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Abstract

Examples of non-quasiconvex functions that are rank-one convex are rare. In this
paper we construct a family of such functions by means of the algebraic methods of the
theory of exact relations for polycrystalline composite materials, developed to identify
G-closed sets of positive codimensions. The algebraic methods are used to construct
a set of materials of positive codimension that is closed under lamination but is not
G-closed. The well-known link between G-closed sets and quasiconvex functions and
sets closed under lamination and rank-one convex functions is then used to construct
a family of rotationally invariant, nonnegative, and 2-homogeneous rank-one convex
functions, that are not quasiconvex.

Contents

1 Introduction 2

2 General theory of exact relations 4
2.1 Periodic composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 L-relations and Jordan multialgebras . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Stability under homogenization . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Case study: multifield composite materials 12
3.1 Polycrystalline L-relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 L-relation that is not exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Homogenization, rank-one convexity and quasiconvexity 16

A The equation for the effective tensor of a periodic composite 21

B A direct proof of rank-one convexity of (1.4) 25

1



1 Introduction

Problems of existence and necessary and sufficient conditions for minimizers in variational
problems with multiple integrals lead to the concept of quasiconvexity [42, 2].

Definition 1.1. We say that a function W : Rm×d → R is quasiconvex at F ∈ R
m×d if

∫

Rd

{W (F +∇φ)−W (F )}dx ≥ 0

for every φ ∈ C∞
0 (Rd;Rm). A function W (F ) is called quasiconvex if it is quasiconvex at

every F ∈ R
m×d.

It is well-known that quasiconvex functions have to be rank-one convex [42] (i.e. convex
along any line joining F1 and F2, provided F1−F2 has rank 1). Whether or not the converse
is true was an open question for a long time, until Šverák’s counterexample [48] settled it.
Even so, examples like Šverák’s are rare, and the cases m = 2, d ≥ 2 are still open. There
are also no examples of rotationally invariant nonnegative functions W (F ), i.e. the ones
that satisfy W (FR) = W (F ) for all F ∈ R

m×d and all R ∈ SO(d). In this paper we give an
example of a rotationally invariant function W (F ) for the case d = 2, m = 8. Our example
has an intriguing 2×2 “flavor”. Specifically, we regard 8×2 matrices F as 2×2 quaternionic
matrices via a natural identification between R

4 and H—the set of all quaternions:

R
4 ∋ q = (q0, q1, q2, q3) 7→ q = q0 + iq1 + jq2 + kq3 ∈ H. (1.1)

The image of a vector, denoted by a bold letter, under the map (1.1) will consistently be
denoted by the same letter in normal font.

To give a simple and explicit formula for one of our examples W (F ), it will be helpful to
think of F as the gradient of f(x, y) = (u(x, y), v(x, y)), where functions u(x, y) and v(x, y)
are quaternion-valued. Then the 2× 2 quaternionic matrix

∇f =




∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y




is identified with a real 8 × 2 matrix F , via (1.1). In order to streamline the notation, we
define a quaternion-valued “inner product” on H

2:

([
u1

v1

]
,

[
u2

v2

])

H2

= u1u2 + v1v2, (1.2)

and the corresponding norm ‖f‖2
H2 = (f ,f)H2 , where quaternionic conjugation is defined by

q̄ = q0 + iq1 + jq2 + kq3 = q0 − iq1 − jq2 − kq3. (1.3)
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We will prove that the function W (F ), given by1

W (∇f) =

√
detH((∇f)T∇f) =

√∥∥∥∥
∂f

∂x

∥∥∥∥
2

H2

∥∥∥∥
∂f

∂y

∥∥∥∥
2

H2

−
∣∣∣∣
(
∂f

∂x
,
∂f

∂y

)

H2

∣∣∣∣
2

(1.4)

is rank-one convex, but not quasiconvex. Specifically, we will show that W (F ) is not
quasiconvex at F = I2—the quaternionic 2 × 2 identity matrix. We note that the non-
commutativity of quaternion multiplication plays a key role here. Indeed, if f were C

2-
valued, then the determinant of the product of two complex matrices can be written as the
product of their determinants, and W (∇f) would be equal to | det(∇f)|, which is, obviously,
polyconvex. Another observation is that W (F ) ≥ 0 with equality if and only if either

F11 = F12 = 0, or F11 = F21 = 0, or F12 = F22 = 0, or F−1
11 F21 = F−1

12 F22. (1.5)

This statement is easy to obtain from the well-known conditions of equality for the triangle
and the Cauchy-Schwarz inequalities in Euclidean spaces:

|(u,v)H2| = |u1v1 + u2v2| ≤ |u1||v1|+ |u2||v2| ≤ ‖u‖H2‖v‖H2 .

Conditions (1.5) include the case when the corresponding 8× 2 matrix F has rank 1 (this is
characterized by (1.5) with the additional requirement that F11F

−1
12 be real), but describe a

larger, 12-dimensional, cone in R
8×2.

The relatively non-technical proof of failure of quasiconvexity of (1.4) presented here
comes as a consequence of the theory of exact relations for composite materials [12, 17, 13].
A direct proof of rank-one convexity of (1.4) is also given in Appendix B. The connec-
tion between homogenization and quasiconvexity is well-known [24, 25, 26] (see also [40,
Section 31.4]), where the corresponding problem is to produce a microstructure whose ef-
fective behavior cannot be attained by laminates made with the same constituents. The
homogenization problem is harder, since it can be regarded as a particular case of quasicon-
vexification. In fact, Milton’s example of a composite that cannot be mimicked by a laminate
[40, Sections 31.8–9] uses Šverák’s counterexample to guide the explicit construction. In this
paper we solve a purportedly harder problem: finding SO(2)-invariant (i.e. polycrystalline)
exact relations that are valid for all laminates but not for arbitrary microstructures.

As the name implies, the term “exact relation” refers to a microstructure-independent
(i.e. exact) relation linking effective tensors of composite materials with tensors of material
properties of their constituents. It is well-known that properties of composite materials de-
pend strongly on the microstructure. In fact, in a generic case the knowledge of properties of
constituent materials and their volume fractions alone cannot be used to determine a single
equation that must be satisfied by effective tensors of composites. Nevertheless, the liter-
ature on composite materials abounds with beautiful microstructure-independent formulas
that hold in special, non-generic circumstances. Examples are known in virtually every phys-
ical context, such as conductivity [22, 11], elasticity [19, 30, 31, 10], piezoelectricity [6, 4],

1Of course one can also write this function in conventional notation. However, once the quaternionic
products are expanded out, the expression under the square root becomes unwieldy, losing both its simplicity
and structure.
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thermoelasticity [27, 44, 18, 46], thermoelectricity [1, 47] or even for thermoelectroelastic
composites [9, 5]. (See a review by Milton [39].) The general theory of exact relations, de-
veloped in [12, 17, 13], created a machinery for systematic computation of all such formulas.
The idea was to identify equations satisfied by effective tensors of simple laminates, whereby
two constituent materials are combined in layers perpendicular to a given unit vector (lam-
ination direction). Once such an equation is discovered, one needs to decide whether or not
it is valid for all, not just laminar, microstructures. The general theory provides a simple
algebraic sufficient condition. While there is a strong algebraic evidence that this sufficient
condition should not be a consequence of stability under lamination, each and every lam-
inate exact relation (or L-relation), within classical physical contexts mentioned above, is
known to satisfy them. This “mystery” is explained by the fact that our physical examples
have a relatively low dimensionality, from the algebraic point of view, with “no room” for
counterexamples. Hence, in order to produce a desired example of an L-relation, which is
not exact, we consider multifield composite materials [34, 35, 33], coupling 4 curl-free and 4
divergence-free fields in two space dimensions2. The main tool is a different, purely algebraic
condition, derived in [13], that is necessary for an equation to hold for all microstructures,
and that does not come from the study of laminates. Once the example of an L-relation that
is not exact has been found, we utilize the well-known connection between homogenization
and quasiconvexification to produce explicit examples of rotationally invariant rank-one con-
vex, non-quasiconvex functions, one of which is given in (1.4). We remark, that our method
produces rotationally invariant 2-homogeneous functions that are certifiably rank-one convex
or quasiconvex in a systematic manner. The method can in principle be reversed to produce
a direct, albeit long and arduous proof of failure of quasiconvexity of particular functions.
A direct proof of rank-one convexity of (1.4), given in Appendix B, is ad hoc and unrelated
to the construction process.

