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Abstract

In 1957 Chandler Davis proved a theorem that a rotationally invariant function on
symmetric matrices is convex if and only if it is convex on the diagonal matrices. We
generalize this result to groups acting nonlinearly on convex subsets of arbitrary vector
spaces thereby understanding the abstract mechanism behind the classical theorem.
We apply the new theorem to a problem from the mathematical theory of composite
materials and derive its corollaries in the Lie algebra setting. Using the latter, we show
that the Pfaffian is log-concave.

1 Introduction

The classical theorem of Chandler Davis [4] says that a rotationally invariant function on
symmetric matrices is convex if and only if it is convex on the diagonal matrices. In this
paper we uncover a simple abstract mechanism behind this classical theorem. A motivation
for the present work comes from applied mathematics. In a problem from the mathematical
theory of composite materials it was important to understand how to construct smallest
convex and rotationally invariant sets containing a given set [17, Chapter 30]. The new
twist was that the action of the rotation group and convexity happen in different coordinate
systems. Equivalently, we may consider a problem in a single coordinate system but with a
non-linear group action. The combination of convexity and rotational invariance drew us to
Davis’s theorem, since it seemed to be the only result of that nature. (We are aware of Atiyah-
Guillemin-Sternberg theorem [1, 10], but we do not know if there is any relation of their result
to ours. In particular we do not know if there is a symplectic structure hiding somewhere
in our general construction of Section 2, or at least in the construction of Section 3.) Our
composite materials example, discussed in detail in Section 3, serves two purposes. One is
to illustrate our main theorem (Theorem 1 below). The other is to attract attention of a
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wider mathematical audience to a problem that is of central importance in the mathematical
theory of composite materials and at the same time may have a wider appeal.

In this paper we generalize Davis’s theorem to a broader context that includes, most
notably, arbitrary groups, non-linear group actions and infinite dimensional spaces. In Davis’s
original proof it was important that the rotations act linearly on matrices. Our approach is
more general and completely different from the Davis’s original proof or from other proofs
that have appeared up to now. Our results are new even for the linear group action.

All prior generalizations of the Davis’s convexity theorem are for finite dimensional rep-
resentations of Lie groups. They follow from our Theorems 1 and 2 often by way of The-
orems 7–9 below. Theorems 7–9 can be thought of as generalizations of the von Neumann
theorem [20] that among symmetric matrices A with the same set of eigenvalues the one that
minimizes Tr (AB) should be simultaneously diagonalizable with B. Lewis [12] invented his
“normal decomposition systems” in order to abstract from von Neumann’s result what was
essential for the proof of Davis’s convexity theorem. Our Theorems 1 and 2 are a next step
in the abstraction process. In particular our condition (2) below is always satisfied in the
framework of Lewis’s “normal decomposition systems” for linear group actions.

A Lie-algebraic generalization of Davis’s convexity theorem was first obtained by Lewis
[13], who used Kostant’s convexity theorem [11] in order to prove that there is a normal
decomposition system. Similarly, Kostant’s convexity theorem can be used to show that our
condition (2) is satisfied, as we show after the proof of Theorem 2. We realized, however, that
we do not really need the full strength of Kostant’s convexity theorem in order to achieve
our goal. In its place we can use much more general statements from Theorems 7–9. We
therefore, extend and simplify Lewis’s theorem without appealing to Kostant’s result. We
use our technique to prove that the Pfaffian is log-concave.

2 Generalized convexity theorem of Chandler Davis

Let C be a convex subset of a vector space V (which can be infinite dimensional). Let G be
a group acting on C. For each x ∈ C we denote Ox = {gx | g ∈ G} the orbit of x under the
group action.

Definition 1 A convex subset T of C is called a transversal if T meets every orbit

∀x ∈ C OT
x ≡ T ∩Ox 6= ∅.

Notice that our definition of a transversal differs from the usual ones. For notational conve-
nience we also define

GT
x = {g ∈ G : gx ∈ T}.

From the definition of the transversal we get that GT
x 6= ∅ for any x ∈ C.

Definition 2 A function f : C → R is called G-invariant if

∀x ∈ C ∀g ∈ G f(gx) = f(x).
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We denote V ′ the space of linear functionals on V (we cannot talk about continuous linear
functionals because we did not introduce any topology on V ). Let T ∗ be any subset of V ′. We
define a set of “(T, T ∗)-regular” convex functions on T by analogy with the classical theory
of convex duality on locally convex topological vector spaces.

Definition 3 Let

Γ(T, T ∗) = {f(x) = sup
y∈T ∗

(y(x) − α(y)) | α : T ∗ → R ∪ {+∞}}

be the set of convex functions on T that are suprema of affine functions with slopes in T ∗.
Both functions f and α are allowed to take on the value +∞. The only restriction is that
α cannot be identically equal to +∞ on T ∗. Functions in Γ(T, T ∗) will be called convex and
(T, T ∗)-regular.

For example, if T = V is a locally convex topological vector space and T ∗ = V ∗—the set
of all continuous linear functionals on V , then Γ(V, V ∗) consists of all convex and lower
semi-continuous (l.s.c.) functionals on V . More generally, if T ∗ is a subspace of V ∗ and T ∗

separates points of T then Γ(T, T ∗) consists of all convex and l.s.c. functionals on T . In the
most important case of a finite dimensional vector space V , the set Γ(T, T ∗) is the set of all
convex and l.s.c. functions on T (these functions may take the value +∞) whose subgradients
belong to T ∗. If T ∗ is convex, then it is enough that gradients, where they exist, belong to
T ∗.

Definition 4 We say that a subset U of T is G-invariant if GU ∩ T = U . We say that a
function f on T is G-invariant if it is constant on the sets OT

x for each x ∈ T .

