ′

0.

Since P ′
0 can be arbitrary, we obtain

Wn(L∗) = 〈Wn(L(x))〉,

and the theorem follows.

Corollary 3.2 If a set X ⊂ Sym+(T ) is closed under lamination then Wn(X) is a convex
set for any direction n ∈ S

2.

3.2 A new formula for the effective tensor of a composite.

If we have a general, not necessarily laminar microstructure, then we can easily adjust the
calculations in the proof of Theorem 3.1 in order to get a formula relating W (L∗) and
W (L(x)), where W (L) = We1

(L) with e1 = (1, 0, 0). We will start with equations (3.11)
and (3.12), except that (3.11) will now read

E ′(x) = (L∗′ − I)−1P ′
0 − Γ′P ′. (3.15)

So we get from (3.12) and (3.15)

S(L∗)P ′
0 = [S − Γ′]P ′,

where S is an operator on H acting on an arbitrary h ∈ H by Sh = S(L(x))h(x). We now
pass to the W variable by

W (L) = [S(L) − Γ′]−1, (3.16)

where Γ′ = Γ′(e1). We obtain

([W (L∗)]−1 + Γ′)P ′
0 = (W−1 + Γ′ − Γ′)P ′,
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where
Wh = W (L(x))h(x).

Alternatively, introducing a Fourier multiplier Λ acting on an arbitrary h ∈ H by

Λ̂h(k) = (Γ′(
k

|k|) − Γ′)ĥ(k), (3.17)

if k 6= 0, and Λ̂h(0) = 0, we get

[W (L∗)]−1P ′
0 = (W−1 − Λ)P ′. (3.18)

Then, solving (3.18) for P ′ and taking averages we arrive at the following theorem.

Theorem 3.3 Let L∗ be the effective tensor for the composite described by the local tensor
L(x) then

W (L∗) = 〈(I − WΛ)−1W (L(x))〉, (3.19)

where I denotes the identity operator on the Hilbert space H = L2(Q) ⊗ End(T ), and where
Λ is defined by (3.17), while W denotes the operator on H acting by left multiplication:

WH = W (L(x))H(x)

for all H ∈ H. Here End(T ) denotes the algebra of all linear operators on T .

The Theorem 3.3 is equivalent to our original formulation (3.1), (3.2) but appears to be
much more convenient for our purposes.

3.3 Exact relations.

Now we are ready to define the notion of an exact relation and develop a general theory.

Definition 3.4 A G-closed smooth submanifold M ⊂ Sym+(T ) is called an exact relation.

Throughout this paper we will use the term “surface” to refer to this smooth submanifold,
in order to invoke the intuitive imagery.

Let M be an exact relation, then by Corollary 3.2 Wn(M) must be a convex surface of the
same dimension. Thus, Wn(M) is a convex subset of an affine subspace Πn. Now, let us take
the reference medium L0 ∈ M. Then an easy calculation shows that Wn(L0) = 0. Thus, the
affine subspaces Πn are linear subspaces.

Theorem 3.5 The subspaces Πn do not depend on n:

Πn = Π.

Let
A = Span(Γ′(n) − Γ′ : |n| = 1). (3.20)
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Figure 2: Proof of uniqueness of the image subspace.

Then Π solves the following equation

(ΠAΠ)sym ⊂ Π, (3.21)

where, for any subspace X ,

Xsym
def
= (X + X T ) ∩ Sym(T )

and
XY = Span(xy : x ∈ X , y ∈ Y),

for all subspaces X and Y of End(T ).

Proof: Let Π = Πe1
. Fix an arbitrary direction n and consider a map from Π to Πn

obtained by applying W inv (inverse of W (L)) followed by Wn as in fig. 2. Let us choose
K ∈ Π close to zero. Then there is a unique L ∈ M such that

K = [S(L) − Γ′]−1. (3.22)

Let
K ′ = Wn(L) = [S(L) − Γ′(n)]−1. (3.23)

Then, expressing S(L) from (3.22) and substituting into (3.23), we get

K ′ = [I −KA(n)]−1K, (3.24)

where
A(n) = Γ′(n) − Γ′. (3.25)

The function in (3.24) maps a small neighborhood O of zero of the subspace Π into a small
neighborhood On of zero of the subspace Πn. But K ′ is not a linear function ofK. Therefore,
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the subspaces Πn should be rather special to be non-linear images of subspaces. In order to
see just how special they should be we expand (3.24) in powers of K:

K ′ = K +KA(n)K + . . .+K(A(n)K)n + . . . (3.26)

Since the image of O lies in a subspace, then each term of the expansion must belong to Πn.
The first term shows that K ∈ Πn. Thus Π ⊂ Πn. But all the subspaces Πn are of the same
dimension. Thus Π = Πn, and the subspaces Πn do not really depend on n.

The second term in (3.26) says that the subspace Π satisfies

KA(n)K ⊂ Π (3.27)

for all K ∈ Π. It is easy to see that all other terms in (3.26) will be in Π if Π satisfies (3.27).
This is proved by induction in the order n of the term since

K(A(n)K)n =
1

2
{KA(n)[K(A(n)K)n−1] + [K(A(n)K)n−1]A(n)K}.

We can reformulate (3.27) as follows. If we set K = K1 +K2 in (3.27) then we get that for
any {K1, K2} ⊂ Π and any direction n

K1A(n)K2 +K2A(n)K1 ∈ Π. (3.28)

Since Π is a subspace we can make all possible linear combinations of expressions in (3.28)
with same K1 and K2 and different n:

K1AK2 +K2AK1 ∈ Π (3.29)

for any A ∈ A, where A is given by (3.20). Using the fact that both Π and A are subspaces
of Sym(T ) we get the theorem.

The equation (3.21) is a necessary condition for a surface M to be an exact relation. In fact
it is equivalent to M being closed under lamination. Unfortunately, we do not know if (3.21)
is sufficient for stability under homogenization. In general, stability under lamination does
not imply stability under homogenization as was shown recently by Milton [46]. Our next
theorem provides a sufficient condition. In order to formulate it we will need to introduce
some new notation. Let

Skew(T ) = {A ∈ End(T ) : AT = −A}.

Let
L = ΠAΠ ∩ Skew(T ). (3.30)

Theorem 3.6 Let a subspace Π ⊂ Sym(T ) solve (3.21) and the following two conditions
are satisfied

(i) (LAΠ)sym ⊂ Π

(ii) (LAL)sym ⊂ Π,

where L is given by (3.30). Then there exists a neighborhood O of 0 ∈ Π such that M =
W inv(O) is stable under homogenization.
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Even though we are almost certain that our sufficient conditions do not follow from (3.21),
in all the examples from our list in Section 2 the sufficient conditions are satisfied.

Proof: We will split the proof into a sequence of lemmas.

Lemma 3.7 Suppose Π satisfies all hypotheses of Theorem 3.6. Then for any j ≥ 0
((ΠA)jΠ)sym ⊂ Π.

Proof: Let
S = (ΠAΠ)sym ⊂ Π.

Since ΠAΠ is closed under transposition we have ΠAΠ = L⊕S, where L is given by (3.30).
Then

((ΠA)2Π)sym = ((L⊕ S)AΠ)sym = (LAΠ)sym + (SAΠ)sym ⊂ Π (3.31)

by (i) and (3.21). Also

((ΠA)3Π)sym ⊂ ((L ⊕ S)A(L⊕ S))sym ⊂ Π (3.32)

by (i), (ii) and (3.21).
Lastly, we are going to show that (3.21), (3.31) and (3.32) imply

((ΠA)jΠ)sym ⊂ Π (3.33)

for any j ≥ 0. The proof is an induction in j. If j ≤ 3 the statement is true. Let
{A1, . . . , Aj−1} ⊂ A and {K1, . . . , Kj} ⊂ Π. The expressionK1A1K2A2K3A3 . . .Kj−1Aj−1Kj

will be called a j-chain. Obviously (3.33) is equivalent to the “j-chain property” that the
symmetrized j-chain lies in Π:

K1A1K2A2 . . .Kj−1Aj−1Kj +KjAj−1Kj−1 . . . A2K2A1K1 ∈ Π. (3.34)

In order to prove the j-chain property we rewrite the 2-chain property (3.29) as

K1AK2 = −K2AK1 +K ′ (3.35)

for some K ′ ∈ Π and any A ∈ A. This identity allows us to swap successively the positions of
adjacent K’s in any j-chain, leaving (j − 1)-chains as remainder. With the 3-chain property
(i) it implies

K1A1K2A2K3 = K1A2K2A1K3 +K ′′ + a sum of 2−chains

for some K ′′ ∈ Π. This allows us to swap successively the positions of adjacent A’s in any
j-chain, leaving (j − 1)-chains and (j − 2)-chains as remainder. By first reversing the order
of the A’s and then reversing the order of the K’s we see that

K1A1K2A2K3A3 . . .Kj−1Aj−1Kj =

(−1)j(j−1)/2KjAj−1Kj−1 . . . A3K3A2K2A1K1

+ a sum of (j − 1)−chains and (j − 2)−chains
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in which j(j−1)/2 is the number of swaps of adjacent K’s needed to achieve this reordering.
If the sign of (−1)j(j−1)/2 is positive (as it is when j = 4) then we apply the 4-chain property
once, replacing the chain header

K1A1K2A2K3A3K4 with −K4A3K3A2K2A1K1 +K ′

where K ′ ∈ Π before swapping the A’s and K’s to obtain minus the reversed order chain plus
shorter chains. This allows us to identify the symmetrized j-chain with a sum of symmetrized
(j − 1)-chains, (j − 2)-chains and (j − 3)-chains. By induction the j-chain property (3.34),
or, equivalently (3.33), is then satisfied for all j.

Lemma 3.7 ensures that Π′ ∩ Sym(T ) = Π, where

Π′ =
∞∑

j=0

(ΠA)jΠ. (3.36)

The subspace Π′ has the structure of an associative algebra with respect to the multiplication
K1 ∗ K2 = K1AK2 for any A ∈ A since it satisfies Π′AΠ′ ⊂ Π′. For our purposes we will
need to establish a structure of the associative algebra on L∞(Q) ⊗ Π′.

Lemma 3.8 Let {W1(x),W2(x)} ⊂ L∞(Q) ⊗ Π′ then W 1ΛW2 ∈ L∞(Q) ⊗ Π′.

Proof: Let K(x) = W 1ΛW2. Then by definition of Λ (3.17) we have

K̂(k) =
∑

p6=0

Ŵ1(k − p)A(
p

|p|)Ŵ2(p).

Now, for each k ∈ Z
3 Ŵj(k) ∈ Π′ ⊗ C

def
= Π̃′, j = 1, 2. Obviously Π̃′AΠ̃′ ⊂ Π̃′, therefore

K̂(k) ∈ Π̃′ for each k ∈ Z
3. Thus K(x) ∈ Π̃′ for almost every x ∈ Q. But K(x) is real and

so the lemma is proved.