The paper is organized as follows. In Section 2 we state and prove all necessary facts
from the theory of exact relations. The interested reader can consult the books [40, 16] for
discussions of the origin and other applications of some of the ideas and constructions from
the theory. In Section 3 we introduce multifield materials coupling 4 curl-free fields to 4
divergence-free fields and discuss exact and L-relations for composites in that context. In
particular, we exhibit an L-relation that is not exact. In Section 4 we use the well-known
links between homogenization and quasiconvexification to construct a family of nonnegative,
rotationally invariant, rank-one convex, but non-quasiconvex functions of which function
(1.4) is a member.

2 General theory of exact relations

2.1 Periodic composites

The standard references [3, 20] for the mathematical theory of composite materials empha-
size homogenization theorems and deal primarily with conducting and elastic composites.

2Curiously, the same construction in three space dimensions does not produce any counterexamples,
because, as was proved in [17], all L-relations for 3D multifield polycrystalline composites are exact.
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Homogenization in other physical contexts, such as piezoelectricity or thermoelasticity, is
very similar. This similarity has been noted and incorporated into an abstract Hilbert space
framework [23, 8, 41, 36, 37, 38] encompassing all coupled field composites. In this framework
materials are assumed to respond linearly to an applied field E(x), producing in response
a “flux field” J(x) = LE(x), whereby their material properties are described by a linear
operator L on a finite dimensional inner product space T , where the physical fields take their
values. For example, T = R

d for d-dimensional conducting composites, because the electric
field e(x) and the resulting current field j(x) are R

d-valued. In d-dimensional elasticity,
T = Sym(Rd)—the space of symmetric d× d matrices, because the strain field ε(x) and the
resulting stress field σ(x) are Sym(Rd)-valued. In almost every physical context the tensor
of material properties L is a symmetric operator on T . It is also required to be positive
definite, i.e. L ∈ Sym+(T ). The linear homogeneous differential constraints satisfied by the
physical fields E and J can be conveniently written as linear algebraic constraints satisfied
by the formal Fourier transforms of these fields: Ê(ξ) ∈ En ⊗ C, Ĵ(ξ) ∈ Jn ⊗ C, where
n = ξ/|ξ|. For example, in the context of conductivity an electric field E must be curl-free
and the current field J , divergence-free. In this case

En = Rn, Jn = {j ∈ R
d : j · n = 0}. (2.1)

Similarly, for linear elasticity

En = {u⊗ n+ n⊗ u : u ∈ R
d}, Jn = {σ ∈ Sym(Rd) : σn = 0}, (2.2)

corresponding to the differential constraints ε = (∇u + (∇u)T )/2, ∇ · σ = 0 for the strain
and the stress, respectively.

It is easy to verify for both conductivity and elasticity that En and Jn are orthogonal
complements of one another:

T = En ⊕ Jn, n ∈ R
d, |n| = 1. (2.3)

It turns out that this property is universal, as it holds in every other physical context, such
as piezoelectricity or thermoelasticity [38].

The microstructure of a periodic composite with period cell3 Q = [0, 1]d is completely
described by the local tensor L : Q → Sym+(T ). The effective tensor L∗ ∈ Sym+(T ) of such a
periodic composite can be defined as an H-limit [43] of the sequence Lp(nx), as n → ∞, where
Lp stands for the Q-periodic extension of L(x) to R

d. The effective tensor can be determined
either by solving a periodic “cell problem” [3, 40] (see equation (A.5) in Appendix A), or,
and this is what we will use instead, by an explicit formula for the Milton W-transformation
of L∗ [38]. The W-transformation is an invertible fractional-linear transformation defined on
Sym+(T ). It involves an arbitrary reference tensor L0 ∈ Sym+(T ), that can be regarded
as a “preconditioner”, since the effective tensor L

∗ does not depend on it, and which can
thus be chosen to make the calculation of L∗ more robust, for example, or to serve any other
purpose.

3The period cell Q can be an arbitrary parallelepiped. We choose Q = [0, 1]d, corresponding to the lattice
Z
d, because the dual lattice is also Z

d in this case, resulting in simpler notation. However, all results can be
reformulated for an arbitrary parallelepiped of periods.
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In order to define the W-transformation we introduce a family of symmetric linear maps
(see Appendix A)

Γ0(n) = L
−1
0 Γ′(n) ∈ Sym(T ), n ∈ R

d, |n| = 1, (2.4)

where Γ′(n) is a possibly non-orthogonal projection operator onto L0En along Jn. Following
[38], we define transformations Wn : Sym+(T ) → Sym(T ), |n| = 1, by

Wn(L) = [I+ (L− L0)Γ0(n)]
−1 (L− L0) = (L− L0) [I+ Γ0(n)(L− L0)]

−1 , (2.5)

where I denotes the identity operator on T . Lemma A.1 shows that the linear maps I+(L−
L0)Γ0(n) are invertible for any L ∈ Sym+(T ). Moreover, the map Wn(L) is a diffeomorphism
from Sym+(T ) onto its image. This is proved in Lemma A.2. Finally, Lemma A.3 establishes
the formula for L∗ that will be used in the subsequent analysis:

Wn(L
∗) = 〈Wn(L(x))(I− ΛnWn(L(x)))

−1〉, (2.6)

where 〈·〉 denotes average over the period cell [0, 1]d. Operators Λn, |n| = 1 are Fourier
multiplier operators on L2

per([0, 1]
d; T )—the set of [0, 1]d-periodic locally L2 vector fields,

defined by

Λ̂nh(k) =

{
An(k)ĥ(k), k ∈ Z

d \ {0}
0, k = 0,

(2.7)

where

An(k) = Γ0(n)− Γ0

(
k

|k|

)
, k ∈ Z

d \ {0}. (2.8)

Formula (2.6) is understood in the sense that for any constant vector t ∈ T ,

Wn(L
∗)t = 〈Wn(L(x))u(x)〉,

where u(x) is the unique L2
per([0, 1]

d; T ) solution of the operator equation

(I− ΛnWn(L))u = t, (2.9)

where t is now understood as a (constant) vector field in L2
per([0, 1]

d; T ). The unique solv-
ability of (2.9) is established in Lemma A.3.

We remark, that even though the mapping Wn(L) and the operator Λn involve a unit
vector n and a reference medium L0, the effective tensor L∗ defined by (2.6) is independent
of both. We now recall the definition of G-closure of a set of materials, [28].

Definition 2.1. The G-closure G(U) of a compact subset U ⊂ Sym+(T ) is the relative
closure in Sym+(T ) of the set of all effective tensors L

∗ of all possible periodic4 composites,
made with materials from the set U . A subset of Sym+(T ) is G-closed if it is relatively closed
in Sym+(T ) and contains G-closure of any of its compact subsets.

4G-closure of any set is independent of the choice of a period cell parallelepiped.
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In this paper we deal exclusively with polycrystalline composites for which the set U of
admissible materials must be SO(d) invariant.

Generically, the set G(U) has a nonempty interior in Sym+(T ), even if U consists of
only 2 points [29]. We are interested in special, non-generic situations, where G(U) is a
submanifold of Sym+(T ) of nonzero co-dimension.

Definition 2.2. The submanifold M of Sym+(T ) of positive codimension is called an exact
relation if the effective tensor L

∗ of a periodic composite, whose constituents are taken from
any compact subset of M, must lie in M, regardless of the microstructure. Equivalently,
submanifold M is an exact relation if and only if it is G-closed.

2.2 L-relations and Jordan multialgebras

In order to identify all exact relations we test a prospective submanifold M by taking two
arbitrary points {L1, L2} ⊂ M and forming a simple laminate—a composite consisting of
layers of material L1 alternating with layers of material L2. The geometry of a simple laminate
is described by the direction of lamination n ∈ S

d−1 (d = 2 or 3) and the volume fractions θ1,
θ2 = 1− θ1 of L1 and L2, respectively. Every simple laminate can be regarded as a periodic
composite, if we choose a period cell to be a cube with n being normal to one of its faces.
By analogy with G-closed sets we define L-closed sets.

Definition 2.3. A set of materials U ⊂ Sym+(T ) is called L-closed if U is relatively closed in
Sym+(T ) and contains effective tensors of all simple laminates made with any two materials
{L1, L2} ⊂ U , taken in any volume fraction and arbitrary orientation of layers.

Restricting attention only to laminate microstructures we formulate the notion of lami-
nation exact relation or L-relation.

Definition 2.4. A submanifold M of positive co-dimension in Sym+(T ) is called an L-
relation if the effective tensor L

∗ of a simple laminate made with any {L1, L2} ⊂ M is in M

for any choice of lamination direction and volume faction. Equivalently, submanifold M is
an L-relation if and only if it is L-closed.