Definition 5 For a subset U of T define L(U) to be the smallest convex, G-invariant (in the
sense of Definition 4) subset of T that contains U . For x ∈ T define L(x) = L({x}).

Now we define the key function, whose convexity properties determine the validity of the
generalized Davis convexity theorem. Let

ψy(x) = sup
z∈L(x)

y(z), x ∈ T, y ∈ V ′. (1)

The function ψy(x) is G-invariant on T in the sense of Definition 4. Therefore, there is a

unique G-invariant extension ψ̂y(x) from T to C.

Theorem 1 Let G be a group acting (possibly nonlinearly) on a convex subset C of a vector
space V . Let T be a transversal in the sense of Definition 1 and T ∗ be an arbitrary subset
of V ′. Assume that ψ̂y(x) is convex on C for any y ∈ T ∗. Then a G-invariant function
F : C → R ∪ {+∞} is convex on C if its restriction to T is convex and (T, T ∗)-regular.
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Proof: Let F : C → R ∪ {+∞} be G-invariant. Let f denote its restriction to T . By
assumption f ∈ Γ(T, T ∗). So, by Definition 3

f(x) = sup
y∈T ∗

{y(x) − α(y)}

for some function α : T ∗ → R ∪ {+∞}. Fix x0 ∈ T and consider the set

Fx0
= {x ∈ T : f(x) ≤ f(x0)}.

The set Fx0
is convex, G-invariant in the sense of Definition 4, and contains x0. Therefore,

L(x0) ⊂ Fx0
. It follows that

f(x0) ≤ sup
x∈L(x0)

f(x) ≤ sup
x∈Fx0

f(x) = f(x0).

Therefore we have equality everywhere in the chain of inequalities above. In particular,

f(x0) = sup
x∈L(x0)

f(x) = sup
x∈L(x0)

sup
y∈T ∗

{y(x) − α(y)} = sup
y∈T ∗

{ψy(x0) − α(y)}.

Since, x0 ∈ T was arbitrary, we obtain that for all x ∈ C

F (x) = sup
y∈T ∗

{ψ̂y(x) − α(y)}.

By our assumption, ψ̂y(x) is convex on C for all y ∈ T ∗. We conclude that F (x) is convex as
a supremum of convex functions.

In order to use the theorem one has to pick T first, observing that T has to contain the convex
hull of all fixed points of the G-action. Then one has to compute the function ψy(x) for all
y ∈ V ′. To this end one might need to compute L(x) first, which in itself can be a non-trivial
task.

Next, one has to determine the subset T ∗ of V ′ for which the function ψ̂y(x) is convex
on C. Verification of convexity might also present technical problems in practice. Finally,
once T ∗ is known, one needs to prove that the restriction to T of one’s favorite G-invariant
function is in Γ(T, T ∗).

Our next theorem allows one to avoid the labor-intensive convexity check in special cir-
cumstances when the group action is linear.

Theorem 2 Assume that the group action is linear. In addition assume that

sup
z∈OT

x

y(z) = sup
z∈Ox

y(z), ∀y ∈ T ∗ (2)

for all x ∈ C. Then
ψ̂y(x) = sup

g∈G
y(gx).

Therefore, ψ̂y(x) is convex as a supremum of linear functions.
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Condition (2) is related to Lewis’s so called “normal decomposition system” [12] but is more
general in the sense that condition (2) is always satisfied whenever there is a normal decom-
position system. (See [12, 13] for a broad discussion of convexity and group invariance in the
case of finite dimensional representations of compact Lie groups.)

Proof: We begin by observing that for any x ∈ T

conv(OT
x ) ⊂ L(x) ⊂ conv(Ox) ∩ T.

Since L(x) is G-invariant in the sense of Definition 4, it follows that OT
x ⊂ L(x). Since L(x) is

also convex, we get that conv(OT
x ) ⊂ L(x). The remaining inclusion follows from the fact that

conv(Ox)∩ T is a convex, G-invariant (for linear group actions only!) subset of T containing
x. We therefore, have the corresponding inequalities:

sup
z∈conv(OT

x )

y(z) ≤ ψy(x) ≤ sup
z∈conv(Ox)∩T

y(z) ≤ sup
z∈conv(Ox)

y(z).

Next, observe that suprema of linear functions over sets and their convex hulls are the same.
Therefore, we get the inequality

sup
z∈OT

x

y(z) ≤ ψy(x) ≤ sup
z∈Ox

y(z).

Our assumption (2) turns the last inequalities into equalities, proving that for any x ∈ C we

have ψ̂y(x) = supg∈G y(gx).

To illustrate Theorem 2, take V = C = R
d, G = SO(Rd). Let T be a coordinate axis, and

let T ∗ be the set of linear functionals on R
d obtained by taking inner products with vectors

in T . Then the G-orbits are spheres and the restriction of a linear functional y ∈ T ∗ to Ox

is maximum or minimum when the orbit intersects T . Thus condition (2) is satisfied and
we conclude that a radial lower-semicontinuous function F on R

d is convex if and only if its
restriction to any axis is convex.

We remark that sometimes one can even avoid having to check condition (2) in the context
of adjoint action on reductive Lie algebras by applying our Theorems 7–9. We discuss this
in more detail in Section 4. Our condition (2) is also a simple consequence of Kostant’s
convexity theorem [11]. If V is a Lie algebra of a semi-simple Lie group acting on V by the
adjoint action and the transversal T is a Cartan subalgebra, then OT

x is a discrete set of points
permuted by the action of the Weyl group. The set T ∗ here is identified with T under any
G-invariant inner product on V . Kostant’s theorem [11] says that the orthogonal projection
of Ox onto T coincides with the convex hull of OT

x . Under these circumstances, if y ∈ T then
(y, x) = (y, πx), where (y, x) denotes the G-invariant inner product of y and x and π denotes
the orthogonal projection of x onto T . By Kostant’s theorem πx ∈ conv(OT

x ), so there exist
non-negative numbers λξ that add up to 1 such that

πx =
∑

ξ∈OT
x

λξξ.
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Thus,

(y, x) =
∑

ξ∈OT
x

λξ(y, ξ).