Now we can easily finish the proof of the theorem. Let L(x) ∈ M. It will be sufficient to
show that W (L∗) ∈ Π. Let W (x) = W (L(x)) ∈ O and let W be the corresponding operator
on the Hilbert space H. Then, expanding (3.19) in powers of W we get

W (L∗) = 〈W (x)〉 + 〈WΛW (x)〉 + . . .+ 〈(WΛ)nW (x)〉 + . . . (3.37)

The series will converge if the neighborhood O ⊂ Π is sufficiently small. We will show that
each term of that expansion is an element of Π′ given by (3.36). Let Kn(x) = (WΛ)n−1W .
We prove that Kn ∈ L∞(Q) ⊗ Π′ by induction. For n = 1 K1 = W ∈ L∞(Q) ⊗ Π′. Suppose
that Kn ∈ L∞(Q) ⊗ Π′ then Kn+1(x) = WΛKn ∈ L∞(Q) ⊗ Π′ by Lemma 3.8. Thus for
every n ≥ 1 〈Kn(x)〉 ∈ Π′ and W (L∗) ∈ Π′ ∩ Sym(T ) = Π, so that L∗ ∈W inv(O) = M. The
theorem is proved.

We give now necessary and sufficient conditions for Π to correspond to an exact relation.
The theorem is of theoretical rather than practical utility.

21



Theorem 3.9 The subspace Π ⊂ Sym(T ) corresponds to an exact relation if and only if for
any k ≥ 1, any {n1, . . . ,nk} ⊂ Z

3 × . . .× Z
3 such that

k∑

i=1

ni = 0

and for any {K1, . . . , Kk} ⊂ Π we have

∑

σ∈Sk




k−1∏

s=1

Kσ(s)A(
s∑

j=1

nσ(j))


Kσ(k) ∈ Π, (3.38)

where Sk is the set of all permutations of k elements and we define

A(m) =





Γ′( m
|m|) − Γ′, if m 6= 0,

0, if m = 0.

The proof is a straightforward application of Fourier convolution formula to (3.37) with
subsequent choice of K(x) to be a trigonometric polynomial of degree k.

For example, if k = 3 we get that

K1A(q1)K2A(q3)K3 +K3A(q3)K2A(q1)K1

+ K2A(q2)K3A(q1)K1 +K1A(q1)K3A(q2)K2

+ K3A(q3)K1A(q2)K2 +K2A(q2)K1A(q3)K3 ∈ Π.

This condition, which must hold for any vectors q1, q2, q3 such that q1 + q2 + q3 = 0 and
any K1, K2, K3 ∈ Π is necessary for stability under homogenization. It does not appear to
be a consequence of the conditions for the stability under lamination, although it remains
an open question as to whether there exists a subspace Π satisfying (3.21) but not satisfying
the above constraint.

So far we have developed a local theory, i.e. we have a way of describing the exact relation
surface near the point L0. A look at our formulas shows that an exact relation must be an
analytic surface, since it is an image of a subspace under an analytic map W inv. Thus we
can use an analytic continuation argument to prove the global result.

Theorem 3.10 Let a subspace Π ⊂ Sym(T ) satisfy conditions of Theorem 3.9 and let
M = Sym+(T ) ∩W inv(Π). And let L(x) ∈ L∞(Q; Sym(T )) belong pointwise to a compact
subset of M. Then L∗ ∈ M.

Proof: Let Lλ(x) be the local field analytic in λ and such that Lλ(x) ∈ M for all
x ∈ Q. Assume that L0(x) = L0 and L1(x) = L(x). We can choose Lλ(x) such that it
is uniformly bounded and uniformly positive definite in λ ∈ [0, 1]. Then, L∗

λ is analytic in
λ ∈ [0, 1]. By our local theory we have L∗

λ ∈ M for small λ. But M is an analytic manifold,
and so L∗

λ ∈ M for all λ ∈ [0, 1]. Setting λ = 1 we get L∗ ∈ M.
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4 Consequences of the general theory.

Even though all exact relations are described by a very simple equation (3.21), it is far
from obvious how we can solve such an equation in settings more complicated that 2-D
conductivity. We will address this question directly in Section 5. Here we will make some
general remarks and describe some important classes of exact relations visible at our context-
independent level. One key observation that was made in [19] is that the rotational invariance
of polycrystalline G-closure allows us to reduce the size of the problem significantly. In Sec-
tion 5 we are going to develop these ideas to a much higher level than in the two papers
cited above. Much of this section, though, can be done without invoking rotational invari-
ance. Nevertheless we will assume it from now on. Our assumption amounts to the fact
that R · L ∈ M whenever L ∈ M for any R ∈ SO(3). We also choose L0 ∈ M isotropic
(i.e. R · L0 = L0). It is intuitively obvious that given any L ∈ M we can make an isotropic
polycrystal out of it. Since our surface M is assumed to be G-closed, the effective tensor
of our polycrystal should lie in M. Thus L0 always exists. Our next theorem is a direct
consequence of rotational invariance of M. Let Γ be the orthogonal projection of Γ′ onto the
subspace of isotropic tensors in Sym(T ) (with respect to the inner product (A,B) = Tr(AB)
for {A,B} ⊂ Sym(T )).

Theorem 4.1 The subspaces Π and A are rotationally invariant. Moreover

A = Span(R · Γ̃ : R ∈ SO(3)), (4.1)

where Γ̃ = Γ′ − Γ.

Proof: The map W (L) provides a diffeomorphism between a neighborhood of L0 in M

and a neighborhood of zero in Π by Theorem A.1. Thus, for any K ∈ Π near zero there is
L ∈ M such that K = [S(L) − Γ′]−1. Then R ·K = [S(R · L) −R · Γ′]−1. But R · Γ′ = Γ′(n)
by (3.3), where n = Re1. Thus R ·K = Wn(R · L) ∈Wn(M) ⊂ Π, by Theorem 3.5. So Π is
invariant under rotations.

The rotational invariance of A is a direct consequence of (3.3). For any unit vector n ∈ R
3

R ·A(n) = Γ′(Rn) − Γ′(Re1) = A(Rn) − A(Re1) ∈ A.
Let A′ = Span(R · Γ̃ : R ∈ SO(3)). We want to show that A = A′. By (3.3) we can

describe A as

A = Span(R · Γ′ − Γ′ : R ∈ SO(3)) = Span(R · Γ̃ − Γ̃ : R ∈ SO(3)),

since R · Γ = Γ. Choosing R = I in the definition of A′ shows that Γ̃ ∈ A′. Thus A ⊂ A′.
Now we need to show the reverse inclusion. Let dR denote the invariant Haar measure on
SO(3). By our construction of Γ̃, we have

∫

SO(3)
R · Γ̃dR = 0.

Thus
Γ̃ =

∫

SO(3)
(Γ̃ − R · Γ̃)dR ∈ A,

and A′ ⊂ A. The theorem is proved.
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.

Remark 4.2 If X and Y are two rotationally invariant subspaces of End(T ) then the sub-
spaces XY and Xsym are also rotationally invariant.

4.1 Uniform field relations.

There is a simple observation made by Lurie and Cherkaev [36, 38] (although in the context
of thermal expansion it dates back to the work of Cribb [14] that for any given uniform fields
{u, v} ⊂ T the surface

U(u, v) = {L ∈ Sym+(T ) : Lu = v} (4.2)

is G-closed. However this surface is not generally rotationally invariant. Our idea then, is
to look for rotationally invariant surfaces M of the form

M =
⋂

α∈I
U(uα, vα), (4.3)

where I is an arbitrary index set.

Definition 4.3 An exact relation M is called a uniform field relation (UFR) if it can be
represented in the form (4.3).

We remind the reader that we are considering only rotationally invariant exact relations.
Let us construct an example of a UFR. Let N ⊂ T be a rotationally invariant subspace. Let
L0 be an arbitrary isotropic tensor and let

Ann(N) = {L ∈ Sym(T ) : Lu = 0, for all u ∈ N}

be the annihilator of N in Sym(T ). Then

M = (L0 + Ann(N)) ∩ Sym+(T ) (4.4)

is a UFR. We remark that M is obviously rotationally invariant.

Lemma 4.4 Let M be given by (4.4). Then

M =
⋂

u∈N

U(u, L0u).

Proof: Let
M

′ =
⋂

u∈N

U(u, L0u).

For any u ∈ N and for any L ∈ M we have Lu = L0u. Thus M ⊂ M
′. Now, let L ∈ M

′. Then
for any u ∈ N we have (L − L0)u = 0. Thus L − L0 ∈ Ann(N) and so L ∈ M. The lemma
is proved.
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Theorem 4.5 The set of UFR passing through an isotropic tensor L0 is in one-to-one
correspondence with invariant subspaces N of T via (4.4)

Proof: Let M be given by (4.3). Define

N = Span(uα : α ∈ I) ⊂ T

and let L0 ∈ M be isotropic. Let

M
′ = (L0 + Ann(N)) ∩ Sym+(T ).

For any L ∈ M and for any α ∈ I (L − L0)uα = 0. Thus M ⊂ M
′. Conversely, for any

L ∈ M
′ and for any α ∈ I Luα = L0uα = vα. Thus M

′ ⊂ M. It remained to prove that N is
invariant. We have the following characterization of N :

N = {u ∈ T : (L− L0)u = 0 for all L ∈ M}.

Now it is easy to see why N must be rotationally invariant. Pick any u ∈ N and any
R ∈ SO(3). Then, since M is rotationally invariant,

(R−1 · L− L0)u = 0. (4.5)

Then, we apply R to (4.5) and use that L0 is isotropic, to get (L − L0)(R · u) = 0. Thus
R · u ∈ N . It is an obvious fact that if N1 6= N2 then Ann(N1) 6= Ann(N2).

Remark 4.6 The UFR M given by (4.4) corresponds to Π = Ann(L
1/2
0 N). As N runs over

all invariant subspaces of T then so does L
1/2
0 N .

Proof: Since W (L) is a local diffeomorphism near L0, the differential dW (L0) maps

tangent space TL0
M onto Π. An easy calculation shows that dW (L0)ξ = −L−1/2

0 ξL
−1/2
0 for

any ξ ∈ TL0
M. The statement follows from the fact that TL0

M = Ann(N).

Example 4.7

Consider 3D elasticity. In this case T = Sym(R3). There are only two rotationally invariant
subspaces N of T : N0 consisting of scalar multiples of a three by three identity matrix, and
N2 comprising all trace-free symmetric three by three matrices. The UFR corresponding to
N2 is the well known Hill’s exact relation that we have mentioned in the introduction. The
UFR corresponding to N0 says that the set of all Hooke’s laws C such that CI = κI, where
κ is a given constant, is stable under homogenization. This exact relation is due to Hill [26]
and Lurie, Cherkaev and Fedorov [39]. We will refer to it as H-LCF.
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4.2 An extension of the covariance principle of Milgrom and Shtrik-

man.

In Section 3 we have developed a general theory of exact relations passing through a fixed
isotropic tensor L0. We have also seen that the structure of UFRs depends only on the
structure of T and not on the choice of L0. Thus it is a natural question to try to relate
the G-closed surfaces passing through L1 to similar surfaces passing through L2. We will
show that this is possible in general under some constraints. These constraints are satisfied
in many physically important situations.

We can ensure that the equation (3.21) has the same structure of solutions at L1 and L2

if the algebraic structure of the ambient space Sym(T ) is the same at L1 and L2. Let A1

and A2 correspond to L1 and L2 respectively. It will be convenient to make the following
definition.