If L(x) is the local tensor of a simple laminate with lamination direction n, then L(x)
depends only on x · n. Therefore, since An(n) = 0, we have ΛnWn(L(x)) = 0, due to (2.7).
In this case formula (2.6) simplifies [38, 40]:

Wn(L
∗) = θ1Wn(L1) + θ2Wn(L2). (2.10)

Geometrically, this means that Wn-images of G-closed sets must be convex (for any choice
of n and L0). It also means (together with other results from Appendix A) that L-closed
sets (and a fortiori G-closed sets) are diffeomorphic images of convex sets. In particular,
the image of Sym+(T ) under the map Wn is an open convex subset of Sym(T ), containing
0 = Wn(L0).

If a submanifold M is an L-relation, then (2.10) implies that Wn(M) must be a convex
subset of Sym(T ) and, at the same time, a submanifold of Sym(T ) of the same dimension
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as M. Therefore, Wn(M) must be a convex subset of an affine subspace of Sym(T ). If we
choose the reference tensor L0 so that L0 ∈ M, then Wn(M) will be a convex subset, with
nonempty relative interior, of a subspace

Πn = Span{Wn(L) : L ∈ M} ⊂ Sym(T ),

since Wn(L0) = 0, according to (2.5). In that case the differential of Wn at L0 will be an
isomorphism between the tangent space to M at L0 and Πn. We easily compute that the
differential ofWn at L0 is the identity transformation. Thus, the subspaces Πn do not depend
on n, since they all coincide with the tangent space to M at L0. Accordingly, we will denote
by Π the tangent space to M at L0. Then, the transformation Φm,n = Wm ◦ W−1

n
would

map a small neighborhood O of 0 ∈ Π to a neighborhood of 0 ∈ Π. We compute

Φm,n(K) = [I− KAn(m)]−1
K, K ∈ O ⊂ Π. (2.11)

For sufficiently small K we can expand (2.11) into the Neumann series and conclude that
KAn(m)K ∈ Π for all K ∈ Π and all unit vectors m. From this it is not difficult to obtain
the characterization of all L-relations. (See [17] or [40, Chapter 17] for details.)

Theorem 2.5. Let Π be a subspace in Sym(T ) and n0 be a fixed unit vector. We also define
the subspace

A = Span{Γ0(n)− Γ0(n0) : |n| = 1}, (2.12)

where Γ0(n) is defined in (2.4). The submanifold M, given by the formula

M = {L ∈ Sym+(T ) : Wn0
(L) ∈ Π}, (2.13)

is an L-relation if and only if the subspace Π is a Jordan A-multialgebra, meaning that

K1 ∗A K2 =
1

2
(K1AK2 + K2AK1) ∈ Π, ∀{K1,K2} ⊂ Π, A ∈ A. (2.14)

Jordan algebras have first appeared in early versions of quantum mechanics [21]. In
particular, subspaces of Sym(T ) that are closed with respect to any of the multiplications
(2.14), are examples of Jordan algebras. Theorem 2.5 requires subspaces Π, defining L-
relations, to be closed with respect to an entire family of Jordan multiplications. For this
reason we call such subspaces Jordan A-multialgebras.

2.3 Stability under homogenization

From formula (2.6) we can obtain a criterion of stability under homogenization via the
Neumann series, [17].

Lemma 2.6. A submanifold M, given by (2.13), is G-closed if and only if

〈(K(x)Λn0
)kK(x)〉 ∈ ΠC (2.15)

for every k ≥ 0 and K ∈ L∞([0, 1]d; ΠC), where ΠC = {K1 + iK2 | {K1,K2} ⊂ Π} is the
complexification of Π, and 〈·〉 denotes average over the period cell.
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We remark, that when k = 1 condition (2.15) is equivalent to (2.14). In order to apply
Neumann series expansion to (2.6) we need to relate periodic composites with arbitrary K(x)
to the ones where K(x) is uniformly small.

Lemma 2.7. Suppose M is given by (2.13), where Π is a Jordan A-multialgebra. Let us
assume that there exists ǫ > 0, such that L∗ ∈ M for every periodic composite L(x) ∈ M,
satisfying |Wn0

(L(x))| < ǫ. Then M is an exact relation in the sense of Definition 2.2.

Proof. Let K ⊂ M be a compact subset and L(x) ∈ K for all x ∈ Q. Then K(x) = Wn0
(L(x))

is a uniformly bounded function, satisfying K(x) ∈ Π. Thus, there exists δ > 0 so small that
for every 0 < θ < δ we have, θ|K(x)| < ǫ. Let Lθ(x) = W−1

n0
(θK(x)). Then, by the lamination

formula (2.10), for each fixed x ∈ Q, the effective tensor of the laminate of two materials L(x)
and L0, taken in volume fractions θ and 1−θ, respectively, with lamination direction n0, will
be Lθ(x). Theorem 2.5 then implies that Lθ(x) ∈ M, for every 0 ≤ θ ≤ 1, and every x ∈ Q.
By assumption, L∗θ ∈ M for every 0 ≤ θ < δ. That means that f(θ) = (Wn0

(L∗θ),P)Sym(T ) = 0
for every 0 ≤ θ < δ and every P ∈ Π⊥— the orthogonal complement to Π in Sym(T ). By
formula (2.6)

Wn0
(L∗θ) = 〈K(x)(θ−1

I− Λn0
K(x))−1〉 ∀θ ∈ (0, 1].

By Lemma A.3 all operators θ−1
I − Λn0

K must be invertible on L2(Q; T ) for all θ ∈ (0, 1].
Thus, θ−1 is not in the spectrum of Λn0

K for all θ ∈ (0, 1]. But then the function f(θ) must
be analytic on a neighborhood of θ ∈ [0, 1] in the complex plane [45]. It follows that f(θ) = 0
for all θ ∈ [0, 1], since f(θ) = 0 for all 0 ≤ θ < δ. This proves that Wn0

(L∗) ∈ Π, which
implies that L∗ ∈ M.

We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. If M is G-closed, and K ∈ L∞(Q; Π) then for sufficiently small (in
absolute value) ǫ we have Lǫ(x) = W−1

n0
(ǫK(x)) ∈ M. Hence, L∗ǫ ∈ M, which, in turn, implies

that Wn0
(L∗ǫ) ∈ Π. Expanding (2.6) into the Neumann series

Wn0
(L∗ǫ) =

∞∑

k=0

ǫk+1〈(KΛn0
)kK(x)〉, (2.16)

we conclude that (2.15) must hold for every K ∈ L∞(Q; Π). To prove that (2.15) holds
for every K ∈ L∞(Q; ΠC), we take any {K1,K2} ⊂ L∞(Q; Π), λ ∈ C, and define Kλ(x) =
K1(x)+λK2(x). Observe that Kλ ∈ L∞(Q; Π) for any λ ∈ R, and therefore, for any P ∈ Π⊥,
and any k ≥ 1 we have

p(λ) = (〈(KλΛn0
)kKλ(x)〉,P)Sym(T ) = 0, λ ∈ R.

Observe that p(λ) is a polynomial in λ. Therefore, if it vanishes on R it must also vanish on
C. Hence, p(i) = 0, and (2.15) is proved for any K ∈ L∞(Q; ΠC).

Conversely, if (2.15) holds for every K ∈ L∞(Q; ΠC), then formula (2.16) proves that
Wn0

(L∗) ∈ Π, provided L(x) ∈ M and K(x) = Wn0
(L(x)) is sufficiently small. Lemma 2.7

now guarantees that M is G-closed.
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We now turn to the formulation of a nice algebraic sufficient condition on the subspace
Π ⊂ Sym(T ) for (2.15) to hold for all k ≥ 1.

Definition 2.8. A subspace Π′ ⊂ End(T ) is called an associative A-multialgebra, if K1AK2 ∈
Π′ for all {K1,K2} ⊂ Π′ and all A ∈ A.

Theorem 2.9. Suppose that Π′ is an associative A-multialgebra. Let Π = Π′ ∩ Sym(T ).
Then the submanifold M, given by (2.13) is an exact relation in the sense of Definition 2.2.

Proof. The idea is to use the algebraic property of Π to prove (2.15) for all k ≥ 1. Our
first observation is that it is sufficient to prove that if K ∈ L∞([0, 1]d; Π′

C
) then (KΛn)

k
K ∈

L2([0, 1]d; Π′
C
) for all k ≥ 1. This statement is proved by induction in k. It is amusing that it

is the induction step that is almost trivial, while the case k = 1 is the only part that requires
a proof. Indeed, suppose that Tk = (KΛn)

k
K ∈ L2([0, 1]d; Π′

C
). Then Tk+1 = KΛnTk. The

conclusion for the induction step follows from from a slightly expanded statement for k = 1.

Lemma 2.10. Suppose that K1 ∈ L∞([0, 1]d; Π′
C
) and K2 ∈ L2([0, 1]d; Π′

C
). Then K1ΛnK2 ∈

L2([0, 1]d; Π′
C
).