Therefore, there exists ξ∗ ∈ OT
x such that (y, x) ≤ (y, ξ∗) ≤ maxξ∈OT

x
(y, ξ). We conclude that

condition (2) holds.
Recall from the introduction that we are interested in convex, rotationally invariant sets.

However, the Davis convexity theorem talks about convex functions. Unfortunately, there is
no exact equivalence between convex sets on a vector space V and convex functions on V .
Facts about convex functions on V give more than enough information about convex sets on
V , while facts about convex sets on V × R give more than enough information about convex
functions on V . A convex function f on V can be completely understood in terms of its
epigraph epi(f) = {(x, α) ∈ V × R : α ≥ f(x)}, while the level sets {x ∈ V : f(x) ≤ α}
do not contain enough information to characterize a convex function f . At the same time,
a convex function gives an adequate description of its level sets. Here is an analogue of the
Davis convexity theorem for sets.

Theorem 3 Let L(U) be as in Definition 5. Assume that for any two points {x1, x2} ⊂ T
the set GL({x1, x2}) is convex. Then for any subset U of C the set L(U)—the smallest
G-invariant convex set containing U , is GL(GU ∩ T ).

Proof: Obviously, GU ∩ T ⊂ L(U), and so L(GU ∩ T ) ⊂ L(U). Therefore, GL(GU ∩
T ) ⊂ L(U). Let us show that the set GL(GU ∩T ) is convex. Take any two points {x1, x2} ⊂
GL(GU ∩ T ). Let x∗1 ∈ OT

x1
and x∗2 ∈ OT

x2
. Obviously, {x∗1, x∗2} ⊂ L(GU ∩ T ). Therefore,

L({x∗1, x∗2}) ⊂ L(GU∩T ) andGL({x∗1, x∗2}) ⊂ GL(GU∩T ). But, by assumption, GL({x∗1, x∗2})
is convex and contains x1 and x2, since it contains the G-orbits of x∗1 and x∗2. Consequently,
any convex combination of x1 and x2 belongs to GL({x∗1, x∗2}) and therefore to GL(GU ∩ T ).
Thus, the set GL(GU ∩ T ) is convex, G-invariant and contains U . It follows that L(U) ⊂
GL(GU ∩ T ), and so L(U) = GL(GU ∩ T ).

We can use Theorem 3 to obtain a different generalization of the Davis convexity theorem.

Theorem 4 Define an action of G on C×R by g ·(x, α) = (gx, α). Define T̂ = T ×R. Then

T̂ is a transversal in the sense of Definition 1 for the group action on C ×R. For a subset Û
of T̂ define L̂(Û) to be the smallest convex, G-invariant (in the sense of Definition 4) subset

of T̂ that contains Û . Suppose that for every {x̂1, x̂2} ⊂ T̂ the set G · L̂({x̂1, x̂2}) is convex.
Then a G-invariant function is convex if and only if its restriction to T is convex.

Proof: The proof is almost a trivial consequence of Theorem 3 applied for the group
action on C×R defined in the theorem. It suffices to observe that if f denotes the restriction
of a G-invariant function F from C to T , then epi(F ) = G·epi(f), where

epi(f) = {(t, α) ∈ T̂ : α ≥ f(t)}

is the epigraph of f .
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Theorems 3 and 4 suggest that the basic objects one should study are the setsGL({x1, x2}).
In practice, however, these sets may be very hard to compute. In fact, in most cases in the
theory of composite materials the sets L({x1, x2}) are not known. In particular, they are
not known for the 3D conductivity problem described above. For 2D conductivity, the sets
L({x1, x2}) are known and the G-closure problem has been completely solved by Francfort
and Milton [5]. In fact, the explicit description of the set L({x1, x2}) in [5] shows that
L({x1, x2}) = GL({x∗1, x∗2}) and Theorem 3 applies. But even for 2D conductivity the sets

L̂({x̂1, x̂2}) are not known in general. These sets correspond to polycrystalline G-closures of

two crystals with prescribed volume fractions. Quite recently the sets L̂({x̂1, x̂2}) have been
computed for 2D conductivity under the assumption that x̂2 is a fixed point of the group
action [16]. For this reason at present we are unable to give an example of the application of
Theorem 4. Our final remark is that there seems to be no apparent relation of Theorem 1 and
Theorem 4 in the sense that we cannot show that one is stronger than the other. Conditions of
Theorem 4 do not imply that the function ψy(x) is convex on T , nor conditions of Theorem 1
imply that the sets GL({x1, x2}) are convex. Theorem 4 is capable of proving that every
convex and G-invariant function on T is convex when extended to C. In situations where
some convex and G-invariant function on T extend to convex functions and some others—to
non-convex functions, Theorem 4 lacks the discriminating power, while Theorem 1 is more
flexible. Even so, Theorem 1 can be too crude to establish convexity of individual functions
because it only tells us whether or not all functions in Γ(T, T ∗) extend to convex functions
on C. For example, we will see in Section 3.2 that in the physically relevant context of 2D
conductivity there are convex SO(2)-invariant functions whose convexity does not follow from
Theorem 1. At the same time the results of [5] show that there is a one-to-one correspondence
between convex SO(2)-invariant susbsets of T and convex SO(2)-invariant susbsets of C.