Definition 4.8 The tensor M ∈ A is called a generating tensor for A if

A = Span(R ·M : R ∈ SO(3)).

We are looking for invertible linear transformations

φ : Sym(T ) → Sym(T ),

such that they commute with the action of SO(3)

R · φ(X) = φ(R ·X) (4.6)

and such that for any {X, Y } ⊂ Sym(T )

φ(XM1Y + YM1X) = φ(X)M2φ(Y ) + φ(Y )M2φ(X), (4.7)

for some generating tensors M1 ∈ A1, M2 ∈ A2. Then, if Π satisfies (3.21) with A = A1 then
φ(Π) satisfies (3.21) with A = A2. A map φ satisfying (4.6) and (4.7) is called an SO(3)
Jordan isomorphism.

Our next theorem exhibits the possible choices for φ.

Theorem 4.9 Assume that dim T ≥ 3. An SO(3) Jordan isomorphism φ satisfying (4.7)
exists if and only if there exists an isotropic tensor C ∈ GLSO(3)(T ) such that

A1 = CA2C
T . (4.8)

In this case we let
C = {C ∈ GLSO(3)(T ) : A1 = CA2C

T}, (4.9)

where GLSO(3)(T ) denotes the space of all invertible isotropic operators on T . Then the set
of all SO(3) Jordan isomorphisms φ is given by

φ(X) = CTXC, C ∈ C. (4.10)
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Proof: We will split the proof into several steps. We ignore the SO(3) action until the
very end of the proof. The key lemma below is due to Etingof (personal communication). In
order to formulate the lemma we recall the notion of the signature of a symmetric matrix.
The matrix A is said to have a signature (p, q) if it has exactly p positive eigenvalues and q
negative ones.

Lemma 4.10 Suppose there is a map φ : Sym(T ) → Sym(T ) such that (4.7) is satisfied for
some tensors M1 and M2 then M2 or −M2 has the same signature as M1.

Proof: We will consider the case when M1 and M2 are invertible (the case of singular
M1 and M2 is similar). Consider the map

F1 : Sym(T ) → Sym(T ),

given by
F1(X) = XM1X. (4.11)

Consider the fixed points of the map F1. It turns out that the geometry of these fixed points
tells us the signature of M1 up to a sign.

Fixed points are solutions of X = XM1X. This is equivalent to (M1X)2 = M1X. Thus,
P = M1X is a projector on T . Symmetry of X is equivalent to the symmetry of P with
respect to the inner product given by M1:

(u, v)1 = (M−1
1 u, v).

A symmetric (orthogonal) projector on an inner product space is completely determined
by its image W , and exists if and only if W is a non-degenerate subspace (i.e. has zero
intersection with its orthogonal complement). Thus, the space Y1 of fixed points of F1 is
homeomorphic to the disjoint union of spaces Y k

1 , 0 ≤ k ≤ dim(T ), and Y k
1 is homeomorphic

to the open subset of the Grassmannian G(k, T ) consisting of non-degenerate subspaces of T
of dimension k (or orthogonal projectors on T of rank k). The fact that they are separated
from each other topologically follows from the fact that on Y k

1 , the trace of P is k.
The spaces Y k

1 are manifolds of dimensions k(n − k), n = dim(T ) (open sets in Grass-
mannians). So if we have any homeomorphism φ conjugating F1 and F2 (defined by (4.11)
with index 1 replaced by index 2), it must induce a homeomorphism, for each k, between the
union of Y k

1 and Y n−k
1 and the same union for M2. Note that Y k

1 and Y n−k
1 are isomorphic

by (W → orthogonal complement of W ). Thus, if F1 is equivalent to F2, we must have that
Y k

1 is homeomorphic to Y k
2 for all k.

For us it is enough to look at k = 1. Then Y 1
1 is the space of lines on which the form

M−1
1 is nonzero. It consists of two parts Y+ and Y−, corresponding to lines on which the

form is positive and negative. Let the signature of M−1
1 be (p, q), and we assume p, q > 0.

Non-degenerate lines are permuted by SO(p, q). In Y+, the stabilizer is O(p−1, q), and in Y−
the stabilizer is O(p, q− 1) Thus, Y+

∼= SO(p, q)/O(p− 1, q) and Y− ∼= SO(p, q)/O(p, q− 1).
These spaces are connected and their universal covering spaces are homotopy equivalent to
spheres S

p−1 and S
q−1. Thus, p and q are uniquely determined by F1 up to permutation

p, q → q, p, as desired. If p = 0 or q = 0 then F1(X) = 0 has only the trivial solution. Then
so does F2(X) = 0. But this is possible only when M2 has the signature (n, 0) or (0, n).

27



Now we assume that the tensors M1 and M2 have the same signature, i.e. there exists
C ∈ GL(T ) such that M1 = CM2C

T .

Lemma 4.11 Let
C(M1,M2) = {C ∈ GL(T ) : M1 = CM2C

T}.
Then the set of all invertible linear maps φ satisfying (4.7) is

F = {φ : Sym(T ) → Sym(T )|φ(X) = CTXC, C ∈ C(M1,M2)}. (4.12)

Proof: From the proof of the previous lemma we have seen that our Jordan isomor-
phism φ maps Y 1

1 into either Y 1
2 or Y n−1

2 . An easy calculation shows that for j = 1, 2

Y 1
j = {X ∈ Sym(T ) : X =

a⊗ a

(Mja, a)
, a ∈ T , (Mja, a) 6= 0},

Y n−1
j = {X ∈ Sym(T ) : X = M−1

j − a⊗ a

(Mja, a)
, a ∈ T , (Mja, a) 6= 0}.

Let us suppose that φ : Y 1
1 → Y 1

2 . In other words φ maps symmetric rank-one tensors into
symmetric rank-one tensors. Thus we need to characterize the symmetry group of the cone
of symmetric rank-one matrices.

Lemma 4.12 Let φ ∈ GL(Sym(T )) be such that it maps symmetric rank-one matrices into
symmetric rank-one matrices. Then there exists C ∈ GL(T ) such that

φ(X) = CXCT or φ(X) = −CXCT .

Proof: A general symmetric rank-one matrix has the form X = ǫa⊗ a, where a ∈ T ,
ǫ ∈ {1,−1}. Then φ(a ⊗ a) = ǫ(a)ψ(a) ⊗ ψ(a). Thus |ψ(a)|2 = |Trφ(a ⊗ a)|. So, |ψ(a)|2
is a continuous function on T . If ψ(a) = 0 for a 6= 0 then φ(a ⊗ a) = 0, which contradicts
invertibility of φ. Then for any a ∈ T \ {0}

ǫ(a) =
Trφ(a⊗ a)

|ψ(a)|2 .

Thus ǫ(a) is continuous on T \ {0}. So, ǫ(a) is constant by connectedness of T \ {0} (since
dim T ≥ 3). Let us assume that ǫ(a) = 1. Now it is an easy application of the “lifting
theorem” to prove that there is a continuous choice of ψ(a). Indeed, the set {a⊗ a : a 6= 0}
is homeomorphic to RP n−1×R with the double cover p : T \{0} → RP n−1×R, p(a) = a⊗a.
There is another continuous map f : T \{0} → RP n−1 ×R, f(a) = φ(a⊗a). Since the space
T \ {0} is simply connected (we are assuming that dim T ≥ 3) we have the existence of the
continuous lifted map ψ : T \ {0} → T \ {0}, such that p(ψ(a)) = f(a), or equivalently,
ψ(a) ⊗ ψ(a) = φ(a ⊗ a). Now we will prove that ψ is linear. If a and b are linearly
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independent then so are ψ(a) and ψ(b). Indeed, if ψ(b) = µψ(a) then φ(b⊗ b−µ2a⊗a) = 0,
which contradicts invertibility of φ. So, there exists c ∈ T such that (c, ψ(b)) = 0, while
(c, ψ(a)) 6= 0. Then we have

ψ(a+ λb) ⊗ ψ(a+ λb) = ψ(a) ⊗ ψ(a) + 2λφ(a⊙ b) + λ2ψ(b) ⊗ ψ(b), (4.13)

where a⊙ b =
1

2
(a⊗ b+ b⊗ a). Thus

0 ≤ (c, ψ(a+ λb))2 = (c, ψ(a))2 + 2λ(c, φ(a⊙ b)c)

for all λ ∈ R. The above inequality is possible for all λ only if (c, φ(a⊙ b)c) = 0. Thus, by
continuity of ψ, (c, ψ(a + λb)) = (c, ψ(a)) independent of λ. But then, letting (4.13) act on
c we get

ψ(a+ λb) = ψ(a) +
2λφ(a⊙ b)c

(c, ψ(a))
.

So ψ(a + λb) is affine in λ:
ψ(a+ λb) = ψ(a) + λu. (4.14)

Substituting this form in (4.13) we get by comparing terms at λ2 that u = ψ(b) or u = −ψ(b).
Since u does not depend on λ, then neither does the choice of sign. Then continuity of ψ
implies that the choice of the sign does not depend on the values of a and b. The minus sign
contradicts the non-degeneracy of ψ when we pass to the limit as b→ a in (4.14). Thus ψ(x)
is linear and non-singular. Therefore, there exists C ∈ GL(T ) such that ψ(x) = Cx. Thus
for any a ∈ T φ(a ⊗ a) = C(a ⊗ a)CT . Since φ is linear we have φ(X) = CXCT for any
X ∈ Sym(T ). We could also get φ(X) = −CXCT had we assumed ǫ = −1 at the beginning
of the proof.

Now we can finish the proof of Lemma 4.11. It is an easy calculation to verify that φ
given by φ(X) = CXCT is a Jordan isomorphism if and only if CT ∈ C(M1,M2).

We have not considered another possibility that φ : Y 1
1 → Y n−1

2 yet. We are going to
show that this is impossible. Let us choose an arbitrary C ∈ C(M1,M2) and consider the
map φC : Sym(T ) → Sym(T ),

φC(X) = Tr(M1X)M−1
2 − CTXC.

Observe that φC maps Y 1
1 onto Y n−1

2 . Let ψ : Y 1
1 → Y 1

1 be given by ψ = φ−1
C ◦ φ. By

Lemma 4.12 there exists B ∈ GL(T ) such that ψ(X) = BXBT or ψ(X) = −BXBT . Let us
consider the plus sign (the minus sign is treated similarly). Then

φ(X) = φC(BXBT ) = Tr(M2C
TBXBTC)M−1

2 − CTBXBTC.

Let f(X) = CTBXBTC and let

φ0(X) = Tr(M2X)M−1
2 −X.
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Then φ = φ0 ◦ f . Thus φ0 = φ ◦ f−1. It follows then that φ0 is a Jordan isomorphism
satisfying

φ0(XMX) = φ0(X)M2φ0(X), (4.15)

where M is defined by the relation M1 = BTCMCTB. Writing (4.15) explicitly we get

Tr(M2XMX)M−1
2 −XMX = [Tr(M2X)]2M−1

2 − 2XTr(M2X) +XM2X. (4.16)

Multiplying the last equation by M2 and choosing X = M−1
2 we get

Tr(M−1
2 M)I −M−1

2 M = (n− 1)2I, (4.17)

where n = dim T ≥ 3. Taking traces in (4.17) we obtain Tr(M−1
2 M) = n(n−1). Substitution

of this into (4.17) results in the relation M = (n − 1)M2. Substituting the value of M in
(4.16) we get an equation for a matrix Y = XM2:

Y 2 − 2

n
YTrY +

1

n

(
(TrY )2 − (n− 1)Tr(Y 2)

)
I = 0. (4.18)

This equation implies that for any X ∈ Sym(T ) the matrix Y has at most two distinct
eigenvalues. However it is easy to construct a symmetric matrix X such that Y has n
distinct prescribed eigenvalues α1, . . . , αn. This statement becomes obvious if we choose a
basis in T in which M2 is diagonal. Therefore, equation (4.18) can not be true. It is curious
to note that equation (4.18) becomes true if n = 2.