Proof. If K2 ∈ L2([0, 1]d; Π′
C
) then K̂2(k) ∈ Π′

C
for all k ∈ Z

d. We compute

(K1ΛnK2)(x) =
∑

k∈Zd\{0}

K1(x)An(k)K̂2(k)e
2πik·x.

It remains to observe that every term in the above expansion is in Π′
C
for almost every

x ∈ [0, 1]d, since An(k) ∈ A.

Now, if L ∈ L∞([0, 1]d;M), then K = Wn(L) ∈ L∞([0, 1]d; Π). We have proved that
formula (2.6) implies that Wn(L

∗) ∈ Π′
C
. But we also know that Wn(L

∗) ∈ Sym(T ). Thus,

Wn(L
∗) ∈ Π′

C
∩ Sym(T ) = Π.

The theorem is proved now.

Remark 2.11. From an algebraic point of view it may be regarded as surprising that in every
2D and 3D physical context from conductivity to piezoelectricity every subspace satisfying
(2.14) also satisfies conditions in Theorem 2.9 [17, 13, 15]. From the analysis point of view,
this might not be as surprising, since, as this work shows, each L-relation that is not closed
with respect to homogenization would generate examples of rank-one convex non-quasiconvex
functions, and such examples are rare.

Now we are going to obtain a new algebraic condition that is necessary for stability under
homogenization, but is not a consequence of (2.14). While our construction produces a new
necessary condition in any number of space dimensions, only in 2D can it be formulated in
a practically useful form5.

5Just for the record, the corresponding condition in 3D is (2.17), except the subspace A is replaced with
a family of subspaces Ap, |p| = 1, where Ap is defined by (2.12) in which both vectors n and n0 must be
orthogonal to p.
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Theorem 2.12. If d = 2 and M, given by (2.13), is an exact relation, then, in addition to
(2.14), it must satisfy

K1A1K2A2K3 + K3A2K2A1K1 ∈ Π. (2.17)

for any {K1,K2,K3} ⊂ Π and {A1,A2} ⊂ A.

This theorem was proved in [13] as a consequence of a more sophisticated result, which
we do not need here. For this reason we give a direct (and simpler) proof of Theorem 2.12.

Proof. To prove the theorem we choose

K(x) = K1e
2πil1·x + K2e

2πil2·x + K3e
2πil3·x ∈ L∞([0, 1]2; ΠC), (2.18)

where {K1,K2,K3} ⊂ Π and {l1, l2, l3} ⊂ Z
2 will be specified now.

First we observe that any unit vector n ∈ R
2 can be approximated with any degree of

accuracy by a vector ñ = k0/|k0| for some k0 ∈ Z
2. In that case Añ(k0) = 0, according

to (2.8). Next we choose k1 ∈ Z
2 that is linearly independent with k0. Finally we choose

arbitrary {m0,m1} ⊂ Z \ {0} and define

l1 = m1k1, l2 = −m0k0 −m1k1, l3 = m0k0.

It is obvious that with the choices described above, all 3 vectors lj are nonzero and distinct.
Now we substitute (2.18) into (2.15) for k = 3 and n replaced with ñ and obtain (taking
into account that Añ(l3) = 0)

K2Añ(l2)K3Añ(l1)K1 + K1Añ(l1)K3Añ(l2)K2 ∈ Π.

Next we note that

Añ(l1) = Añ

(
k1

|k1|

)
, Añ(l2) = Añ

(
m0k0 +m1k1

|m0k0 +m1k1|

)
.

For any unit vector u ∈ R
2 we can choose k1 ∈ Z

2 and linearly independent with k0, such
that ũ = k1/|k1| approximates u with any degree of accuracy. Then

m0k0 +m1k1

|m0k0 +m1k1|
=

sN + rũ

|sN + rũ| , N =
ñ|k0|
|k1|

, r =
m1

|m0|
, s = sign(m0).

By our construction the vectors ũ and N are linearly independent in R
2. It is now clear

that for any unit vector v ∈ R
2 we can choose the sign s and a nonzero rational number r,

so that ṽ = (sN + rũ)/|sN + rũ| approximates v with any degree of accuracy. Hence, we
conclude that

K2Añ(ṽ)K3Añ(ũ)K1 + K1Añ(ũ)K3Añ(ṽ)K2 ∈ Π

The function
S
1 × S

1 ∋ (n,m) 7→ An(m) = Γ0(n)− Γ0(m)

is continuous and therefore

K2An(v)K3An(u)K1 + K1An(u)K3An(v)K2 ∈ Π.
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for any unit vectors n, u and v in R
2. Fixing n and u and varying v we obtain that

K2A1K3An(u)K1 + K1An(u)K3A1K2 ∈ Π.

for any {K1,K2,K3} ⊂ Π, A1 ∈ A and any unit vectors n and u. Fixing A1 and n, and
varying u we obtain (2.17).

If the set of admissible constituent materials contains anisotropic ones, then it is usually
natural not to insist that such a material be used only in one fixed orientation. Mathemat-
ically speaking, if L is a tensor of a constituent material, then every rotation of L, denoted
symbolically by R · L, R ∈ SO(d), must be admissible. Composites like these are called
polycrystalline. Restricting attention only to the polycrystalline composites means that we
are interested only in rotationally invariant exact relation submanifolds M. Since a poly-
crystal with statistically isotropic texture must be isotropic (fixed point of SO(d) action),
we conclude that M must contain an isotropic tensor L0, which we will use as a reference
medium in the definition of the W-transformation (2.5). In that case, it is easy to see that
both subspaces Π and A must be rotationally invariant.

3 Case study: multifield composite materials

Multifield materials were considered in [35, 34]. In this context N coupled potential fields
E = (∇φ1, . . . ,∇φN) induce N conjugate fluxes J = (j1, . . . , jN ) satisfying

∇ · j1 = . . . = ∇ · jN = 0.

For example, thermoelectric materials fit in this context with N = 2.
Mathematically speaking, we choose

T = R
d ⊕ . . .⊕ R

d

︸ ︷︷ ︸
N

∼= R
N ⊗ R

d, u⊗ x ↔ (u1x, . . . , uNx) ∈ T , x ∈ R
d,

with the inner product, defined most succinctly by the formula6

(u⊗ x,v ⊗ y)T = (u · v)(x · y), ∀{u,v} ⊂ R
N , ∀{x,y} ⊂ R

d

in terms of the dot products in R
N and R

d, respectively. The family of subspaces En is given
by

En = {u⊗ n : u ∈ R
N}, n ∈ S

d−1.

Each member of the family of subspaces Jn is the orthogonal complements of En. Explicitly,

Jn = {(j1, . . . , jN) ∈ T : j1 · n = . . . = jN · n = 0}.

Rotations R ∈ SO(d) act simultaneously on each copy of Rd in T . Specifically,

R · (u⊗ x) = u⊗Rx, u ∈ R
N , x ∈ R

d.

6If we identify T = R
N ⊗ R

d with the space of N × d matrices, then this inner product coincides with
the Frobenius inner product Tr (ABT ).
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For simplicity we chose L0 = I—the identity operator on T . In this case we easily compute
[17]:

A = {IN ⊗A : A ∈ Sym(Rd), TrA = 0},
where IN denotes the N ×N identity matrix. Here for X ∈ End(RN) and Y ∈ End(Rd) the
operatorX⊗Y on R

N⊗R
d is uniquely defined by the property (X⊗Y )(u⊗x) = Xu⊗Y x.

3.1 Polycrystalline L-relations

In order to identify all polycrystalline L-relations we need to find all rotationally invariant
Jordan A-multialgebras in Sym(T ). For the case d = 3, all SO(3)-invariant Jordan A-
multialgebras have been computed in [17], where it was shown that all SO(3)-invariant
L-relations satisfy sufficient conditions of Theorem 2.9, and hence are exact in the sense of
Definition 2.2.

When d = 2 it will be convenient to identify the physical space R2 with complex numbers,
so that7 x = (x1, x2) 7→ x = x1 + ix2 ∈ C. Then

T ∼= R
N ⊗ R

2 ∼= R
N ⊗ C ∼= C

N , u⊗ x 7→ u⊗ x 7→ (u1x, . . . , uNx) ∈ C
N . (3.1)

The utility of this isomorphism of 2N -dimensional real vector spaces comes from the alterna-
tive interpretation of CN as a complex vector space. In order to characterize all rotationally
invariant subspaces in Sym(T ) we observe that rotations Rθ of R

2 through the angle θ coun-
terclockwise act on vectors u ∈ T ∼= C

N by Rθ · u = eiθu. Every K ∈ Sym(T ) is uniquely
determined by a complex Hermitian N × N matrix X and a complex symmetric N × N
matrix Y by the rule

Ku = Xu+ Y u, u ∈ C
N .