3 Composite materials

The motivating problem is an effort to understand how the properties of a composite material
depend on the properties of its constituents. It is a well-known fact that the properties of a
composite depend not only on which materials are used in its construction but also on their
geometric arrangement, or the microstructure. In many problems of practical interest the
microstructure is either unknown or is not controllable. Therefore, a natural thing to ask is
to describe the set of properties of composites, called effective properties, made with the given
materials as the microstructure is varying over all possible configurations. This problem is
called the G-closure problem, first introduced in [14, 19].

3.1 3D conducting polycrystals

In the context of heat conduction or electrostatics, the relevant properties of a material are
described by a 3 × 3 symmetric and positive definite matrix, which is called the conductivity
tensor. The set of 3× 3 symmetric and positive definite matrices will be denoted Sym(R3)+.
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A very common type of composite material is a polycrystal. A polycrystal is made of many
grains of a single crystal with the conductivity tensor L0. The grains are characterized by the
particular orientation of the crystal in space. Therefore, we say that the set of constituent
materials for the polycrystal is the set

U = {RL0R
t : R ∈ SO(3)}.

Another common example is a multiphase composite with isotropic constituents. The set of
constituents U in this case has the form

U = {α1I, α2I, . . . , αrI},

where I is the 3 × 3 identity matrix. The corresponding set of the conductivity tensors of
effective properties of composites made with materials in U is called the G-closure of U and
is denoted by G(U). The G-closure problem, therefore, consists in determining G(U) from
the set U . An elementary property of G-closures is that the set G(U) is SO(3)-invariant,
whenever the set U is. In the two examples above the set U is SO(3)-invariant.

In a 1980 paper [15], Milton derived an important geometric property of the set G(U),
namely that for any unit vector n ∈ R

3, the set Wn(G(U)) is convex, where

Wn(L) = [(I − L)−1 − n ⊗ n]−1. (3)

Physically, this condition can be formulated as follows. If we take L1 and L2 from G(U) and
make a composite by layering these materials in alternating layers with normal n then the
effective tensor of such a composite must belong to G(U). Varying the volume fraction of
material L1 from 0 to 1 will produce the effective tensors tracing the straight segment from
Wn(L1) to Wn(L2) in the Wn(L) space. Therefore, we can consider a geometric problem
of computing the set L(U), which is the smallest set containing the set U that satisfies the
convexity property of Milton. Physically, the set L(U) is the closure of the set of all effective
tensors of multi-rank laminates (laminates of laminates, etc.) made with materials in U . In
the case of an SO(3)-invariant set U , Milton’s convexity condition can be simplified by fixing
n = e1 = (1, 0, 0) and asking to find the smallest SO(3)-invariant set L(U) containing the
set U such that W (L(U)) is convex, where W (L) = We1

(L). We prove this assertion in
Theorem 5 below.

Our idea is that it may be more advantageous to work in the K = W (L) space of variables
than in the physical space of L variables. For example, it was the key idea for the recently
developed theory of exact relations for composites [6, 7, 8, 9]. In the K-space we have a
problem of finding, for a given subset U of

C = W (Sym+(R3)) =
{
A ∈ Sym(R3) : k11 > −1, k22 < 1, (1 − k22)(1 − k33) > k2

23

}
,

a smallest convex subset L(U) of C containing U and such that the sets Wn(W−1(L(U))) are
convex for all unit vectors n ∈ R

3. Observe that Wn(W−1(K)) = ΛA(n)(K), where

ΛA(K) = (I − KA)−1K
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and
A(n) = n ⊗ n − e1 ⊗ e1.

The map ΛA has several interesting properties whose relevance to the question above is
not clear.

• ΛA(ΛB(K)) = ΛA+B(K).

• ΛA(K+K0) = ΛA(K0)+ΛA′(QKQt), where A′ = A−AK0A and Q = (I−K0A)−1.

• ΛA(K) = K + KAK + . . .+ (KA)nK + . . .

Now let us prove that in the case of an SO(3)-invariant subset U ⊂ Sym+(R3) we need to
solve a “simplified” problem mentioned above.

Theorem 5 Suppose a subset S of Sym+(R3) is SO(3)-invariant. Let L(S) denote the small-
est SO(3)-invariant subset of Sym+(R3) containing S such that W (L(S)) is convex. Let
U = W (S) and let L(U) denote the smallest convex subset of C = W (Sym+(R3)) containing
U and such that ΛA(n)(L(U)) is convex for all n ∈ S

2. Then

W (L(S)) = L(U). (4)

Proof: Observe that for any rotation R ∈ SO(3) we have

RWn(L)Rt = WRn(RLRt). (5)

We also have that
ΛA(n) = Wn ◦W−1. (6)

Then we can say that since the set L(S) is rotationally invariant, it follows that for any
n ∈ S

2 the set Wn(L(S)) is convex, but Wn(L(S)) = ΛA(n)(W (L(S))). Thus, the set
W (L(S)) contains U and has the property that ΛA(n)(W (L(S))) is convex for all n ∈ S

2.
Hence, L(U) ⊂W (L(S)).

To get the reverse inclusion we need to show that the set W−1(L(W (S)) is rotationally
invariant. In order to prove this we need to realize that L(U) can be constructed as follows:

L(U) =

∞⋃

k=0

Uk ≡ Û , (7)

where U0 = U and
Uk+1 =

⋃

n∈S2

Λ−1
A(n)(conv(ΛA(n)(Uk))). (8)

Indeed, it is clear that Û ⊂ L(U). But also for any n ∈ S
2 and any {y1, y2} ⊂ ΛA(n)(Û) there

exists k ≥ 0 such that {y1, y2} ⊂ ΛA(n)(Uk). Thus, yλ = λy1 + (1 − λ)y2 ∈ conv(ΛA(n)(Uk)).

Therefore, Λ−1
A(n)(yλ) ∈ Uk+1 ⊂ Û . So yλ ∈ ΛA(n)(Û) and ΛA(n)(Û) is convex for all n ∈ S

2.