Now we can easily finish the proof of the theorem. Assume that φ satisfying all conditions
of the theorem exists. Then by Lemma 4.10 there are M1 ∈ A1 and M2 ∈ A2 with the same
signature. Then there is C ∈ GL(T ) such that M1 = CM2C

T . But then, by Lemma 4.11
φ(X) = BTXB for some B ∈ C(M1,M2). Since φ commutes with the action of SO(3) we
conclude that B is isotropic. Indeed, if

(R ·B)(R ·X)(R · B)T = B(R ·X)BT

for all symmetric X then for all symmetric Y we have

[B−1(R · B)]Y [B−1(R · B)]T = Y.

Thus R · B = B or R · B = −B for all R ∈ SO(3). The second equation is not possible
because if R = I we get B = −B, which is impossible. Now, since B is isotropic and belongs
to C(M1,M2) we get that (4.8) holds.

Conversely, if (4.8) holds then we can choose M2 = Γ̃2 and M1 = CΓ̃2C
T . Then the set of

maps F given by (4.12) with C ∈ C given by (4.9) is the set of Jordan SO(3) isomorphisms.
Lemma 4.11 guarantees that there are no other isomorphisms. The theorem is established.

Remark 4.13 If L1 = L2 = L0 we can still have a non-trivial set C. Then our theorem
would relate different exact relations passing through L0. This becomes useful when an obvious
exact relation is mapped onto a non-trivial one. Another application of Theorem 4.9 is
simplification of A. The idea is to find an isotropic tensor C such that CACT becomes as
simple as possible.
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Example 4.14

Let T = R
n ⊗ N1 where N1 is R

3 with the standard action of SO(3), while R
n denotes an

n-dimensional vector space with the trivial action of SO(3). Physically, T corresponds to
n coupled conductivity problems. In this situation A does not depend on L0 and is given
by A = I ⊗ N2. Then C = {Q ⊗ IN2

: Q ∈ O(n)}. Thus if Π is an exact relation then
so is (Q ⊗ IN2

)Π(QT ⊗ IN2
) for any Q ∈ O(n). Milgrom and Shtrikman observed this fact

and called it the covariance principle [42]. Applying this principle they obtained a family
of new exact relations that are the images of Π = Dn ⊗ Sym(N1), where Dn is the space of
n × n diagonal matrices. This Π corresponds to the obvious fact that the composite with
n decoupled electric fields will not produce coupling. The images of this Π appear to be
interesting and non-trivial. We will show in Example 5.1 that the set of all exact relations in
the present context is given by Π = (B ⊗End(N1))sym, where B is an associative subalgebra
of End(Rn), closed under transposition. If B is conjugate to the algebra of all n by n diagonal
matrices Dn we obtain the Milgrom-Shtrikman family of exact relations.

4.3 Links between problems.

In this section we are going to explore a special situation where T = T1 ⊕T2 and we restrict
our attention only to surfaces stable under lamination (which we still call exact relations)
generated by subspaces of V = Sym(T1)⊕Sym(T2) ⊂ Sym(T1 ⊕T2). An arbitrary element of
V has the form V = [A,B], where A ∈ Sym(T1) and B ∈ Sym(T2). In this case Γ̃ = [Γ̃1, Γ̃2],
and for any V ∈ V and any R ∈ SO(3) R · V = [R · A,R · B].

Let us define the Jordan product (with a slight abuse of notation)

[A1, A2] ∗ [B1, B2] = [A1 ∗B1, A2 ∗B2],

where

Aj ∗Bj =
1

2
(AjΓ̃jBj +BjΓ̃jAj), j = 1, 2.

Then an exact relation Π ⊂ V is an algebra with respect to the ∗ operation. Such an algebra
is called a Jordan algebra [27]. It is a commutative non-associative algebra. Now we define
the essential objects of our analysis. Let

Π1 = {A ∈ Sym(T1) : [A,B] ∈ Π for some B ∈ Sym(T2)},
Π2 = {B ∈ Sym(T2) : [A,B] ∈ Π for some A ∈ Sym(T1)}.
K1 = {A ∈ Sym(T1) : [A, 0] ∈ Π},
K2 = {B ∈ Sym(T2) : [0, B] ∈ Π}.

(4.19)

Obviously Kj ⊂ Πj, j = 1, 2.
Suppose that we know everything about exact relations in Sym(T1) and Sym(T2). The

objective then is to describe all exact relations in V. There is a class of such exact relations
which we are not interested in.
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Definition 4.15 Let Πj be an exact relation in Sym(Tj), j = 1, 2 then Π = Π1 ⊕ Π2 is
obviously an exact relation in V. If Π has the above form then we say that Π splits.

Physically split exact relations express no information about any links that may exist between
physical problems. Obviously, Π splits if and only if Π1 = K1 (or Π2 = K2). Thus we will
assume in what follows that Πj 6= Kj , j = 1, 2.

Definition 4.16 Let B be a Jordan algebra with multiplication ∗. The subspace S ⊂ B is
called a Jordan ideal if for any s ∈ S and any b ∈ B we have b ∗ s ∈ S.

Let B/S denote the factor algebra in what follows.

Theorem 4.17 Let Πj, Kj, j = 1, 2 be defined by (4.19). Then the following statements
are true.
(i) Πj are rotationally invariant exact relations in Sym(Tj), j = 1, 2.
(ii) Kj are rotationally invariant Jordan ideals in Πj, j = 1, 2.
(iii) Let Fj = Πj/Kj, j = 1, 2. Then there is an SO(3) Jordan isomorphism φ : F1 → F2.

Proof: If {A1, B1} ⊂ Π1 then there are {A2, B2} ⊂ Sym(T2) such that {[A1, A2], [B1, B2]} ⊂
Π. Then, since Π is an exact relation [A1, A2] ∗ [B1, B2] ∈ Π. But then A1 ∗ B1 ∈ Π1. Let
R ∈ SO(3). Then [R · A1, R · A2] = R · [A1, A2] ∈ Π. Thus R · A1 ∈ Π1. Same argument
works for Π2.

Now if A1 ∈ Π1 and K1 ∈ K1 then there is A2 ∈ Sym(T2) such that [A1, A2] ∈ Π
then [A1 ∗ K1, 0] = [A1, A2] ∗ [K1, 0] ∈ Π. Thus A1 ∗ K1 ∈ K1. Let R ∈ SO(3). Then
[R ·K1, 0] = R · [K1, 0] ∈ Π. Thus, R ·K1 ∈ K1. Same argument works for K2.

Let Aj ∈ Πj , then Āj denotes the equivalence class in Fj containing Aj , j = 1, 2. For
any A1 ∈ Π1, there is A2 ∈ Sym(T2) such that [A1, A2] ∈ Π. Therefore, A2 ∈ Π2. Define
φ(Ā1) = Ā2. First we need to show that φ is a well-defined function mapping F1 into F2.
Let B1 ∈ Ā1. Then there is B2 ∈ Π2 such that [B1, B2] ∈ Π. Also, by our choice of B1,
B1−A1 ∈ K1. Thus, [B1−A1, 0] ∈ Π. So [0, B2−A2] = [B1, B2]− [A1, A2]− [B1−A1, 0] ∈ Π.
Therefore, B̄2 = Ā2.

Let us show that the function φ is one-to-one. Indeed if φ(Ā) = 0̄, then there is B ∈ K2

such that [A,B] ∈ Π. But then [A, 0] = [A,B] − [0, B] ∈ Π. So, Ā = 0̄. The function φ is
also onto. If B̄ ∈ F2 then there is A ∈ Π1 such that [A,B] ∈ Π. But then B̄ = φ(Ā).

Now we show that φ is a Jordan isomorphism between F1 and F2. Let {A1, B1} ⊂ Π1

then there are {A2, B2} ⊂ Sym(T2) such that

{[A1, A2], [B1, B2]} ⊂ Π

. Then [A1 ∗B1, A2 ∗B2] ∈ Π. Thus

φ(A1 ∗B1) = A2 ∗B2.

By construction of Fj, j = 1, 2 we have Aj ∗Bj = Āj ∗ B̄j , j = 1, 2. Then

φ(Ā1 ∗ B̄1) = Ā2 ∗ B̄2.
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But Ā2 = φ(Ā1) and B̄2 = φ(B̄1).
Finally, let us show that φ commutes with the SO(3) action. Let R ∈ SO(3) and

let us define R · Ā = R ·A for any A ∈ Πj , j = 1, 2. By rotational invariance of Πj ,
R · A ∈ Πj and our definition makes sense. If we choose any other representative A′ ∈ Ā
then R ·A−R · A′ = R · (A−A′) ∈ Kj, since A−A′ ∈ Kj and Kj is rotationally invariant.
So, we have a well-defined SO(3) action on Fj . Now suppose A ∈ Π1 then there is B ∈ Π2

such that [A,B] ∈ Π. By rotational invariance of Π we have [R · A,R · B] ∈ Π. Thus we
have φ(Ā) = B̄ and φ(R · A) = R · B. Then

φ(R · Ā) = φ(R · A) = R · B = R · B̄ = R · φ(Ā).

The theorem is proved.

Remark 4.18 If Πj = Sym(Tj), j = 1, 2 then Kj = {0} as Πj are simple Jordan algebras,
i.e. they do not have any non-trivial Jordan ideals. Thus Sym(T1) must be isomorphic to
Sym(T2) in the sense of Theorem 4.17. But then all such isomorphisms φ are described by
Theorem 4.9.

We can use Theorem 4.17 to find exact relations involving volume fractions. Since we
are not restricting ourselves to composites with finitely many phases we are seeking exact
relations that involve 〈f(L(x))〉 for a suitable function f . An example is the famous Hill’s
relation for elasticity (2.2). This example suggests our next construction. Let T1 = T
with Γ̃1 = Γ̃ and T2 = R

p with Γ̃2 = 0. If we look for exact relations in V of the form
[L, f(L)], L ∈ M, then the effective tensor corresponding to [L(x), f(L(x))] will have the
form [L∗, 〈f(L(x))〉], implying the relation f(L∗) = 〈f(L(x))〉. See (6.7) for the explicit
formula for the function f . In the W -variables this construction would correspond to a link
Π, where Π2 has the trivial Jordan structure: A∗B = 0 for any {A,B} ⊂ Π2 and an arbitrary
SO(3) action. Therefore, the ideal K1 in Π1 should have the property that Π1 ∗ Π1 ⊂ K1.
Thus we have proved

Theorem 4.19 An exact relation Π ⊂ Sym(T ) can be sharpened by adding formulas of the
form f(L∗) = 〈f(L(x))〉 for some f if and only if (ΠAΠ)sym 6= Π.