Henceforth, we will write K(X, Y ) to indicate this parametrization of Sym(T ). In this
notation

K(X1, Y1)K(X2, Y2) = K(X1X2 + Y1Y
H
2 , X1Y2 + Y1X

T
2 ), (3.2)

where Y H = Y
T
denotes Hermitian conjugation8. We easily compute the action of rotations

Rθ on K(X, Y ):
Rθ · K(X, Y ) = K(X, e2iθY ). (3.3)

Therefore, if Π is an SO(2)-invariant subspace of Sym(T ) then

Π = ΠV,W = {(X, Y ) : X ∈ V ⊂ H(CN), Y ∈ W ⊂ Sym(CN)},

where V can be any subspace of H(CN)—the set of all complex Hermitian N ×N matrices,
regarded as a real vector space, and W can be any subspace of Sym(CN)—the set of all
complex symmetric N ×N matrices, regarded as a complex vector space.

7The image in C of a vector in R
2, denoted by a bold letter, is represented by the same letter in normal

font.
8We do not use the standard notation Y ∗ to avoid confusion with our notation for the effective tensor.
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In order to identify L-relations we need to compute all Jordan A-multialgebras, where in
our new notation

A = {K(0, zIN) : z ∈ C}.
Using multiplication rule (3.2) we determine that a subspace ΠV,W is a JordanA-multialgebra
if and only if

Y 2 +XXT ∈ W, Y X +XY H ∈ V for all X ∈ V, Y ∈ W. (3.4)

In contrast with the 3D case, where all rotationally invariant Jordan A-multialgebras have
a simple characterization (see [17]), the set of solutions of (3.4) is unknown, in general. It
in not hard to verify that the necessary condition (2.17) is equivalent to

iX1X
T
2 X3 + (iX1X

T
2 X3)

H ∈ V, ∀{X1, X2, X3} ⊂ V, (3.5)

provided (3.4) holds as well.

3.2 L-relation that is not exact

In this section we present an example of the subspace ΠV,W that satisfies (3.4), but fails (3.5),
when N = 4. The case N = 4 is special because we can regard vectors in R

4 as quaternions
via (1.1).

T = R
4 ⊗ R

2 ∼= R
2 ⊗ R

4 ∼= R
4 ⊕ R

4 ∼= H
2. (3.6)

Explicitly, for x = (x1, x2) ∈ R
2, u ∈ R

4

u⊗ x ↔ x⊗ u ↔ (x1u, x2u) ↔ (x1u, x2u) ∈ H
2,

where u ∈ H corresponds to u ∈ R
4, via (1.1). The new representation (3.6) of T does not

replace the old one (3.1). Instead, both will be used.
The utility of the isomorphism (3.6) of 8-dimensional real vector spaces comes from the

multiplicative properties of quaternions. Using the identification (1.1) between H and R
4 we

first define an R-linear transformation Q : H → End(R4) by

Q(q)h = g, g = qh, {h, g} ⊂ R
4, {g, h, q} ⊂ H. (3.7)

It is easy to see that Q(q)Q(h) = Q(qh) and Q(q)T = Q(q). Next, we regard End(R4) as
a subset of EndC(C

4) by regarding real entries in 4 × 4 matrices in End(R4) as complex
numbers. Thus, every operator in End(R4) can be canonically viewed as an operator in
EndC(C

4). Applying this interpretation to operators Q(h) ∈ End(R4) and using the original
representation (3.1) of T as C4 (understood as a real vector space), we obtain the mapping
Q : H → EndC(C

4) ⊂ EndR(T ).
To describe our example, we take Π = ΠV,W , where

V = {iQ(q) : q ∈ H, ℜe(q) = 0} ⊂ H(C4), W = {aI4 : a ∈ C} ⊂ Sym(C4). (3.8)

Let us verify that Π is a Jordan A-multialgebra by checking (3.4). For X = iQ(q) and
Y = aI4 we compute

Y 2 +XXT = a2I4 + iQ(q)iQ(q) = a2I4 −Q(|q|2) = (a2 − |q|2)I4 ∈ W,
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Y X +XY H = aiQ(q) + aiQ(q) = 2iℜe(a)Q(q) ∈ V.

We also verify that (3.5) fails. For this purpose we take

X1 = iQ(i), X2 = iQ(j), X3 = iQ(k),

where i, j, k are the imaginary quaternionic units. We compute

iX1X
T
2 X3 = i(iQ(i)iQ(−j)iQ(k)) = i4Q(−ijk) = Q(1).

Thus,
iX1X

T
2 X3 + (iX1X

T
2 X3)

H = Q(2) 6∈ V.

In order to describe the submanifoldM determined by SO(2)-invariant JordanA-multialgebra
ΠV,W and L0 = I, given by (3.8) we use representation (3.6) of T . Then, the action of op-
erators K(X, Y ) = K(iQ(q), (a1 + ia2)I4) ∈ ΠV,W on T ∼= C

4 can also be described as the
action of 2× 2 quaternionic Hermitian matrices9

K(X, Y ) =

[
a1 a2 − q

a2 + q −a1

]
(3.9)

on T ∼= H
2. Observing that Γ0(n) = n ⊗ n ∈ H

2×2, where n ∈ R
2 is now interpreted as a

vector inH
2 both of whose components happen to be real, we can computeM, given by (2.13),

working only with 2×2 quaternionic matrices. The calculations are fairly straightforward and
entirely analogous to 2D conductivity [12, 13, 14], where Π = {K ∈ Sym(R2) : TrK = 0}
was shown to correspond the well-known Keller-Dykhne exact relation [22, 11]. In our case
of 2D “quaternionic materials”

M =

{
L =

[
λ h

h µ

]
: λ > 0, µ > 0, h ∈ H, detH(L) = λµ− |h|2 = 1

}
. (3.10)

Of course, detH(L) is set to 1 in (3.10) only for simplicity. It can be any positive constant.
The consequence of our theory of exact relations developed in Section 2 is the following

corollary.

Corollary 3.1. Let M be given by (3.10). Then, for every δ > 0 there exists a measurable
function L : [0, 1]2 → M, such that ‖L − I‖L∞ < δ and L

∗ 6∈ M. However, effective tensors
of all simple laminates made with any materials {L1, L2} ⊂ M, taken in any volume fraction
and arbitrary orientation of layers, belong to M.

Indeed, by construction of the manifold M and Theorem 2.12, the manifold M is not
G-closed. Then, the first statement in Corollary 3.1 is a consequence of Lemma 2.7 and
the fact that Wn (for any n and L0 = I) maps a small neighborhood of I ∈ M into a small
neighborhood of 0 ∈ Π. The second statement in Corollary 3.1 follows from Theorem 2.5.

9They are Hermitian because in (3.8) q must be purely imaginary and hence, a2 − q = a2 + q.
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For our purposes Corollary 3.1 needs to be augmented by a positive result, placing the
effective tensor L∗ into a submanifold M̃ that contains M but has only one more dimension
than M. This submanifold corresponds to the Jordan A-multialgebra

Π̃ =

{[
α q

q β

]
: {α, β} ⊂ R, q ∈ H

}
,

of which ΠV,W , given by (3.8), is a subspace in view of (3.9). It is easy to see that computation

of M̃ via (2.13) can proceed entirely in the framework of 2×2 quaternionic matrices resulting
in

M̃ =

{
L =

[
λ h

h µ

]
: λ > 0, µ > 0, h ∈ H, detH(L) > 0

}
. (3.11)

The fact that M̃ is an exact relation is a consequence of Theorem 2.9, where Π′ = H
2×2 is

the algebra of all 2× 2 quaternionic matrices. It is also an associative A-multialgebra, since
A ⊂ H

2×2. It only remains to notice that Π̃ = Π′ ∩ Sym(T ).

4 Homogenization, rank-one convexity and quasicon-

vexity

We are finally ready to construct examples of rank-one convex, non-quasiconvex functions, of
which (1.4) will be a member. We recall the well-known connection between rank-one convex
functions and L-closed sets, and quasiconvex functions and G-closed sets [40, Sections 31.4–
5]. In the context of multifield materials considered in Section 3 these results (or rather
those results that we need) are summarized in the following theorem.

Theorem 4.1. In the context of multifield materials of Section 3, let U ⊂ Sym+(T ) be a
compact subset. For any e ∈ T = R

N ⊗ R
d we define

W (e) = min
L∈U

1

2
(Le, e)T .

(i) If U is L-closed then W (e) is rank-one convex.

(ii) In general 10

QW (e) = min
L∈G(U)

1

2
(Le, e)T , (4.1)

where QW (e) is the quasiconvex envelope of W (e) [7], and G(U) is the G-closure of
U .