Also, U ⊂ Û . Therefore, L(U) ⊂ Û , and (7) is proved.
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Now, in order to show that Ŝ = W−1(L(U)) is SO(3)-invariant we denote Sk = W−1(Uk)
and observe that

Ŝ =

∞⋃

k=0

Sk, S0 = S,

Sk+1 =
⋃

n∈S2

W−1
n (conv(Wn(Sk))).

The last relation is just (8) with ΛA(n) replaced by its definition (6). We claim that each set
Sk is SO(3)-invariant. We prove this by induction. S0 = S is SO(3)-invariant by assumption.
Now assume that Sk is SO(3)-invariant. If L ∈ Sk+1 then there exist n ∈ S

2, {L1, . . . ,Lp} ⊂
Sk and non-negative numbers λ1, . . . , λp that add up to 1 such that

L = W−1
n

(
p∑

j=1

λjWn(Lj)

)
.

It follows now from (5) that

RLRt = W−1
Rn

(
p∑

j=1

λjWRn(RLjR
t)

)
.

Therefore, RLRt ∈ Sk+1, since by the inductive hypothesis RLjR
t ∈ Sk. This finishes the

proof that Sk, and as a consequence, Ŝ is SO(3)-invariant. Thus, (4) is proved.

In general, the computation of the G-closure sets is very complicated, but in the few cases
where the answers have been obtained it was true that L(U) = G(U). In his book [17, Section
31.9] Milton gives an example showing that the sets L(U) and G(U) are in general, different.
Nevertheless, we believe that the set L(U) gives a good idea of what the set G(U) should look
like. For two-dimensional conductivity the set G(U) = L(U) can be described for general sets
U by a construction algorithm, terminating after two steps, that starts with the set U and on
each step transforms the current set by computing the convex hull in a different coordinate
system. The final set in the algorithm is G(U). This algorithm has been found by Francfort
and Milton [5]. In particular, the whole construction in [5] occurs on the set of diagonal
2× 2 matrices. This brings us to the idea that in 3D the convexity of L(U) can somehow be
inferred by looking at the set of diagonal matrices or another subspace transversal to SO(3)
orbits. If we are to use Theorem 3 then we need to solve the following two problems. These
problems are still open. They are of fundamental importance in the theory of composites.
At the same time they may appeal to broader mathematical audience since they are really
geometric, in essence.

Problem 1. Let (R3)+ = {(a1, a2, a3) : aj > 0, j = 1, 2, 3}. We define a non-
linear action of the permutation group S3 on (R3)+. If σ ∈ S3 and a ∈ (R3)+,
then σ(a) denotes the standard linear action of S3 on (R3)+. Let

j(x) =

(
1

x1

, x2, x3

)
.
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Then we define the non-linear action of S3 on (R3)+ by

σ · x = (j ◦ σ ◦ j)(x).

The first problem is the following. For {a, b} ⊂ (R3)+ find L(a, b)—the smallest
subset of (R3)+ such that

1. {a, b} ⊂ L(a, b),

2. L(a, b) is convex,

3. L(a, b) is S3-invariant.

Problem 2 (Conjecture). Now define the map J : (R3)+ → Sym(R3) by

J(x) =





1

x1

0 0

0 x2 0

0 0 x3




.

We conjecture that ∀{a, b} ⊂ (R3)+ the set W (SO(3)J(L(a, b))) is convex. Here
the map W is defined by (3) with n = e1.

Our conjecture is equivalent (via Theorem 3) to saying that W (U) is convex for an SO(3)-
invariant set U ⊂ Sym+(R3) if and only if W (U ∩T ) is convex, where T is the set of diagonal
matrices.

We remark that the set L(a, b) is not known even for the simplest case when b = a =
(a1, a2, a2). Avellaneda, Cherkaev, Lurie and Milton [2] have computed part of the boundary
of G(J({a})) (see [2, FIG. 6]). They also conjectured that the remaining part may have
a non-algebraic form (see [2, Equation (81)]). Their conjecture can be reformulated as a
conjecture on the shape of L(a,a) ⊂ (R3)+ under the assumption that 1/a1 < a2 = a3. In
our notation the intersection of L(a,a) with the part of the surface x1x2 = 1, where x3 > x2

is conjectured to be the curve

x3 = a2 − (a2 − a0)

[
(x2 −

√
a2/a1)(a0 +

√
a2/a1)

(x2 +
√
a2/a1)(a0 −

√
a2/a1)

]1/
√

a1a2

, x1 =
1

x2

,

where

a0 =

√
1 + 8a1a2 − 1

2a1
.

Since problems 1 and 2 are open at the moment, we conclude this section with an appli-
cation of Theorem 1. Before attempting to apply the theorem to 3D conductivity we decided
to check what it gives us in the case of 2D conductivity, where the answers are already known
[5]. We apply Theorem 1 to the case of 2D conductivity, pretending that the results of [5]
are not available to us. Our conclusion is that Theorem 1 is not sufficient to describe convex,
SO(2)-invariant hulls of sets because in our situation Theorem 1 is not delicate enough to
characterize all convex, SO(2)-invariant functions. Nevertheless, we believe that the example
that we work out below is enlightening.
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3.2 2D conducting polycrystals

The space V in the case of 2D conductivity is the space of all symmetric 2× 2 matrices. Let
P be the set of all 2 × 2 symmetric positive definite matrices. Let W be a non-linear map
from P to V given by (3) (with n = e1). The map W is smooth and injective on P . It is
known from physical considerations that the set P is G-closed. Therefore, the set C = W (P )
is a convex subset of V . In fact the set C can be described explicitly:

C =

{
K =

[
k11 k12

k12 k22

]
: k11 > −1, k22 < 1

}
.