Indeed, K = (ΠAΠ)sym is a Jordan ideal and F = Π/K has the trivial Jordan structure. Then
we may think up an imaginary physical problem with subspaces E = {0} and J ⊕ U = H.
We may choose T2 to be any linear space of sufficiently high dimension and with sufficiently
rich SO(3) structure so that we could pick a rotationally invariant subspace K2 ⊂ Sym(T2)
such that F ∼= F2 = Sym(T2)/K2 as SO(3) modules, while we have already made sure
that both spaces have the trivial Jordan structure. Thus we have constructed the objects
Π1 = Π, K1 = K, Π2 and K2 satisfying conditions of Theorem 4.17 together with φ effecting
the isomorphism between F and F2. Since K 6= Π, it follows that we have constructed
a non-trivial link between our problem and an imaginary problem that has a very simple
homogenization formula due to the choice of E = {0}: L∗ = 〈L(x)〉. In other words we
have established a relation exemplified by the formula (2.2). Once a complete list of exact
relations is computed in a given context, it is relatively easy to pick out all exact relations
Π satisfying the requirements of Theorem 4.19.
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5 How to solve (ΠAΠ)sym ⊂ Π.

5.1 A general coupled problem.

So far we have developed a general theory of exact relations. But it is still not clear how
we can get a complete list of exact relations even in a modestly sized problem. The naive
approach that we had in our previous papers [19, 22] becomes infeasible starting with piezo-
electricity. Here we present the next step in sophistication capable of dealing with relatively
large problems. The method is based on the use of rotational invariance of polycrystalline
exact relations, allowing a significant reduction in the computational size.

Consider the class of problems given by (1.4). The space T for conductivity will be
denoted by N1. This is the three-dimensional vector space with the standard action of the
rotation group. The space T for elasticity is the space of three by three symmetric matrices,
where SO(3) acts by conjugation: R · A = RART . In this situation T can be represented
as a direct sum of two irreducible subspaces: the hydrostatic part and the shear part. The
hydrostatic part consists of all scalar multiples of the three by three identity matrix and
will be denoted by N0. The shear part consists of all symmetric trace-free matrices and is
denoted by N2. Thus, for elasticity, the six-dimensional space T of symmetric three by three
matrices is split into the sum of a one-dimensional space N0 and a five-dimensional space
N2. Finally, the one-dimensional space of temperature-like fields will be denoted by M0. As
representations M0 and N0 are indistinguishable, but they have different physical properties
reflected in the Jordan multiplicative structure of exact relations.

For our most general problem

T = R
n0 ⊗M0 ⊕ R

n1 ⊗N1 ⊕ R
n2

0 ⊗N0 ⊕ R
n2

2 ⊗N2, (5.1)

where R
n2

i is a copy of R
n2 attached to Ni, i = 0, 2. These two linear spaces have the same

dimension but we will have to distinguish them in what follows. In the present context the
local tensor L ∈ Sym(T ) can be represented by a four by four block matrix.

For our next step we are going to use some representation theory of SO(3), briefly
summarized in our previous paper [22], in order to split End(T ) into irreducibles. The
irreducibles are the “unbreakable blocks” from which our exact relations Π will be built.
Therefore, we can cut the size of our problem considerably by doing computations on the
level of blocks rather than individual entries in the matrix representation of L. For example,
for piezo-electricity L is a nine by nine symmetric matrix. But from our present point of
view we will deal only with three by three matrices (here n0 = 0, n1 = n2 = 1).

For two linear spaces U and V we denote by Hom(U, V ) the set of all linear maps from
U to V , so End(U) = Hom(U,U). We have a nice property of these functors: Hom(U1 ⊗
U2, V1 ⊗ V2) ∼= Hom(U1, V1) ⊗ Hom(U2, V2), where the tensor products are taken over R. In
particular End(U ⊗ V ) ∼= End(U) ⊗ End(V ). We also need the “additive” property of the
End functor:

End(U ⊕ V ) ∼= End(U) ⊕ End(V ) ⊕ Hom(U, V ) ⊕ Hom(V, U).

Thus if T is given by (5.1) we see that End(T ) can be written as a sixteen term expansion
containing terms like Hom(Rni,Rnj ) ⊗ Hom(Ni, Nj), where the rotation group acts trivially
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on the first factor and “naturally” on the second one. We have already discussed how SO(3)
acts on the spaces Ni, so if u ∈ Ni and v ∈ Nj then R ·u and R · v are assumed to be known.
The “natural” action of SO(3) on Hom(Ni, Nj) is given by the rule R · (Au) = (R ·A)(R · u)
for any A ∈ Hom(Ni, Nj) and any R ∈ SO(3). It turns out that Hom(Ni, Nj) is not an
irreducible representation of SO(3), and that it can be split into a direct sum of irreducibles.
The Clebsch-Gordon formula provides an answer:

Hom(Wi,Wj) ∼= Hom(Wj ,Wi) ∼= W|j−i| ⊕W|j−i|+1 ⊕ . . .⊕Wi+j−1 ⊕Wi+j,

where Wn is a unique 2n+ 1 dimensional irreducible representation of SO(3).
Our purpose is to encode an arbitrary rotationally invariant subspace of Sym(T ) ⊂

End(T ) and then “check” if it satisfies (3.21). In other words we will need to figure out how
to multiply subrepresentations in End(T ). The natural idea is to embed T given by (5.1)
in T ′ ∼= R

N ⊗ (W0 ⊕W1 ⊕W2), N = max(n0, n1, n2). Then there is an embedding map φ
from End(T ) into End(RN ) ⊗ End(W0 ⊕W1 ⊕W2). What is nice about it is that φ is an
injective algebra homomorphism and commutes with the action of SO(3). Thus, the problem
reduces to figuring out the multiplication table in End(W), where W = W0 ⊕W1 ⊕W2. One
approach is a brute force computation which is possible because W is just nine-dimensional.
The other one is theoretical, yielding the multiplication rule for W =

⊕n
i=0Wi. We have

decided in favor of the second approach, and describe it in Section 5.2.
Before we plunge into the details of the general case, we would like to consider the

simplest interesting example of n coupled conductivity problems that avoids the technical
difficulties present in more general situations. This case was considered by Milgrom in [41]
and Milgrom and Shtrikman in [43].

Example 5.1

We have T ∼= R
n⊗N1 and End(T ) ∼= End(R

n)⊗End(N1). According to the Clebsch-Gordon
formula End(N1) ∼= W0 ⊕W1 ⊕W2. Then we need to compute WiWj for 0 ≤ i, j ≤ 2. Let
φ be a linear map from Wi ⊗Wj into WiWj defined by the rule φ(a ⊗ b) = ab. Then φ is
surjective and commutes with rotations. Therefore, WiWj is the image of

⊕
k∈I(i,j)Wk under

φ, where I(i, j) is the set of all integers between |i− j| and i+ j. Thus, WiWj =
⊕

k∈J Wk,
where J ⊂ I(i, j)∩ {0, 1, 2}. It is not hard to check by hand (and it will follow from a more
general theory developed in Section 5.2) that in fact J = I ′(i, j) = I(i, j) ∩ {0, 1, 2}. We
remark that there are values m > 1 for which J 6= I(i, j) ∩ {0, 1, . . . , 2m} in End(Wm).

If Π is a rotationally invariant subspace of End(T ) then

Π = L0 ⊗W0 ⊕ L1 ⊗W1 ⊕ L2 ⊗W2,

where L0 and L2 are subspaces of Sym(Rn), while L1 ⊂ Skew(Rn). The subspace A figuring
in (3.21) is A = In ⊗W2, where In is a n by n identity matrix. A straightforward calculation
using the formula

WiWj =
⊕

k∈I′(i,j)

Wk, I ′(i, j) = I(i, j) ∩ {0, 1, 2}
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shows that (3.21) is equivalent to

[(L0 + L1 + L2)
2]sym ⊂ L2,

[(L1 + L2) ∗ (L0 + L1 + L2)]skew ⊂ L1,

[(L0 ∗ L2) + (L1 + L2)
2]sym ⊂ L0,

(5.2)

where Li ∗ Lj = LiLj + LjLi. It is remarkable that there is a nice characterization of all
solutions of (5.2).

Theorem 5.2 Let L0, L1 and L2 solve (5.2). Then L0 = L2 and there is an associative
algebra B ⊂ End(Rn) closed under transposition (BT = B) such that L1 = Bskew and L2 =
Bsym.

Milgrom and Shtrikman [43] (see also Milgrom [41]) have found an exact relation corre-
sponding to B = Dn the algebra of diagonal n by n matrices.

Proof: Let B = L1⊕L2, Then the subspaces B and B2 are closed under transposition.
The first equation (5.2) says that (B2)sym ⊂ L2 ⊂ B, while the second equation (5.2) says
(B2)skew ⊂ L1 ⊂ B. Therefore, B2 = (B2)sym ⊕ (B2)skew ⊂ B. Thus B is an associative
subalgebra of End(Rn). Since BT = B, the algebra B is semisimple, and therefore, B2 = B
(see [31] especially Proposition 4.7 of Chapter XVII). The third equation (5.2) says that
(B2)sym ⊂ L0. Thus, L2 ⊂ L0. It remains to establish the reverse inclusion. From the first
and second equations (5.2) we obtain respectively that (L0∗B)sym ⊂ L2 and (L0∗B)skew ⊂ L1.
The two inclusions combine to

L0 ∗ B ⊂ B. (5.3)

This suggests our next step. Let

B′ = {b ∈ End(R
n) : bB ⊂ B and Bb ⊂ B}

be the largest associative subalgebra in End(Rn) containing B as a two-sided ideal. The
relation (5.3) can then be reformulated as L0 ⊂ B′. It is easy to verify that B′ is closed
under transposition and, therefore, semisimple. Thus there exists a complement C to B in
B′ which is a two-sided ideal and such that C ∗ B = {0}. In short

B′ = B ⊕ C
as a direct sum of algebras. The complement C has a more explicit characterization:

C = {c ∈ B′ : cB = Bc = {0}}. (5.4)

Indeed, let C′ be equal to the right hand side of (5.4). Then, obviously, C′ is a two-sided
ideal in B′ and C ⊂ C′. Also, C′ ∩ B = {0}. Therefore, C′ is also a complement of B in B′,
and so C′ = C. The characterization (5.4) is proved. In particular, (5.4) implies that the
ideal C is also closed under transposition. Therefore, if a ∈ L0 and a = b + c with b ∈ B
and c ∈ C, it follows that both b and c are symmetric matrices. From the first equation
(5.2) we have (L2

0)sym ⊂ L2. Therefore, a2 = b2 + c2 ∈ B. Thus, c2 = 0, implying c = 0 for
a symmetric matrix c. So, we have proved that L0 ⊂ L2, which yields, together with the
reverse inclusion, that L0 = L2. Now it is easy to verify that all equations (5.2) are satisfied.
The theorem is proved.
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Corollary 5.3 There are no non-trivial links between any number of uncoupled conductivity
problems.

