Erratum to "Direct approach to the problem of strong local minima in Calculus of Variations", Calc. Var., 29 (2007): 59–83.

Yury Grabovsky Tadele Mengesha

October 2, 2007

The proof of Theorem 5 does not prove the statement in Theorem 5. The problem is that the cut-off functions $\theta_k^r(\bm{x})$ that vanish on $\partial\Omega$ cannot correctly recover the function $\mathcal{I}(\bm{x}_0, \bm{x}_0)$ at the points $x_0 \in \partial \Omega_1$, where the measure $\tilde{\pi}$ has a non-zero mass. This problem is easily fixed by using cut-off functions $\theta_k^r \in C_0^{\infty}(B(\boldsymbol{x}_0,r))$ that do not vanish on $\partial\Omega$, if $\boldsymbol{x}_0 \in \partial\Omega$. We require that $\theta_k^r(x) \to \chi_{B(x_0,r)}(x)$, as $k \to \infty$ for all $x \in \mathbb{R}^d$. This change corrects the proof of Theorem 5 but makes the arguments in Step 4 in the proof of Theorem 2 (p. 82) invalid, since $\theta_k^r(x)v_n(x)$ no longer has to vanish on $\partial B_{\Omega}(x_0, r) \cap \partial \Omega$. This problem is fixed by augmenting the statement of the Decomposition Lemma (Lemma 1). We claim that it is possible to modify sequences z_n and v_n is such a way that they vanish on $\partial\Omega_1$, while satisfying all the other properties required by Lemma 1. Using the modified functions in the consequent analysis leads now to the functions $\theta_k^r(\bm{x})\bm{v}_n(\bm{x})$ that do vanish on $\partial B_{\Omega}(\bm{x}_0, r)$.

THEOREM 1 Suppose the sequence of functions $\psi_n \in W^{1,\infty}(\Omega;\mathbb{R}^m)$ that vanish on $\partial\Omega_1$ (relatively open subset of a C^1 boundary $\partial\Omega$ of Ω) is bounded in $W^{1,2}(\Omega;\mathbb{R}^m)$. Suppose $\alpha_n \to 0$, as $n \to \infty$ is a sequence of positive numbers such that $\alpha_n \psi_n \to 0$ in $W^{1,\infty}$ weak-*. Suppose z_n and v_n are as in Lemma 1, i.e.

- (a) $\psi_n(\boldsymbol{x}) = \boldsymbol{z}_n(\boldsymbol{x}) + \boldsymbol{v}_n(\boldsymbol{x});$
- (b) For all $\mathbf{x} \in \Omega \setminus R_n$ we have $\mathbf{z}_n(\mathbf{x}) = \psi_n(\mathbf{x})$ and $\nabla \mathbf{z}_n(\mathbf{x}) = \nabla \psi_n(\mathbf{x});$
- (c) The sequence $\{|\nabla z_n|^2\}$ is equiintegrable;
- (d) $\mathbf{v}_n \rightarrow 0$ weakly in $W^{1,2}(\Omega; \mathbb{R}^m)$;
- (e) $|R_n| \to 0$ as $n \to \infty$;
- (f) $\alpha_n \nabla z_n$ is bounded in L^{∞} ;

Then there exists modified versions $\widetilde{\mathcal{Z}}_n$ and $\widetilde{\mathbf{v}}_n$ of \mathcal{Z}_n and \mathbf{v}_n , respectively, such that they satisfy all the properties (a) – (f) and additionally the following two properties

(g) $\alpha_n \widetilde{z}_n \to 0$, as $n \to \infty$ uniformly in $\mathbf{x} \in \Omega$; (h) $\widetilde{\mathbf{z}}_n(\boldsymbol{x}) = \widetilde{\mathbf{v}}_n(\boldsymbol{x}) = \boldsymbol{\psi}_n(\boldsymbol{x}) = \mathbf{0}$ for all $\boldsymbol{x} \in \partial \Omega_1$.

PROOF: Step 1. Let $w_n(x) = (w_n^{(1)}(x), \ldots, w_n^{(m)}(x))$ be defined by

$$
w_n^{(i)}(\boldsymbol{x}) = \min\{z_n^{(i)}(\boldsymbol{x}), \|\boldsymbol{\psi}_n\|_{L^\infty(\Omega \setminus R_n)}\}, \quad i = 1,\ldots,m.
$$

Then $w_n(x)$ is Lipschitz continuous with $|\nabla w_n(x)| \leq |\nabla z_n(x)|$ for a.e. $x \in \Omega$, and $w_n(x) =$ $\psi_n(\bm{x})$ for almost all $\bm{x} \in \Omega \setminus R_n$. Similarly, let $\bm{u}_n(\bm{x}) = (u_n^{(1)}(\bm{x}), \ldots, u_n^{(m)}(\bm{x}))$ be defined by

$$
u_n^{(i)}(\boldsymbol{x}) = \max\{w_n^{(i)}(\boldsymbol{x}), -\|\boldsymbol{\psi}_n\|_{L^\infty(\Omega\setminus R_n)}\}, \quad i=1,\ldots,m.
$$