The group SO(2) acts on C according to the formula

R · K = W (RW−1(K)Rt), K ∈ C. (9)

We observe that the two-dimensional transversal T has to lie in the set of diagonal matrices
because it has to contain the convex hull of fixed points Kα = W (αI) of the group action.
Therefore, T must contain the convex hull of the hyperbola {K ∈ C : (1 + k11)(1 − k22) =
1, k12 = 0}. Thus, one possible choice for T is

T = {K ∈ C : (1 + k11)(1 − k22) ≥ 1, k12 = 0}. (10)

Another possible choice for T is the full quadrant

T = {K ∈ C : k11 > −1, k22 < 1, k12 = 0}. (11)

Theorem 6 Suppose T is given either by (10) or by (11). Then the set of matrices Y for

which ψ̂Y (K) is convex is T ∗ = {Y : y11 ≥ 0, y22 ≤ 0}.
Proof: According to Theorem 1, we need to compute

ψ̂Y (K) = max
K∗∈L(OT

K
)
(K∗,Y ), (12)

where we use a convenient inner product (A,B) = Tr (AB) on V = Sym(R2). If we make a
choice of T according to (10) then for each K ∈ C the set OT

K
contains a single point K∗(K)

and is therefore convex. So, ψ̂Y (K) = (K∗(K),Y ).

Lemma 1 Suppose T is given by (10). Then

ψ̂Y (K) = y22 − y11 + ψ0

(
∆ +

√
∆2 − 4λ

)/
2λ, (13)

where
ψ0 = y11a11 − y22a22,

∆ = λ + 1 + k2
12,

a11 = 1 + k11,

a22 = 1 − k22,

λ = a11a22.

12



Proof: It is quite easy to find K∗(K). The SO(2) orbit of K is described by the
equations

a∗22
a∗11

=
a22

a11

,
det K∗

a∗11
=

det K

a11

. (14)

We have
det K∗ = (a∗11 − 1)(1 − a∗22),

since K∗ ∈ T and k∗12 = 0. Replacing det K by a11 +a22−∆ in (14) and solving the equations
for a∗11 and a∗22 we obtain:

a∗11 = (∆ ±
√

∆2 − 4λ)/2a22, a∗22 = (∆ ±
√

∆2 − 4λ)/2a11.

The plus sign corresponds to K∗ ∈ T , because then a∗11a
∗
22 > 1.

Hence,
ψ̂Y (K) = (K∗,Y ) = y22 − y11 + ψ0(∆ +

√
∆2 − 4λ)/2λ.

If T is given by (11), then a similar analysis shows that

ψ̂Y (K) = y22 − y11 + (ψ0∆ + |ψ0|
√

∆2 − 4λ)/2λ.

Let us fix Y and observe that for any µ > 0 the convexity of ψ̂Y (a11, a22, k12) is the same as the

convexity of ψ̂Y (µa11, a22/µ, k12). Moreover, the hyperbolic rotation (a11, a22) 7→ (µa11, a22/µ)
maps T into T . Therefore, choosing µ > 0 appropriately we may reduce ψ0 to a positive
multiple of either a11 + a22, a11 − a22 or a22 − a11.

We will now investigate convexity of ψ̂Y (a11, a22, k12) by computing its Hessian. For
simplicity of notation we denote a11 by x, a22 by y and k12 by z. Then we need to study
convexity of

ψ(x, y, z) = (±x± y)(z2 + xy + 1 +R)/2xy,

where
R =

√
(z2 + xy + 1)2 − 4xy.

Let
f(x, y, z) = (z2 + xy + 1 +R)/2y.

Then ψ(x, y, z) = ±f(x, y, z) ± f(y, x, z). We see that it will be helpful to compute the
Hessian of f . The computation is tedious but straightforward. It is convenient to write the
answer in terms of the functions R and g = f/x because they do not change if we interchange

13



x and y.

fxx =
2z2y

R3
,

fxy =
2z2x

R3
,

fxz = 2z
z2 − xy + 1

R3
,

fzz = 2x
gR2 − 4z2

R3
,

fyz = 2xz
z2 − xy + 1 − gR2

yR3
,

fyy = 2x
(z2 + 1)R2g − R2 + z2xy

y2R3
.

(15)

Using these expressions it is not difficult to verify that fxx > 0 and that fxxfzz − f 2
xz > 0,

while the determinant of the Hessian vanishes. It remains to verify convexity at the points of
the hyperbola xy = 1, z = 0 where ∇f has a discontinuity. We easily see that

f(x, y, z) ≥ f(x, y, 0) =

{
x, xy > 1
1/y, xy < 1.

For any point (x0, 1/x0, 0) on the hyperbola, the hyperplane P = x passes through the point
(x0, 1/x0, 0, f(x0, 1/x0, 0)) and lies below the graph of f . Indeed, f(x, y, z) ≥ f(x, y, 0) ≥ x,
because on xy < 1, we have x < 1/y. Thus, the hyperplane P = x is a supporting hyper-
plane at (x0, 1/x0, 0, f(x0, 1/x0, 0)). We conclude that the function ψ(x, y, z) = f(x, y, z) +
f(y, x, z) is convex on C. Formulas (15) allow us to show that functions f(x, y, z)−f(y, x, z),
−f(x, y, z)+f(y, x, z) and −f(x, y, z)−f(y, x, z) are not convex in any open subregion of C.

Thus, the set of matrices Y , for which ψ̂Y is convex on C is T ∗ = {Y : y11 ≥ 0, y22 ≤ 0}.
If we take T to be given by (11), the result is the same: the set of matrices Y , for which

ψ̂Y is convex on C is T ∗ = {Y : y11 ≥ 0, y22 ≤ 0} and for those values of Y the functions

ψ̂Y corresponding to T given by (10) and (11) coincide.