10This statement follows from the variational principle for the energy of a periodic composite: (L∗e, e)T =
minφ〈(L(x)(∇φ + e),∇φ + e)T 〉, where the minimum is taken over [0, 1]d-periodic vector fields φ ∈
W 1,2([0, 1]d;RN ).
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In Section 3.2 we have constructed the set M, given by (3.10) that is L-closed, but not
G-closed. We cannot apply Theorem 4.1 to M directly, because M is noncompact. However,
recall that the sets

Bγ =
{
L ∈ Sym+(T ) : γI ≤ L ≤ γ−1

I
}
, γ ∈ (0, 1)

are G-closed11 [43]. Thus, the sets

Mγ = M ∩ Bγ, γ ∈ (0, 1)

are L-closed, but not G-closed (due to Corollary 3.1), while the sets

M̃γ = M̃ ∩ Bγ, γ ∈ (0, 1)

are G-closed.
To produce our example we will use the “doubling trick” of Milton, where L ∈ Sym+(T )

acts on T ⊕ T , via

T ⊕ T ∋ (e1, e2) 7→ D(L)(e1, e2) = (Le1, Le2) ∈ T ⊕ T . (4.2)

The key observation is that “doubling” commutes with homogenization: D(L)∗ = D(L∗) for
any periodic composite with local tensor L(x). Hence, instead of T ∼= H

2 we work with
T ⊕ T ∼= H

2×2, where the pair (e1, e2) ∈ T ⊕ T ∼= H
2 ⊕ H

2 is identified with the 2 × 2
quaternionic matrix [e1, e2] ∈ H

2×2, whose columns are vectors e1 and e2. In particular, for
E = [e1, e2] ∈ H

2×2 we define12

Φγ(E) =
1

2
min
L∈Mγ

(D(L)(e1, e2), (e1, e2))T ⊕T =
1

2
min
L∈Mγ

{(Le1, e1)T + (Le2, e2)T }.

We can rewrite Φγ(E) in terms of the quaternion-valued inner product (·, ·)H2 , defined in
(1.2):

Φγ(E) =
1

2
min
L∈Mγ

ℜe{(Le1, e1)H2 + (Le2, e2)H2},

which, in turn, allows us to represent Φγ(E) in terms of products of 2 × 2 quaternionic
matrices:

Φγ(E) =
1

2
min
L∈Mγ

ℜeTr H(LEEH), γ > 0, (4.3)

where Tr H(X) denotes the sum of the two quaternions on the main diagonal of a 2 × 2
quaternionic matrix X. The Hermitian conjugate EH is defined in the usual way, except
complex conjugation is replaced with quaternionic conjugation (1.3).

Each column of E is an element of T —the space of field values of 4-tuples of curl-free
fields (∇φ1, . . . ,∇φ4). If we regard vector u = (φ1, φ2, φ3, φ4) as a quaternion u, then in

11Due to symmetry of operators in Bγ we can also write that Bγ =
{
L : L ≥ γI, L

−1 ≥ γI
}
∩ Sym+(T ),

representing Bγ as an intersection of two G-closed sets.
12The inner product on a direct sum V ⊕ W of inner product spaces is canonically defined by

((v,w), (v′,w′))V⊕W = (v,v′)V + (w,w′)W .
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representation (3.6) ∇u ∈ T is identified with (ux, uy) ∈ H
2, where subscripts indicate

partial derivatives. Using another H-valued function v(x, y) to generate the second copy of
T we obtain the underlying interpretation of the 2× 2 quaternionic matrix E:

E =

[
ux vx

uy vy

]
∈ H

2×2 = (∇f)T , (4.4)

where f(x, y) = (u(x, y), v(x, y)) ∈ H
2.

Theorem 4.2. For every γ ∈ (0, 1) functions Φγ(E) are rank-one convex, but not quasi-
convex, where E is interpreted via (4.4). Specifically, QΦγ(I2) < Φγ(I2).

Rank-one convexity of Φγ follows from Theorem 4.1(i). In order to prove that these
functions are not quasiconvex we will use part (ii) of Theorem 4.1, which requires more

information about geometry of G(Mγ) beyond the facts that G(Mγ) 6⊂ M and G(Mγ) ⊂ M̃γ.
We will organize the proof of non-quasiconvexity of functions Φγ into a sequence of lemmas.

The key result here is the following analog of Mendelson’s duality link [32].

Lemma 4.3. Let L ∈ L∞([0, 1]2,M). Let L̃(x) = L(x), be the tensor, whose components are
quaternionic conjugates of the corresponding components of L(x). Then

(L̃)∗ =
L∗

detH(L∗)
, (4.5)

where detH is defined in (3.10). In particular,

detH(L
∗) detH((L̃)

∗) = 1. (4.6)

Proof. Suppose that the [0, 1]2-periodic fields e, j ∈ L2([0, 1]2; T ) solve the periodic cell
problem

j(x) = L(x)e(x), ∇ · j = 0, ∇× e = 0, 〈e〉 = e0, (4.7)

where 〈·〉 denotes the average over the period cell. Then 〈j〉 = L
∗e0. Let

R⊥ =

[
0 −1

1 0

]
∈ H

2×2.

Then e′ = R⊥j is a curl-free field and j ′ = R⊥e is divergence-free. Thus, e′(x) and j ′(x)
also solve the cell problem (4.7), where L(x) is replaced with

L̃(x) = R⊥L(x)
−1
R
−1
⊥ =

L(x)

detH L(x)
(4.8)

and e0 with
e′
0 = R⊥〈j〉 = R⊥L

∗e0
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Computing 〈j ′〉 = R⊥e0 we conclude that

(L̃)∗R⊥L
∗e0 = R⊥e0.

Since, e0 ∈ H
2 is arbitrary we conclude that

(L̃)∗ = R⊥(L
∗)−1

R
−1
⊥ =

L∗

detH L
∗ .

It remains to observe that if L(x) ∈ M then L̃(x), given by (4.8) is equal to L(x), and the
lemma is proved.

Lemma 4.4. For every γ ∈ (0, 1) there are tensors {L+, L−} ⊂ G(Mγ) ⊂ M̃γ such that
detH L+ > 1 and detH L− < 1.

Proof. Observing that for every γ ∈ (0, 1) the sets Bγ contain I in their interior, we apply
Corollary 3.1 and conclude that there exists a measurable function L ∈ L∞([0, 1]2;Mγ), such

that L
∗ 6∈ M. By construction, L

∗ ∈ G(Mγ) ⊂ M̃. Hence, detH L
∗ 6= 1. Observe that

L̃ = L ∈ L∞([0, 1]2;Mγ). But then (L̃)∗ ∈ G(Mγ) ⊂ M̃. By Lemma 4.3

detH(L̃)
∗ =

1

detH L
∗ .

Thus, if detH L
∗ < 1, then detH(L̃)

∗ > 1, and if detH L
∗ > 1, then detH(L̃)

∗ < 1. The lemma
is proved.

Lemma 4.5. For every γ ∈ (0, 1) there exists δ > 0 such that {(1 + δ)I, (1− δ)I} ⊂ G(Mγ).

Proof. Let {L+, L−} ⊂ G(Mγ) be as in Lemma 4.4. Let n0 be a fixed unit vector and

K± = Wn0
(L±). Then {K+,K−} ⊂ Π̃ \ Π. In particular, it is easy to verify that Tr HK+ > 0

and Tr HK− < 0. Next, we note that the set Wn0
(G(Mγ)) is convex, and contains Wn0

(Mγ),

which is a neighborhood of 0 in Π = {K ∈ Π̃ : Tr HK = 0}. It also contains K±. It is clear

that the convex hull of K+, K− and Wn0
(Mγ) contains a neighborhood of 0 in Π̃. But then

G(Mγ) must contain a neighborhood of I in M̃. The statement of the lemma follows.

Proof of Theorem 4.2. To prove Theorem 4.2 we are going to show that QΦγ(I2) < Φγ(I2)
for every γ ∈ (0, 1). Indeed, observing that I ∈ Mγ for every γ ∈ (0, 1), we have

1

2
inf
L∈M

Tr HL ≤ 1

2
inf

L∈Mγ

Tr HL = Φγ(I2) ≤ 1.

It only remains to observe that
1

2
inf
L∈M

Tr HL = 1

and is achieved at L = I. We can now use Theorem 4.1(ii) and obtain

QΦγ(I2) =
1

2
min

L∈G(Mγ)
Tr HL ≤ 1− δ < 1 = Φγ(I2),

where we have used the fact that L = (1− δ)I ∈ G(Mγ), according to Lemma 4.5.
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We observe that the sets Mγ become larger when γ is decreasing. Therefore Φγ1(E) ≤
Φγ2(E), when γ1 < γ2. Then

Φ0(E) = lim
γ→0

Φγ(E) = inf
γ∈(0,1)

Φγ(E) =
1

2
inf
L∈M

ℜeTr H(LEEH). (4.9)

Thus,
QΦ0(I2) ≤ QΦγ(I2) < Φγ(I2) = 1 = Φ0(I2).