Proof: Let us look for exact relations Π in
⊕n

i=1 Sym(N1) ⊂ Sym(Rn ⊗ N1). This
means that the algebra B defined by Theorem 5.2 is a subalgebra of Dn. To finish the proof
we recall that any subalgebra of Dn is isomorphic to a direct sum of one-dimensional real
algebras. If dimB > 1 then Π splits in the sense of Definition 4.15. If dimB = 1 then it
corresponds to a trivial exact relation as in item 1 of the list in Section 2.2.

Remark 5.4 It easy to check that all solutions to (5.2) characterized by the theorem above
satisfy conditions in Theorem 3.6 sufficient for stability under homogenization. In other
words all rotationally invariant surfaces stable under lamination in the context of n coupled
conductivities are also stable under homogenization.

If n = 2 there are just six classes of algebras in End(R2) closed under transposition:
B0 = {0}, B1 = {λI : λ ∈ R}, B2(n) = {λn ⊗ n : λ ∈ R}, for some unit vector n ∈ R

2,
B3(n) = {A ∈ Sym(R2) : n is an eigenvector of A}, B4 = {λR : λ ∈ R, R ∈ SO(2)},
B5 = End(R2). The four non-trivial algebras B1–B4 correspond to four non-trivial exact
relations listed in Section 2.2.

5.2 A multiplication table.

In order to solve (3.21) we need to be able to multiply subrepresentations of End(W), where

W =
n⊕

i=0

Wi. (5.5)

For this purpose, we need to use some standard facts about the action of SO(3) on an
irreducible representation Wn (see for example [12]).

Let Wn be an irreducible real representation of SO(3). This representation is of real
type, i.e. Wn ⊗ C is also irreducible. For that reason we use Wn for both a real vector space
and for its complexification in a slight abuse of notation. The structure of the group action
is completely determined by the induced action of its Lie algebra so(3). The complexified
Lie algebra so(3,C) = so(3) ⊗ C is spanned by three matrices

H =




0 0 0

0 0 2i

0 −2i 0


 , X =




0 i 1

−i 0 0

−1 0 0


 , Y =




0 −i 1

i 0 0

−1 0 0


 .

These matrices satisfy the following commutation relations

[H,X] = 2X, [H, Y ] = −2Y, [X, Y ] = −H. (5.6)

The complex linear space Wn has an orthogonal basis {v−n, . . . , vn} such that

H · vj = 2jvj, X · vj = (n− j)vj+1, Y · vj = −(n + j)vj−1. (5.7)

37



This basis is unique up to a single complex multiple applied to all basis vectors simulta-
neously. We will call it Cartan basis of weight vectors, and vj will be called a vector of
weight j. We will also use the normalized Cartan basis by choosing ‖vn‖ = ‖v−n‖ = 1. We
will also require that v̄j = (−1)jv−j , where the bar denotes complex conjugation. In Wn

there are only two choices for normalized Cartan basis. If {v−n, . . . , vn} is one of them then
{−v−n, . . . ,−vn} is the other. Under such a normalization we have

‖vj‖2 = 1/

(
2n

n+ j

)
, (5.8)

and v0 is real. From now on we will fix SO(3) invariant inner products (·, ·)i on Wi’s
comprising W together with choices of normalized Cartan bases {vi

k : |k| ≤ i}, i = 0, . . . , n.
We begin our analysis with an obvious observation that

End(W) =
n⊕

j,k=0

Hom(Wk,Wj).

We use the fact that Hom(Wk,Wj) ∼= Wj ⊗Wk via the following isomorphism.

(u⊗ v) · x = u(x, v̄)k,

for any u ∈ Wj and v, x ∈ Wk. We will use the tensor product notation to denote elements
of Hom(Wk,Wj). Thus, {vj

A ⊗ vk
B : |A| ≤ j, |B| ≤ k} forms a basis in Hom(Wk,Wj). Now

consider the unique copy of Wα ⊂ Hom(Wk,Wj). Its Cartan basis {eC(j, k;α) : |C| ≤ α}
can be given as a linear combination of the basis vectors above:

eC(j, k;α) =
∑

A

Cj,k,α
C,A vj

A ⊗ vk
C−A, (5.9)

where the summation is over the admissible set of values of A. The coefficients Cj,k,α
C,A of this

linear combination are multiples of the Clebsch-Gordon coefficients. We choose them to be

Cj,k,α
C,A =

ij+k−α

(
2α

α+C

)
∑

B

(−1)B

(
j + k − α

B

)(
j − k + α +B

j + A

)(
2k −B

k + C −A

)
.

Our choice of a multiple, that may depend on j, k and α, but not A or C, is fairly arbitrary,
but it guarantees that e0(j, k;α) are always real.

At this point we are ready to describe a convenient system of coordinates for irreducible
subrepresentations sitting inside End(W). If Wα ⊂ End(W) then its zero weight vector w0

is a linear combination of zero weight vectors e0(j, k;α):

w0 =
n∑

j,k=0

xjke0(j, k;α).

The numbers xjk are the homogeneous coordinates of Wα ⊂ End(W). Conversely, let the
matrix X = (xjk) be given, then

eα
A(X) =

n∑

j,k=0

xjkeA(j, k;α) (5.10)
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is a Cartan basis of weight vectors for Wα. We will use a rather convenient notation for Wα

suggested by (5.10):
Wα = X ⊗Wα. (5.11)

If instead of W given by (5.5) we take

W ∼=
n⊕

j=0

(
R

nj ⊗Wj

)

then the above discussion still holds without change, except xjk are elements of Hom(Rnk ,Rnj).

Example 5.5

For our most general physical problem (5.1) we need to fix norms and normalized Cartan
bases for M0 and Nj , j = 0, 1, 2. The one-dimensional space M0 is spanned by a unit vector
ω. The normalized Cartan basis for N1 is

f1 = − 1√
2
(e3 + ie2), f0 =

1√
2
e1, f−1 =

1√
2
(e3 − ie2)

in terms of the standard basis {e1, e2, e3} for R
3. Introducing the notation ab for 1/2(a ⊗

b+ b⊗ a) for any two vectors a and b in R
3, we have the following normalized Cartan bases

{vj : |j| ≤ 2} for N2 and ω̂ for N0:

v−2 = f 2
−1, v2 = f 2

1 ,

v−1 = f0f−1, v1 = f0f1

v0 =
1

3
f1f−1 + 2

3
f 2

0 , ω̂ = 2√
3
(f 2

0 − f1f−1) =
1√
3
I,

where I is the three by three identity matrix. These choices determine uniquely a system of
homogeneous coordinates for rotationally invariant subspaces in End(T ).

Using the tensor product notation (5.11) we can write the decomposition of End(T ) and
an arbitrary rotationally invariant subspace Π ⊂ End(T ) into irreducibles as follows:

End(T ) ∼=
4⊕

i=0

Vi ⊗Wi, Π =
4⊕

i=0

Li ⊗Wi, (5.12)

where Li ⊂ Vi are arbitrary subspaces and Vi are the following subspaces of End(Rn0+n1+2n2):

V0 = End(Rn0 ⊕ R
n2

0 ) ⊕ End(R
n2

2 ) ⊕ End(R
n1),

V1 = End(Rn1 ⊕ R
n2

2 ) ⊕ Hom(Rn0 ⊕ R
n2

0 ,R
n1) ⊕ Hom(Rn1,Rn0 ⊕ R

n2

0 ),

V2 = End(Rn1 ⊕ R
n2

2 ) ⊕ Hom(Rn0 ⊕ R
n2

0 ,R
n2

2 ) ⊕ Hom(Rn2

2 ,R
n0 ⊕ R

n2

0 ),

V3 = End(Rn2

2 ) ⊕ Hom(Rn2

2 ,R
n1) ⊕ Hom(Rn1,Rn2

2 ),

V4 = End(Rn2

2 ).

In other words Vi is a direct sum of the blocks containing the number i in the diagram below:
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M0 N0 N2 N1

M0 0 0 2 1
N0 0 0 2 1
N2 2 2 0, 1, 2, 3, 4 1, 2, 3
N1 1 1 1, 2, 3 0, 1, 2

In order to be able to compute equation (3.21) for the case at hand (5.1) we need to
have an explicit form of the generic symmetric, positive definite isotropic tensor L0 and the
rotationally invariant subspace A attached to L0 that incorporates all the physics of the
problem. We have

L0 =




Λ11 ⊗ ω11 Λ12 ⊗ ω12 0 0

ΛT
12 ⊗ ωT

12 Λ22 ⊗ ω22 0 0

0 0 Λ33 ⊗ ω33 0
0 0 0 Λ44 ⊗ ω44



,

where Λij are matrices of appropriate dimensions, symmetric if i = j, that make L0 positive
definite. The tensors ωij will always be implied but omitted from our notation of isotropic
tensors. They are defined as follows. ω11 = ω ⊗ ω, ω12 = ω̂ ⊗ ω, ω22 = ω̂ ⊗ ω̂. ω33 = IN2

,
and ω44 = IN1

.
The subspace A attached to L0 is

A =




0 0 A13 0

0 0 A23 0

AT
13 A

T
23 A33 0

0 0 0 − 1√
3
In1




⊗W2 ⊕




0 0 0 0

0 0 0 0

0 0 G 0

0 0 0 0



⊗W4, (5.13)

indicating that A is a direct sum of two irreducibles isomorphic to W2 and W4 respectively
and whose homogeneous coordinates are given by the matrices above. In (5.13) A13, A23,
A33 and G depend on Λij. It is easier to give explicit formulae for Aij and G in terms of Lij

block-components of L
1/2
0 . Let

H = Λ
1/2
33 (Λ22 + 2Λ33)

−1Λ
1/2
33 = L33[L

T
12L12 + L2

22 + 2L2
33]

−1L33. (5.14)

Then
A13 = L12L

−1
33 H, A23 = L22L

−1
33 H,

A33 = 2
√

3(In2
+ 2H)/7, G = 3H − 2In2

.

Now we need to learn how to multiply the irreducibles in End(W). The theorem below
describes the product (X ⊗Wα)(Y ⊗Wβ) in terms of Racah (or 6-j) coefficients [11].

Theorem 5.6 Let xjk and yjk be the homogeneous coordinates of X ⊗ Wα and Y ⊗ Wβ

respectively. Then (X ⊗ Wα)(Y ⊗ Wβ) contains no more than one copy of Wγ for each
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|α− β| ≤ γ ≤ α + β, whose homogeneous coordinates are given by zjk:

zjm =
n∑

k=0

xjkykmR
αβγ
jkm, (5.15)

where Rαβγ
jkm are Racah coefficients. The irreducible Wγ does not appear if zjm = 0 for all j

and m.