As we remarked after Definition 3, the functions in Γ(T, T ∗) are all convex, l.s.c. functions
on T whose gradients (where they exist) lie in T ∗. Using lines of the form a11y11−a22y22 =const
in (a11, a22) plane with (y11, y22) ∈ T ∗ allows us to find some convex and rotationally invariant
sets. Since T ∗ is not the full space R

2 we will not be able to recover the results of Francfort
and Milton [5]. Figures 1 and 2 show the smallest sets produced by our theory in (a11, a22)
plane that contain two given points A and B.
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A

B

a
11

a 22

Figure 1: The smallest set produced by our theory that contains A and B, that is convex and
rotationally invariant. It coincides with the G-closure of two isotropic conductors.

A

B

C

D

E

F

a
11

a 22

Figure 2: The set ABCDEF is the smallest set produced by our theory that contains A
and B, that is convex and rotationally invariant. The set ABDE is the smallest convex,
rotationally invariant set containing A and B.
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4 Linear Group Actions

In this section, we restrict our attention to linear actions of compact groups.

Theorem 7 Let K be a compact Lie group with Lie algebra k, let π : K → SO(V ) be an
orthogonal representation on a finite-dimensional euclidean vector space V , and let T ⊂ V be
a subspace. Assume that for a dense set of vectors y ∈ T ,

π(k)y = T⊥. (16)

Then a K-invariant lower-semicontinuous function F is convex on V if and only if its re-
striction f is convex on T .

Morally, condition (16) amounts to saying that the tangent space of the orbit of y ∈ T
equals T⊥.

Proof: We establish (2) with T ∗ equal to all linear functionals on V of the form x 7→
〈y, x〉, y ∈ T . We identify T ∗ with T . By compactness, it is enough to establish (2) for a dense
set of y’s in T . Then (2) states that the maximum value of x 7→ 〈y, x〉 over Ox is attained in
T for any y ∈ T . In fact x is a critical point of 〈y, x〉 ↾ Ox if and only if 〈y, π(X)x〉 = 0 for
all X in the Lie algebra k; by (16), this implies x ∈ T .

Below we use Theorem 7 to derive Lewis’s [13] Lie-algebraic generalization of Davis’s
theorem, then we use it to show that the Pfaffian is log-concave. First we recall the Lie-
algebra background.

Let g be a real finite-dimensional Lie algebra and let ad(X) : g → g be given by the Lie
bracket ad(X)Y = [X, Y ]. Then ad(X) is a derivation (Jacobi identity),

ad(X)[Y, Z] = [ad(X)Y, Z] + [Y, ad(X)Z], X, Y, Z ∈ g;

rewriting this as

ad([X, Y ]) = ad(X)ad(Y ) − ad(Y )ad(X) ≡ [ad(X), ad(Y )]

shows that ad : g → gl(g) is a Lie algebra representation. Let B(X, Y ) = Trace(ad(X)ad(Y ))
be the Killing form; then B is ad-invariant,

B(ad(X)Y, Z) = −B(Y, ad(X)Z), X, Y, Z ∈ g.

Let z denote the center of g, z = {X : ad(X) = 0}.
A Lie algebra g is reductive if it can be decomposed into a vector space direct sum g = k⊕p

such that the Killing form is positive semi-definite on p and negative definite on k, and

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

This is the Cartan decomposition of g.
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Define a semi-definite euclidean inner product on g by setting 〈X, Y 〉 = B(X, Y ) on p,
〈X, Y 〉 = −B(X, Y ) on k, and by insisting that k and p be orthogonal. Then the operator
ad(X) : g → g is skew-adjoint for X ∈ k and self-adjoint for X ∈ p. Let so(g) denote the
skew-adjoint operators on g, and let SO(g) denote the group of operators on g preserving
this inner product and having unit determinant.

If X ∈ p satisfies B(X,X) = 0, then ad(X) is self-adjoint and Trace(ad(X)2) = 0. By
Cauchy-Schwartz, this implies1 ad(X) = 0; thus X ∈ z. Conversely, since B is negative
definite on k, it follows that z ⊂ p, hence z = {X ∈ p : B(X,X) = 0}.

A Lie algebra k is compact if its Killing form is negative definite. Then k is compact if
and only if there is exactly one connected simply-connected compact Lie group K with Lie
algebra k. Since ad : k → so(g) is a representation, it lifts uniquely to a group representation
Ad : K → SO(g) satisfying Ad(exp(X)) = exp(ad(X)) for X ∈ k.

Let K be any compact Lie group with Lie algebra k and equipped with a representation
Ad : K → SO(g) satisfying Ad(exp(X)) = exp(ad(X)) for X ∈ k.

Theorem 8 Let g = k ⊕ p be a reductive Lie algebra, let a be a maximal abelian subspace of
p, and let K be any compact Lie group corresponding to k as above. Then an Ad(K)-invariant
function on p is convex on a if and only if it is convex on p.

Choosing g = gl(Rd), k = so(Rd), p = Sym(Rd), Ad(g)(X) = gXg−1, K = SO(Rd), and
a the diagonal matrices, yields Davis’s theorem.

This theorem was derived by Lewis [13] for g semisimple using the Kostant convexity
theorem [11], which states that the projection P of Ox onto T is the convex hull of OT

x . Our
condition (2) is weaker than this, as it is equivalent to the equality of the convex hulls of
P (Ox) and OT

x . Kostant’s theorem, as generalized by Atiyah and Guillemin-Sternberg [1, 10],
depends on the symplectic structure of the orbits; Theorem 7 above makes no geometric
assumption on the orbits other than transversality with T .