This shows that the function Φ0(E) defined by (4.9) is not quasiconvex at E = I2. However,
it must be rank-one convex as a limit of rank-one convex functions. To conclude, it only
remains to compute the explicit form of functions Φγ(E), γ ∈ [0, 1). It will be convenient to
give the answer in terms of the components of

EEH =

[
α1 q

q α2

]
.

Lemma 4.6.

Φ0(E) =
√
detH(EEH) =

√
α1α2 − |q|2, (4.10)

Φγ(E) =





√
α1α2 − |q|2, if α1α2 − |q|2 ≥

(
α1+α2

2J+(γ)

)2
,

J+(γ)
α1 + α2

2
− J−(γ)

√
|q|2 +

(
α1−α2

2

)2
, otherwise,

(4.11)

where

J±(γ) =
1

2

(
1

γ
± γ

)
, γ ∈ (0, 1). (4.12)

Proof. We first observe that

Mγ =

{[
λ h

h µ

]
: λµ− |h|2 = 1, λ > 0, µ > 0, λ+ µ ≤ 2J+(γ)

}
,

where J+(γ) is the Joukowski function defined in (4.12). If

L =

[
λ h

h µ

]
, EEH =

[
α1 q

q α2

]
,

then
ℜeTr (LEEH) = λα1 + µα2 + 2ℜe(hq). (4.13)

If we fix λ > 0 and µ > 0, so that λ + µ ≤ 2J+(γ), then L ∈ Mγ for any h ∈ H for
which |h| =

√
λµ− 1. Observing that ℜe(hq) is just a dot product of corresponding vectors

{h, q} ⊂ R
4 and |h| is just the length of the vector h, we can minimize ℜe(hq) over all

directions of h, obtaining the formula

2Φγ(E) = min
0<λ+µ≤2J+(γ)

λµ≥1

{λα1 + µα2 − 2
√

λµ− 1|q|},
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The minimum is achieved at a critical point

λ∗ =
α2√

α1α2 − |q|2
, µ∗ =

α1√
α1α2 − |q|2

, (4.14)

when λ∗ + µ∗ < 2J+(γ), or equivalently, when

|q|2 ≤ α1α2 −
(
α1 + α2

2J+(γ)

)2

. (4.15)

Otherwise, the minimum is achieved on the line λ+ µ = 2J+(γ) at

λ = J+(γ)−
J−(γ)(α1 − α2)√
4|q|2 + (α1 − α2)2

, µ = J+(γ) +
J−(γ)(α1 − α2)√
4|q|2 + (α1 − α2)2

Substituting these values into (4.13) we obtain (4.11).

In order to connect (4.10) with (1.4) we use formula (4.4) and compute

EEH =

[
‖fx‖2H2 (fx,fy)H2

(fx,fy)H2 ‖fy‖2H2

]
, Φ0(E) =

√
detH((∇f)T∇f).
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A The equation for the effective tensor of a periodic

composite

In this section we are going to give a rigorous derivation of (2.6) starting with the periodic
cell problem. In order to formulate a general version of the cell problem we recall [38] that
the linear differential constraints satisfied by the [0, 1]d-periodic fields E and J are described
in terms of their Fourier coefficients

Ê(k) =

∫

[0,1]d
E(x)e−2πix·kdx, Ĵ(k) =

∫

[0,1]d
J(x)e−2πix·kdx, k ∈ Z

d. (A.1)

Namely,
E ∈ Eper ⊕ U , J ∈ Eper ⊕ U ,

where U is the space of uniform (constant) vector fields in L2
per([0, 1]

d; T ) and

Eper =
{
E ∈ L2

per([0, 1]
d; T ) : Ê(0) = 0, Ê(k) ∈ E k

|k|
⊗ C, k 6= 0

}
, (A.2)

Jper =
{
J ∈ L2

per([0, 1]
d; T ) : Ĵ(0) = 0, Ĵ(k) ∈ J k

|k|
⊗ C, k 6= 0

}
. (A.3)
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The subspaces En and Jn of T are required to satisfy (2.3). For example, En and Jn for
conductivity and elasticity are given in (2.1) and (2.2), respectively.

We also have a corresponding orthogonal decomposition of L2
per([0, 1]

d; T ):

L2
per([0, 1]

d; T ) = Eper ⊕ Jper ⊕ U .

Let the tensor of material properties in the period cell L ∈ L∞
per([0, 1]

d; Sym(T )) be strictly,
uniformly positive definite, i.e satisfy

(L(x)e, e)T ≥ α0‖e‖2T , ∀ x ∈ [0, 1]d. (A.4)

Lax-Milgram lemma guarantees that the periodic cell problem

E ∈ Eper ⊕ U , J(x) = L(x)E(x), J ∈ Jper ⊕ U , 〈E〉 = e0 (A.5)

has a unique solution for every given e0 ∈ T . Then the effective tensor L∗ is defined by its
action on e0 via

L
∗e0 = 〈LE〉, (A.6)

where 〈·〉 denotes the average over the period cell. It is well-known that the effective tensor
L
∗, defined by (A.6) is symmetric and positive definite. However, for our purposes we will

need formula (2.6) for L∗. Before we prove (2.6) we show that the W-transformation is always
well-defined on Sym+(T ).

Lemma A.1. Let L0 ∈ Sym+(T ). Then, for every unit vector n the operators

M = I− (L0 − L)Γ0(n) = I− Γ′(n) + LL
−1
0 Γ′(n) (A.7)

are invertible for every L ∈ Sym+(T ). In addition, {Γ0(n),Wn(L)} ⊂ Sym(T ).

Proof. We note that T = L0En ⊕ Jn, since the dim(L0En) = dim En and L0En ∩ Jn = {0}.
Indeed, if j = L0e ∈ Jn for some e ∈ En, then (L0e, e)T = (j, e)T = 0. Thus, e = 0, since
L0 ∈ Sym+(T ).

Now, let t ∈ T be such that Mt = 0. We write t = L0e + j, where e ∈ En and j ∈ Jn.
Then 0 = Mt = Le + j. Taking the inner product with e we obtain (Le, e)T = 0, so that
e = 0, since L ∈ Sym+(T ). Thus, t = 0 and, hence, the matrix M must be invertible.

To prove that Γ0(n) is symmetric we write for any u1,u2 ⊂ T

u1 = j1 + L0e1, u2 = j2 + L0e2, {e1, e2} ⊂ En, {j1, j2} ⊂ Jn.

Then Γ0(n)u1 = e1, Γ0(n)u2 = e2, so that

(Γ0(n)u1,u2)T = (e1,u2)T = (e1, L0e2)T = (L0e1, e2)T = (u1,Γ0(n)u2)T .

Finally, the symmetry of Wn(L) follows from the symmetry of Γ0(n) and the formula

Wn(L) = [I+ (L− L0)Γ0(n)]
−1 (L− L0) =

[
(L− L0)

−1 + Γ0(n)
]−1

that holds on a dense subset of Sym+(T ).
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In fact, we can say more about the transformation Wn.

Lemma A.2. For any n ∈ S
d−1 and L0 ∈ Sym+(T ), the map Wn is a diffeomorphism from

Sym+(T ) onto its image.

Proof. Let us first show that Wn is a local diffeomorphism in the vicinity of any L ∈
Sym+(T ). This follows from the inverse function theorem and the explicit calculation of
the differential of Wn(L). Using the first representation of Wn(L) from (2.5) we compute,
for any ξ ∈ Sym(T ),

dWn(L)ξ = [I+ (L− L0)Γ0(n)]
−1 ξ(I− Γ0(n)Wn(L)).

Then, using the second representation of Wn(L) from (2.5) we obtain

dWn(L)ξ = [I+ (L− L0)Γ0(n)]
−1 ξ [I+ Γ0(n)(L− L0)]

−1 .

Lemma A.1 then implies that dWn(L) is an isomorphism on Sym(T ) for any L ∈ Sym+(T ).
To prove the lemma it only remains to show that Wn is a bijection onto its image. Indeed,
if {L, L′} ⊂ Sym+(T ) and Wn(L) = Wn(L

′), then, using both representations of Wn in (2.5),
we obtain

[I+ (L− L0)Γ0(n)]
−1 (L− L0) = (L′ − L0) [I+ Γ0(n)(L

′ − L0)]
−1

.

Multiplying this equality on the right and on the left by I+Γ0(n)(L
′−L0) and I+(L−L0)Γ0(n),

respectively, we obtain L = L
′.