Proof: The first part of the proof will develop a multiplication rule for “standard”
irreducibles. These are the irreducibles contained in Hom(Wk,Wj). The Racah coefficients
make their appearance there. Let us take Wα ⊂ Hom(Wk,Wj) and a Wβ ⊂ Hom(Wm,Wk)
then WαWβ ⊂ Hom(Wm,Wj). As in Example 5.1 we observe that the linear map φ from
Wα ⊗Wβ into WαWβ defined by the rule φ(a ⊗ b) = ab is surjective and commutes with
rotations. Therefore, WαWβ contains at most a single copy of each irreducible Wγ , and if it
does, then Wγ would have a Cartan basis {hC : |C| ≤ γ}:

hC =
∑

A

Cα,β,γ
C,A eA(j, k;α)eC−A(k,m; β) (5.16)

according to (5.9). However Wγ appears only once in Hom(Wm,Wk). Therefore, it has
another Cartan basis {eC(k,m; γ) : |C| ≤ γ}. As we have mentioned before, any two
Cartan bases must be related by a complex multiple. This multiple is real in our case, since
both bases have real zero weight vectors, and depends on j, k, m, α, β and γ. We call it
Rαβγ

jkm:

hC = Rαβγ
jkmeC(k,m; γ). (5.17)

Substituting (5.9) in (5.16) and using (5.8) we obtain

Rαβγ
jkmC

jmγ
C,B =

∑

A

(−1)A−B

(
2k

B−A+k

)Cαβγ
C,AC

jkα
A,BC

kmβ
C−A,B−A. (5.18)

Etingof and Sage independently observed that these numbers Rαβγ
jkm are in fact Racah or

6-j coefficients; for a proof, see [48]. However, for our purposes the formula (5.18) gives a
definition and a practical way to evaluate these numbers, since we are dealing with irreducible
representations of SO(3) of weight no greater than four. (For large weight representations
the formula (5.18) is no longer practical.)

Using the formulas (5.16) and (5.17) we easily derive the multiplication rule (5.15). Let
Z ⊗Wγ ⊂ (X ⊗Wα)(Y ⊗Wβ). Then a Cartan basis for Z ⊗Wγ is given by

eγ
C(Z) =

∑

A

Cαβγ
C,A e

α
A(X)eβ

C−A(Y ),

or using (5.10),

eγ
C(Z) =

n∑

j,k,m=0

xjkykm

∑

A

Cαβγ
C,A eA(j, k;α)eC−A(k,m; β).
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Applying (5.16) and (5.17) we obtain

eγ
C(Z) =

n∑

j,m=0

{
n∑

k=0

xjkykmR
αβγ
jkm

}
eC(j,m; γ)

and (5.15) follows.

5.3 Computing exact relations for coupled problems.

In this subsection we will focus exclusively on the situation where we have n1 conductivity
and n2 elasticity problems all coupled together with n0 uniform fields, so that the tensor
space T is given by (5.1) and A is given by (5.13). First, we apply the covariance principle
developed in Section 4.2 to simplify A.

An arbitrary isotropic tensor C ∈ End(T ) is given by

C =




C11 C12 0 0

C21 C22 0 0

0 0 C33 0

0 0 0 C44



,

We consider only invertible C’s of the above form. We can choose

C11 = (L
−1/2
0 )11 = [L11 − L12L22L

T
12]

−1, C12 = −C11A13A
−1
23 ,

C21 = 0, C22 = (A23C
T
33)

−1, C33 = R(I + 2H)−1/2, C44 = In1
,

(5.19)

where the orthogonal matrix R diagonalizes H , given by (5.14). Then

A0 = CACT =




0 0 0 0

0 0 In2
0

0 In2

2
√

3
7
In2

0

0 0 0 − 1√
3
In1




⊗W2 ⊕




0 0 0 0

0 0 0 0

0 0 G′ 0

0 0 0 0



⊗W4,

where G′ = (In2
+ 2DH)−1(3DH − 2In2

) and DH = RHRT is the diagonal form of H . We
remark that G′ is determined by the eigenvalues of H , or of Λ33Λ

−1
22 .

Our strategy is to find all subspaces Π0 solving a simplified equation

(ΠA0Π)sym ⊂ Π. (5.20)

There are two possible approaches. One is to try to answer the question using algebra,
as was done for n2 = n0 = 0 and n1 = n in Example 5.1. The other was employed
for finding subspaces corresponding to exact relations for thermo-piezo-electric composites.
Unfortunately, the algebra needed for the former approach is not very well understood at
present. Therefore, we proceed to describe the latter.
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We have written a simple Maple program that computes (Π1AΠ2)sym using Theorem 5.6.
Then we take an irreducible Π = X⊗Wi and find the exact relation it generates by adjoining
the new output of (ΠAΠ)sym to Π and applying the program again until we obtain an exact
relation. This way we get a certain set of “minimal” exact relations generated by irreducibles
in Sym(T ). Then we combine two minimal exact relations Π1 and Π2 to see what Π1 + Π2

generates. For that purpose it is sufficient to compute only (Π1AΠ2)sym, since Π1 and
Π2 already satisfy (3.21). Thus we obtain all solutions of (3.21). Next we eliminate all
intersections of exact relations. If we have Π1 and Π2, it is not necessary to keep Π1 ∩ Π2.
Then we eliminate all physically trivial exact relations (the ones corresponding to uncoupled
problems that split in the sense of Definition 4.15, etc.). The remaining relations are then
sorted according to the physical context they really belong to. For example, when searching
for exact relations for piezo-electricity, we necessarily pick up all elastic exact relations.
After we have weeded and organized all exact relations we check if they satisfy the sufficient
conditions. We modify our Maple program, so that it computes L = (ΠAΠ)skew and then
check, with our first Maple program if L satisfies the two conditions of Theorem 3.6. This
plan works extremely well in the context of thermo-piezo-electricity, but might need to be
combined with some algebraic analysis or even replaced by new tricks for coupled problems
of larger size, as for example for two or more coupled elasticity problems.

Suppose now that (3.21) has been solved. The next step is to establish the stability under
homogenization. Our observation is that it is enough to check stability under homogenization
for a corresponding solution Π0 of the simplified equation (5.20). The reason for this is that
the Jordan isomorphism φ(X) = CTXC has the property

φ(XA0Y ) = φ(X)Aφ(Y ),

for any {X, Y } ⊂ End(T ). Therefore, if a subspace Π0 satisfies conditions of Theorem 3.6
then so does Π = φ(Π0).

Another remark is that stability under homogenization is a property of an entire equiva-
lence class under covariance transformation. In other words if the two exact relations passing
through isotropic tensors L

(1)
0 and L

(2)
0 are related by a covariance transformation then they

are simultaneously stable or unstable under homogenization. The statement follows from
the remark below.

Remark 5.7 Suppose Γ̃1 and Γ̃2 correspond to reference media L
(1)
0 and L

(2)
0 , and suppose

(4.8) holds for some isotropic C0. Then there is C ∈ C, defined in (4.9) such that

Γ̃1 = CΓ̃2C
T . (5.21)

Proof: We observe that the property (3.3) implies that Γ̃i, i = 1, 2 are weight vectors
of weight 0. They generate rotationally invariant subspaces A1 and A2 each of which is a
direct sum of two irreducibles isomorphic to W2 and W4. Therefore, we can split Γ̃i, i = 1, 2,
into the sum of orthogonal projections onto the irreducibles:

Γ̃i = g
(i)
2 + g

(i)
4 , i = 1, 2
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If we further decompose g
(i)
2 and g

(i)
4 in a Cartan basis

g
(i)
2 =

2∑

j,k=0

X
(i)
jk e0(j, k; 2), g

(i)
4 =

2∑

j,k=0

Y
(i)
jk e0(j, k; 4)

then we observe that both X
(i)
11 and Y

(i)
22 are negative definite for all i = 1, 2. In fact

(X(i), Y (i)) are the homogeneous coordinates of Ai, i = 1, 2. Thus if A1 and A2 are related
by a covariance transformation then so are Γ̃1 and Γ̃2.

A corollary of this is the following. If a subspace Π1 satisfies (3.38) with A1(n) then
Π2 = φ(Π1) satisfies (3.38) with A2(n). In other words, if φ preserves all surfaces closed
under lamination it will also preserve those of them that are closed under homogenization.
This gives us the possibility of establishing stability under homogenization of φ-images of
exact relations.

We conclude this section with an example of 3D elasticity.

Example 5.8

T = N0 ⊕N2 and Sym(T ) ∼= W 2
0 ⊕W 2

2 ⊕W4. A generic isotropic tensor L0 is characterized
by the bulk and shear moduli κ and µ. In our system of notation

L0 =


 3κ 0

0 2µ


 .

Then

A =


 0 1

1 q


⊗W2 ⊕


 0 0

0 1


⊗W4,

where

q =

√
2

7

3κ+ 8µ√
κµ

.

Let us take a single irreducible subrepresentation in Sym(T ) isomorphic to W4:

Π =


 0 0

0 1


⊗W4.

An easy calculation using Theorem 5.6 shows that

(ΠAΠ)sym =


 0 0

0 1


⊗ (W0 ⊕W2 ⊕W4).

Thus if an exact relation Π contains a representation W4 it must also contain the right hand
side of the formula above. It is easy to check that the expression above is an exact relation.
In fact it is a UFR given by Ann(N0). It corresponds to the H-LCF exact relation described
in Example 4.7.
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Let

Π =


 0 a

a 1


⊗W2,

where a 6= 0. Then (ΠAΠ)sym = Sym(T ). If a = 0 then (ΠAΠ)sym = H-LCF. Now, if

Π =


 0 1

1 0


⊗W2,

then

(ΠAΠ)sym =


 1 0

0 0


⊗W0 ⊕


 0 1

1 0


⊗W2. (5.22)

Again it is easily checked that the last subspace is an exact relation. We will show that it
corresponds to the “rank-one tensor plus a null-Lagrangian” exact relation, see [21, 22]. We
will call it RPN.

Finally, we try

Π =


 a 0

0 1


⊗W0,

where a 6= 0. Then

(ΠAΠ)sym =


 0 a/q

a/q 1


⊗W2 ⊕


 0 0

0 1


⊗W4.

Thus, if an exact relation Π contains


 a 0

0 1


⊗W0, then it must contain H-LCF and RPN.

But the two exact relations add up to Sym(T ). If a = 0 then

(ΠAΠ)sym =


 0 0

0 1


⊗W2 ⊕


 0 0

0 1


⊗W4.

Therefore, the minimal exact relation containing


 0 0

0 1


⊗W0 is H-LCF. The last possibility

is

Π =


 1 0

0 0


⊗W0. (5.23)

We easily find that (ΠAΠ)sym = 0 in this case. Thus Π is an exact relation. This is a UFR
corresponding to Ann(N2). This exact relation is due to Hill [25, 26], we will refer to it as
HL. We have obtained a complete list of exact relations: H-LCF, RPN and HL. We observe
that HL is a subset of RPN.
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Now we address stability under homogenization. From our general theory the UFR are
always stable under homogenization. This leaves only RPN. We find that for Π = RPN

L = (ΠAΠ)skew =


 0 1

−1 0


⊗W2.

Then
(LAΠ)sym = RPN

and
(LAL)sym = RPN.