Proof: Since a is maximal abelian, z ⊂ a. Since ad(a) is a commuting set of self-adjoint
operators on g, they can be simultaneously diagonalized.2 By decomposing each eigenvector
over k⊕ p, there is a finite set Σ of nonzero linear functionals λ (possibly repeated) in a∗ and
nonzero vectors Xλ ∈ k, Pλ ∈ p, such that with kλ = RXλ, pλ = RPλ, we have

[A,Xλ] = λ(A)Pλ and [A,Pλ] = λ(A)Xλ, A ∈ a, λ ∈ Σ,

and
k = k0 ⊕

⊕

λ∈Σ

kλ and p = a ⊕
⊕

λ∈Σ

pλ

is an orthogonal direct sum. Here k0 is the set of elements in k commuting with elements of
a.

1Cauchy-Schwartz holds for semi-definite inner products.
2If (V, 〈·, ·〉) is a semi-definite real inner product space and A : V → V is self-adjoint and satisfies A(V ⊥) =

0, where V ⊥ = {v : 〈v, w〉 = 0 for all w ∈ V }, then there is an orthogonal basis for V consisting of eigenvectors
of A.
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An element A ∈ a is regular if λ(A) 6= 0 for all λ ∈ Σ. Then the set of regular elements is
the complement of a finite union of hyperplanes, and hence is dense. If A ∈ a is regular, it
follows that [A, k] = p ⊖ a. This establishes (16).

A similar result may be derived with k playing the role of p.

Theorem 9 Let k be a compact Lie algebra, let t be a maximal abelian subalgebra of k, and
let K denote any compact Lie group with Lie algebra k. Then an Ad(K)-invariant function
on k is convex on t if and only if it is convex on k.

The basic example to keep in mind is k the skew-hermitian d× d matrices, K the unitary
group on Cd, and t the diagonal matrices in k. This is the complex version of the Chandler
Davis result. The real Davis result may be derived as a special case of the complex result as
follows.

Let F be a rotation-invariant function on symmetric matrices, and let f be its convex
restriction to the diagonals. Let g(x) = f(ℑx); then g is convex on the set of diagonal skew-
hermitian matrices hence extends to a unitarily-invariant convex function G on k. For x real
symmetric, let F̃ (x) = G(ix); then F̃ is rotation invariant, convex, and extends f off the
diagonals. Hence F̃ = F , establishing the convexity of F .

For another application, let k = so(Rd) with d even, K = SO(Rd), and t the space
of diagonal3 matrices; an example of a non-trivial convex Ad-invariant function on k is the
reciprocal of the Pfaffian [18]; this is best explained in terms of anti-commuting calculus [3].

Let x1, . . . , xd be anti-commuting variables xixj + xjxi = 0, i, j = 1, . . . , d. If yi =∑d
j=1 aijxj is a linear transformation, then we have the elementary

y1y2 . . . yd = det(A)x1x2 . . . xd. (17)

Below, by a function f of x1, . . . , xd, we mean any element of the algebra generated by
x1, . . . , xd. Given such a function, its Berezin integral [3]

∫
f(x1, . . . , xd) dx1 . . . dxd is by

definition the coefficient of x1x2 . . . xd in f . With this interpretation, (17) may be re-written
as the change-of-variable formula

∫
f(y1, . . . , yd) dx1 . . . dxd = det(A)

∫
f(y1, . . . , yd) dy1 . . . dyd

(note the determinant is on the “wrong” side).
Given A ∈ so(Rd), its Pfaffian is the anti-commuting Gaussian integral [3]

Pf(A) =

∫
exp

(
1

2

d∑

i,j=1

aijxixj

)
dx1 . . . dxd.

Here by exp we mean the exponential series which terminates after finitely many terms
because of anti-commutativity. By the change-of-variable formula, this exhibits the Pfaffian
as a rotationally invariant polynomial function of the entries of A.

3Here “diagonal” means consisting of 2 × 2 skew-symmetric blocks along the diagonal.
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Now let x1, . . . , xd, y1, . . . , yd be anti-commuting variables and set zi = xi +
√
−1yi, z̄i =

xi −
√
−1yi, i = 1, . . . , d. Then it is straightforward to check the complex Gaussian formula

∫
exp

(
d∑

i,j=1

aijziz̄j

)
(dz1dz̄1) . . . (dzddz̄d) = det(A),

valid for any real A (here the integral equals the coefficient of
∏d

i=1 ziz̄i). When A is skew-
symmetric, substituting the expressions for zi, z̄j yields the well-known fact

(Pf(A))2 = det(A), A+ At = 0.

When A is diagonal, A ∈ so(Rd), A is a sum of 2× 2 skew-symmetric blocks

(
0 a
−a 0

)
. In

this case Pf(A) reduces to the product of the top right entries a. Say A ∈ so(Rd) is positive if
these top right entries are positive. Defining log : R → R∪ {−∞} by log x = −∞ for x ≤ 0,
we see that the set of positive skew-symmetric matrices is convex and that Pf is log-concave
on it.

Now we turn to the proof of Theorem 9, which is similar to that of the previous one.

Proof: Since ad(t) is a commuting set of skew-adjoint operators, they can be simulta-
neously diagonalized into 2 × 2 blocks. This leads to a finite set ∆ of linear functionals α in
t∗ and nonzero vectors Xα, Yα ∈ k, such that with kα = RXα + RYα, we have

[H,Xα] = α(H)Yα and [H, Yα] = −α(H)Xα, H ∈ t, α ∈ ∆

and
k = t ⊕

⊕

α∈∆

kα

is an orthogonal direct sum.
An element H ∈ t is regular if α(H) 6= 0 for all α ∈ ∆. Then the set of regular elements

is the complement of a finite union of hyperplanes, and hence is dense. If H ∈ t is regular, it
follows that [H, k] = k ⊖ t. This establishes (16).
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