We next prove that the operator inverse in (2.6) always exists.

Lemma A.3. Let K be a compact subset of Sym+(T ). Suppose L(x) ∈ K for every x ∈ [0, 1]d.
Then the operator T = I−ΛnWn(L) is invertible on L2

per([0, 1]
d; T ). Here Wn(L) is understood

as the multiplication operator L2
per([0, 1]

d; T ) ∋ u 7→ Wn(L(x))u(x).

Proof. By our assumptions and Lemma A.1 the operator T is bounded. It remains to prove
that for every f ∈ L2

per([0, 1]
d; T ) there exists unique u ∈ L2

per([0, 1]
d; T ), such that Tu = f .

Then, by the Banach invertibility theorem this would imply that T−1 is a bounded operator
on L2

per([0, 1]
d; T ). Let Γ0 = L

−1
0 Γ′, where Γ′ is the projection onto L0Eper along Jper ⊕ U .

Explicitly,

Γ̂0h(k) =

{
Γ0

(
k

|k|

)
ĥ(k), k ∈ Z

d \ {0}
0, k = 0,

(A.8)

Observe that, according to (2.7), operators Λn can be expressed in terms of Γ0:

Λnh = Γ0(n)h− Γ0(n)〈h〉 − Γ0h, ∀h ∈ L2
per([0, 1]

d; T ). (A.9)

Using formulas (A.9) and (2.5) and for Λn and Wn, respectively, we can rewrite equation
Tu = f as

Γ0(Wn(L)u) = f − Γ0(n)〈Wn(L)u〉 − (I+ Γ0(n)(L− L0))
−1u. (A.10)
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If equation (A.10) is satisfied then the right-hand side of (A.10) must belong to Eper. Denoting
it by e and the uniform field Γ0(n)〈Wn(L)u〉 by e0, we obtain the relation between u and e

u = (I+ Γ0(n)(L− L0))(f − e− e0). (A.11)

Next, multiplying equation (A.10) on the left by L0 we obtain

Γ′(Wn(L)u) = L0(f − e0)− L0(I+ Γ0(n)(L− L0))
−1u

Thus,
Wn(L)u− L0(f − e0) + L0(I+ Γ0(n)(L− L0))

−1u ∈ Jper ⊕ U . (A.12)

Equation (A.12), together with e ∈ Eper is equivalent to (A.10).
Denoting the orthogonal projection onto Eper by Γper and applying it to (A.12), we obtain

an equivalent form of (A.12):

Γper(L(I+ Γ0(n)(L− L0))
−1u) = Γper(L0f). (A.13)

Eliminating u, using (A.11) we rewrite (A.13) as

Γper(L(e+ e0)) = Γper((L− L0)f), e ∈ Eper. (A.14)

Equation (A.14), together with definition (A.11) of e, and

e0 = Γ0(n)〈Wn(L)u〉, (A.15)

is equivalent to (A.10).
We note that by analogy with the cell problem (A.5) the Lax-Milgram lemma guarantees

that the operator Eper ∋ e 7→ Γper(Le) ∈ Eper is invertible on Eper. Hence, the solution e of
(A.14) can be represented as e+ e0 = ẽ+E, where ẽ ∈ Eper is the unique solution of

Γper(Lẽ) = Γper((L− L0)f), (A.16)

while E ∈ Eper ⊕ U is the unique solution of the periodic cell problem (A.5), which can be
written as

Γper(LE) = 0, 〈E〉 = e0, E ∈ Eper ⊕ U . (A.17)

It only remains to find an explicit formula for e0 ∈ T in terms of f .
In order to determine e0 we use (A.11) to compute

Wn(L)u = (L− L0)(f − e− e0). (A.18)

Averaging (A.18) over the period cell, multiplying by Γ0(n), and using (A.15) we obtain

e0 = Γ0(n)〈(L− L0)(f − e− e0)〉.

Replacing e+ e0 with ẽ+E we obtain

e0 = Γ0(n)〈(L− L0)(f − ẽ)〉 − Γ0(n)(L
∗ − L0)e0,
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where we took into account that E solves (A.5). This gives

e0 = (I+ Γ0(n)(L
∗ − L0))

−1Γ0(n)〈(L− L0)(f − ẽ)〉. (A.19)

We have now established uniqueness, by showing that if u solves Tu = f , then it has to be
given by

u = (I+ Γ0(n)(L− L0))(f − ẽ+E), (A.20)

where ẽ is the unique solution of (A.16) and E is the unique solution of (A.17), where e0

is given by (A.19). Existence follows by tracing our calculations back and showing that if
u(x) is defined by (A.20), then it must also satisfy (A.10). The lemma is proved now.

Formula (2.6) is now easily obtained by choosing f = f0 ∈ U , in which case

〈(L− L0)(f0 − ẽ)〉 = (L∗ − L0)f0,

and hence (A.19) results in

e0 = f0 − (I+ Γ0(n)(L
∗ − L0))

−1f0. (A.21)

Now, taking the average of (A.18) and replacing u with T−1f0, we obtain

〈Wn(L)T
−1f0〉 = (L∗ − L0)(f0 − e0) = Wn(L

∗)f0, (A.22)

where we used (A.21) to eliminate e0. Thus, formula (2.6) is established. We comment
that (2.6) represents a slight abuse of notation. What is meant by (2.6) is (A.22), where on
the left-hand side f0 ∈ U is understood as a uniform field in L2

per([0, 1]
d; T ), while on the

right-hand side f0 is understood as a vector in T .

B A direct proof of rank-one convexity of (1.4)

In this section we will present a direct proof of rank-one convexity of

W (F ) =
√
detH(F̄ F T ) = V (F T ), V (E) =

√
detH(EEH).

The idea of the proof is based on the large group of symmetries of W (F ). One symmetry
subgroup was built-in by the construction:

W (FR) = W (F ), ∀R ∈ SO(2).

The other is intimately linked with quaternionic algebra:

V (EQ) = V (E), ∀Q ∈ H
2×2, QQH = I2. (B.23)

Both symmetries leave invariant the set of matrices E = n ⊗ u, n ∈ R
2, u ∈ H

2, corre-
sponding to rank-one 8 × 2 matrices F . It follows that it is sufficient to prove that φ(ǫ) is
locally convex near ǫ = 0 for every E ∈ H

2×2, where φ(ǫ) = V (E + ǫe1 ⊗ e1). Here the
left e1 in e1 ⊗ e1 is (1, 0) ∈ S

2, while the right e1 is (1, 0) ∈ H
2. This observation follows
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from the homogeneity of W (F ) and the fact that any u ∈ H
2 can be mapped13 to |u|e1 by

a transformation Q, satisfying QQH = I2. (As well as the fact that any unit vector n ∈ R
2

can be mapped into e1 ∈ S
2 by R ∈ SO(2).) For points E, for which V (E) 6= 0 it is not

difficult to calculate φ′′(0).

V (E + ǫe1 ⊗ e1)
2 = (|E21|2 + |E22|2)(|E12|2 + |E11 + ǫ|2)− |E12E22 + E11E21 + ǫE21|2

Hence,

φ(ǫ) =

√
detH(EEH) + 2ǫℜe(|E22|2E11 − E12E22E21) + ǫ2|E22|2. (B.24)

It is now easy to compute

φ′′(0) = V (E)−3
(
detH(EEH)|E22|2 −

[
|E22|2ℜe(E11)−ℜe(E12E22E21)

]2)
,

provided V (E) 6= 0. Expanding detH(EEH) we conclude that the inequality φ′′(0) ≥ 0 is
equivalent to the inequality Q(E) ≥ 0, where

Q(E) = |E22|2(|E11|2|E22|2+|E12|2|E21|2−2ℜe(E11E21E22E12))−
[
ℜe((E11E22 − E21E12)E22)

]2
.

We observe that Q(E) is quadratic with respect to E11. Minimizing Q(E) over E11 ∈ H we
conclude that Q(E) does not depend on the real part of E11 and is minimized at

E11 =
Im(E12E22E21)

|E22|2
,

where in contrast to complex numbers we define Im(q) = q−ℜe(q). It is a simple calculation
to verify that Q(E) = 0 at the minimizer. This conclusion holds, provided E22 6= 0. If
E22 = 0, then Q(E) = 0. To finish the proof of rank-one convexity we need to examine the
remaining case V (E) = 0. In this case it is not hard to show that φ(ǫ) = |ǫ||E22|, which
is convex. Indeed, in this case one of the equations in (1.5) must hold, which implies that
ℜe(|E22|2E11 − E12E22E21) = 0. But then, formula (B.24) becomes φ(ǫ) = |ǫ||E22|. The
rank-one convexity of W (F ) is now proved.
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