So the conditions of Theorem 3.6 are satisfied and RPN is stable under homogenization.
This detailed information about exact relations for 3D elasticity allows us to describe

all possible links between the two uncoupled elasticity problems in the sense of Section 4.3.
We need to identify all pairs (Π,K) of Jordan algebras and their Jordan ideals according to
Theorem 4.17. This is very easy to do. The Jordan algebra Sym(T ) is simple, so the only
ideal K 6= Sym(T ) is K = {0}. The same K is the only possibility for Π = HL or Π =H-LCF.
A simple calculation shows that ((HL)A(RPN))sym = 0; therefore, HL is an ideal in RPN.
This gives us five possibilities listed in the table below

Π K F = Π/K
Sym(T ) {0} W 2

0 ⊕W 2
2 ⊕W4

H-LCF {0} W0 ⊕W2 ⊕W4

HL {0} W0

RPN {0} W0 ⊕W2

RPN HL W2

In the third column we have listed the isomorphism classes of F ’s as representations of SO(3).
We see that each entry in the third column is different. Therefore, the only possibility is
Π1 = Π2 and K1 = K2. Schur’s lemma in group representation theory can be used to
describe all linear maps φ : F → F that commute with the action of the group. In our case
φ is just a linear combination of projections onto the irreducible subrepresentations of F .
But, according to Theorem 4.17, the map φ has to preserve the Jordan multiplication in
F . This places a severe constraints on φ. Examining all five cases closely we easily show
that φ can only be a Milgrom-Shtrikman covariance transformation. This results in a single
non-trivial link: Π1 = Π2 =RPN and K1 = K2 = HL.

All the exact relations above did not involve volume fractions. We can find out which
exact relations may involve volume fractions by applying Theorem 4.19 to our situation. We
need to find an exact relation Π such that K = (ΠAΠ)sym 6= Π. We easily identify the item:
Π = HL and K = {0}.

6 How to convert Π into M.

Having found all subspaces Π satisfying (3.21) and having verified that they satisfy all
conditions of Theorem 3.6 we need to return to the physical variables L and present our
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exact relations in the beautiful form of Section 2. The naive answer to the title question is
to try to invert the equation (3.16):

L = L0 − L
1/2
0 [I +KΓ′]−1KL

1/2
0 , K ∈ Π.

However the computation of [I+KΓ′]−1K may be complicated because Γ′ is not particularly
simple in most cases. It turns out that it is possible to replace Γ′ by a much simpler tensor.

Proposition 6.1 Let M ∈ Sym(T ) be such that K(Γ −M)K ∈ Π for all K ∈ Π, where Γ
is the isotropic part of Γ′. Then

M = {L = L0 − L
1/2
0 [I +KM ]−1KL

1/2
0 , K ∈ Π}. (6.1)

We remark thatM = Γ satisfies conditions of the proposition. In our examples from Section 2
we were able to find even simpler choices for M . In particular, when an exact relation
M happens to be an affine subspace, then M = 0 is the best choice. In all other cases
M = m(I ⊗ I) was the choice we actually used for suitable value of m. We employed a
simple Maple program that finds the best M for a given subspace Π.

Proof: Suppose M satisfies conditions of the proposition. Then K(Γ′ −M)K ∈ Π for
all K ∈ Π. Indeed

K(Γ′ −M)K = K(Γ′ − Γ + Γ −M)K = KΓ̃K +K(Γ −M)K ∈ Π

by Theorem 4.1. As we have done in the proof of Theorem 3.5 we observe that (3.21) and
(4.1) imply that

[I +K(Γ′ −M)]−1K = K −K(Γ′ −M)K + . . .+ (−1)nK((Γ′ −M)K)n + . . . ∈ Π

for any K ∈ Π. Therefore f(K) = [I+K(Γ′−M)]−1K maps Π onto Π. Now, let us compute
the function f(W (L)) that maps M into Π.

f(W (L)) = [S(L) − Γ′ + Γ′ −M ]−1 = [S(L) −M ]−1.

Solving K = f(W (L)) for L we obtain the statement of the proposition.

Remark 6.2 A simple corollary of Theorem 5.2 is that (Π2)sym = Π for any exact relation
Π for n coupled conductivity problems. In view of Proposition 6.1 we conclude that M = 0,
works and all exact relations have the form L = L0 − L

1/2
0 KL

1/2
0 , K ∈ Π.

We can simplify (6.1) further by doing a covariance transformation the same way we have
simplified (3.21) (reducing it to (5.20)).

Proposition 6.3 Let C be given by 5.19. Then

Γ0 = CΓCT =




0 0 0 0

0 D−1
H + 2In2

0 0

0 0 2
5
(In2

+ 2DH)−1(In2
+DH) 0

0 0 0 2
3
In1



.
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Suppose that M is such that K(Γ0 −M)K ∈ Π0 for any K ∈ Π0. Then M = W inv(Π) is
given by

M = {L = L0 − L̃T [I +KM ]−1KL̃, K ∈ Π0}, (6.2)

where

L̃ = CL
1/2
0 =




In0
0 0 0

C22L
T
12 C22L22 0 0

0 0 C33L33 0

0 0 0 L44



.

Proof: The formulas for Γ′, Γ̃, Γ and A were obtained by a straightforward but tedious
calculation. An elementary calculation shows thatK(Γ0−M)K ∈ Π0 if and only if φ(K)(Γ−
M ′)φ(K) ∈ Π = φ(Π0), where M ′ is defined by M = CM ′CT . Thus, if M satisfies the above
condition, then we have, according to Proposition 6.1

L = L0 − L
1/2
0 [I +KM ′]−1KL

1/2
0 , K ∈ Π.

An elementary calculation gives (6.2).

Now we show how we use Proposition 6.1 for 3D elasticity, where we have already com-
puted all solutions Π. The Proposition 6.3 was used to compute exact relations for thermo-
piezo-electric composites.

Example 6.4

The key for converting Π into M is having a nice representation of Π as a subspace of Sym(T ).
In all of our examples it was fairly easy to do. In the case of RPN for 3D elasticity (see
(5.22)) we have

RPN = {I ⊗ B +B ⊗ I : B ∈ T = N0 ⊕N2},
where I is the three by three identity matrix (it is a basis vector for N0). We are looking for
an exact relation M corresponding to RPN and passing through the isotropic tensor L0.

We can use Proposition 6.1 with

M =
κ

3κ+ 4µ
I ⊗ I (6.3)

to find it. Our choice of M is a better one than Γ (in fact M is a hydrostatic part of Γ). An
explicit calculation according to formula (6.1) shows that

L = L0 − L
1/2
0

{
I +

κ

3κ+ 4µ
[(TrB)I + 3B] ⊗ I

}−1

(I ⊗B +B ⊗ I)L
1/2
0

= 2µ(I − I ⊗ I) +
[
√

6κµ(3B − (TrB)I) − (3κ+ 4µ)I]⊗2

3(3κ+ 4µ+ 6κTrB)
,
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where I is the identity operator on T (as opposed to I which is an element of T ) and X⊗2

stands for X ⊗X. A necessary condition for L to be positive definite is that

3κ+ 4µ+ 6κTrB > 0. (6.4)

Let
A = [

√
6κµ(3B − (TrB)I) − (3κ+ 4µ)I]/

√
3(3κ+ 4µ+ 6κTrB), (6.5)

then the associated surface M, will consists all positive definite elasticity tensors L expressible
in the form

L = 2µT + A⊗A.

The positive definiteness of L is equivalent to (TrA)2 − 2Tr(A2) > 4µ, or

2TrB + 3Tr(B − 1

3
(TrB)I)2 <

3κ+ 4µ

4µ
. (6.6)

We conclude this section with a discussion of the question of incorporating the volume
fraction information in an exact relation formula. Theorem 4.19 tells us that an exact relation
Π admits a volume fraction sharpening if and only if (ΠAΠ)sym 6= Π.

Theorem 6.5 Let K = (ΠAΠ)sym 6= Π and let N be an orthogonal complement of K in Π.
Then we have

PNWM(L∗) = PN 〈WM(L(x))〉, (6.7)

where PN denotes the orthogonal projection onto N and M satisfies conditions of Proposi-
tion 6.1.

Proof: Suppose [L, f(L)] is a link between the two uncoupled problems. The second
one corresponding to A = 0. Then we can choose M ′ = [M, 0] satisfying conditions of

Proposition 6.1 and Π′ = [WM(L), I −L
−1/2
0 f(L)L

−1/2
0 ] is the subspace corresponding to the

link. Thus
I − L

−1/2
0 f(L)L

−1/2
0 = PN (WM(L)).

Therefore, the volume fraction relation f(L∗) = 〈f(L(x))〉 from Theorem 4.19 can be written
as (6.7).

Example 6.6

For Hill’s exact relation (5.23) we have

L(x) = 2µ0IN2
+ κ(x)I ⊗ I.

An easy calculation gives for WM(L(x)) with M as in (6.3)

WM(L(x)) = c
κ0 − κ(x)

4µ0 + 3κ(x)
(I ⊗ I),

where c = (3κ0 + 4µ0)/(3κ0). The formula (6.7) then becomes

〈 κ0 − κ(x)

4µ0 + 3κ(x)
〉 =

κ0 − κ∗

4µ0 + 3κ∗
,

which is equivalent to (2.2).
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A The maps W
n

are analytic diffeomorphisms.

Theorem A.1 Let Γ be an orthogonal projector onto a subspace E of T . The map

W (L) = [(I − L)−1 − Γ]−1

defined on a dense open subset of Sym+(T ) can be extended to all of Sym+(T ) by continuity.
Moreover, the extended map is an analytic diffeomorphism between Sym+(T ) and its image
under W .

Proof: Observe, that on a dense subset, where all the inverses in the definition of W
exist, we can rewrite the formula for W as follows:

W (L) = [I − (I − L)Γ]−1(I − L) = (I − L)[I − Γ(I − L)]−1. (A.8)

This formula extends W to all of Sym+(T ). Indeed, the operator A = I− (I−L)Γ is always
invertible. In order to see this we write A = Γ⊥ +LΓ, where Γ⊥ is the orthogonal projection
onto E⊥. Suppose that there is t ∈ T such that At = 0. Writing t as the sum of a vector
e ∈ E and a vector e′ ∈ E⊥ we get 0 = At = Le + e′. Taking the inner product with e we
obtain that (Le, e) = 0, which implies that e = 0. Thus e′ = 0 as well. So, the operator A
is invertible and W can be extended by continuity to all of Sym+(T ) via (A.8).

Now we will show that W is injective, i.e. W maps distinct operators into distinct oper-
ators. Suppose that W (L1) = W (L2). Then

[I − (I − L2)Γ](I − L1) = (I − L2)[I − Γ(I − L1)].

Eliminating parentheses we obtain L1 = L2. The inverse map W inv is given by

W inv(K) = I − [I +KΓ]−1K (A.9)

Indeed, if K is in the image of Sym+(T ) under W , then K = A−1(I−L), where A = Γ′+LΓ
for some L ∈ Sym+(T ). An easy calculation shows that I + KΓ = A−1, and therefore,
invertible. Thus,

W inv(K) = I −A(A−1(I − L)) = L.

Since both formulas (A.8) and (A.9) define analytic maps, we may conclude that W is an
analytic diffeomorphism.

If in the theorem above we set Γ = Γ′(n) and replace L by L
−1/2
0 LL

−1/2
0 , where the

reference medium L0 is assumed to be symmetric and positive definite, then we conclude
that the functions W

n
are analytic diffeomorphism between Sym+(T ) and W

n
(Sym+(T ))

for every unit vector n. Even though we do not know a precise description of the image
of W

n
we may observe that W

n
(Sym+(T )) is open by the theorem above and convex by

Theorem 3.1.
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