Then $u_n(x)$ is Lipschitz continuous with $|\nabla u_n(x)| \leq |\nabla z_n(x)|$ for a.e. $x \in \Omega$, and $u_n(x) =$ $\psi_n(x)$ for almost all $x \in \Omega \setminus R_n$. Therefore $|\nabla u_n|^2$ is also equiintegrable and

$$
\alpha_n \|\mathbf{u}_n\|_{\infty} \leq \alpha_n \|\mathbf{\psi}_n\|_{\infty} \to 0, \text{ as } n \to \infty.
$$

Step 2. Let ψ_0 be a $W^{1,2}$ -weak limit of (a subsequence of) ψ_n . Then there exists a sequence $\hat{\psi}_n \in C^1(\overline{\Omega}; \mathbb{R}^m)$ such that $\hat{\psi}_n$ vanishes on $\partial\Omega_1$, converges to ψ_0 in the $W^{1,2}$ norm and additionally satisfies

$$
\lim_{n\to\infty}\alpha_n\|\widehat{\psi}_n\|_{1,\infty}=0.
$$

It follows from $|R_n| \to 0$, as $n \to \infty$ that $\psi_n - u_n \to 0$ weakly in $W^{1,2}$. Thus, by Rellich's lemma,

$$
\lim_{n\to\infty}\|\boldsymbol{u}_n-\widehat{\boldsymbol{\psi}}_n\|_2=0.
$$

Let $\eta_n(\boldsymbol{x})$ be a Lipschitz cut-off function such $0 \leq \eta_n(\boldsymbol{x}) \leq 1$ and

$$
\eta_n(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{x} \in \partial\Omega, \\ 0, & \text{dist}(\boldsymbol{x}, \partial\Omega) \ge \delta_n. \end{cases}
$$
 (1)

It is possible to do so, while ensuring that

$$
\|\nabla \eta_n\|_{\infty} \le \frac{C}{\delta_n},\tag{2}
$$

where C depends only on Ω and $\delta_n \to 0$, as $n \to \infty$ so slowly that

$$
\lim_{n\to\infty}\frac{\alpha_n\|\mathbf{u}_n\|_{\infty}}{\delta_n}=\lim_{n\to\infty}\frac{\alpha_n\|\widehat{\psi}_n\|_{1,\infty}}{\delta_n}=\lim_{n\to\infty}\frac{\|\mathbf{u}_n-\widehat{\psi}_n\|_2}{\delta_n}=0.
$$

Step 3. Let

$$
\widetilde{\boldsymbol{z}}_n = (1 - \eta_n)\boldsymbol{u}_n + \eta_n \widehat{\boldsymbol{\psi}}_n.
$$

It is obvious that $\tilde{z}_n(x)$ vanishes on $\partial\Omega_1$ and that $\alpha_n\tilde{z}_n(x) \to 0$, as $n \to \infty$ uniformly in $x \in \Omega$. Defining $\widetilde{v}_n = \psi_n - \widetilde{z}_n$, proves (a), (g) and (h). By definition $\widetilde{z}_n(x) = u_n(x)$ for all x, such that dist $(x, \partial\Omega) \ge \delta_n$. Hence, (b) and (e) are also established. The property (d) is a consequence of (b) , (c) and (e) . Let us now establish (f) .

$$
\nabla \widetilde{\boldsymbol{z}}_n = (1 - \eta_n) \nabla \boldsymbol{u}_n + \eta_n \nabla \widehat{\boldsymbol{\psi}}_n + (\widehat{\boldsymbol{\psi}}_n - \boldsymbol{u}_n) \otimes \nabla \eta_n.
$$
\n(3)

.

Hence,

$$
\alpha_n \|\nabla \widetilde{\mathbf{z}}_n\|_{\infty} \leq \alpha_n \|\nabla \mathbf{z}_n\|_{\infty} + \alpha_n \|\widehat{\psi}_n\|_{1,\infty} + \frac{\alpha_n \|\psi_n\|_{1,\infty}}{\delta_n} + \frac{\alpha_n \|\mathbf{u}_n\|_{\infty}}{\delta_n}
$$

The property (f) is proved. To prove property (c), we observe that

$$
\|\nabla \widetilde{\mathbf{z}}_n - \nabla \mathbf{u}_n\|_2 \le \|\eta_n(\nabla \mathbf{u}_n - \nabla \widehat{\psi}_n)\|_2 + \frac{\|\mathbf{u}_n - \widehat{\psi}_n\|_2}{\delta_n} \to 0, \text{ as } n \to \infty
$$

because $|\nabla u_n - \nabla \psi_n|^2$ is equiintegrable and η_n is bounded and supported on a set of small measure. Hence, (c) follows from the equiintegrability of $|\nabla u_n|^2$.

Another correction has to be made to the statements of Theorems 5 and 6. Theorem 5 has to apply to points in $\Omega \cup \partial \Omega_1$, while Theorem 6 to points in $\overline{\partial \Omega_2}$. Finally, no additional smoothness assumptions are required of $\partial\Omega_1$. We only need $\partial\Omega_1$ to be relatively open and coincide with the interior of its closure. If this condition is not satisfied we should just redefine $\partial\Omega_1$ as the interior of the closure of the original $\partial\Omega_1$. The set $\partial\Omega_2$ is then defined as $\partial\Omega\setminus\partial\Omega_1$.