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Abstract

Buckling of slender structures under compressive loading is a failure of infinitesimal
stability due to a confluence of two factors: the energy density non-convexity and the
smallness of Korn’s constant. The problem has been well understood only for bodies
with simple geometries when the slenderness parameter is well defined. In this paper
we present the first rigorous analysis of buckling for bodies with complex geometry.
By limiting our analysis to the ”near-flip” instability we address the universal features
of the buckling phenomenon that depend on neither the shape of the domain nor the
degree of constitutive nonlinearity of the elastic material.

1 Introduction

Despite its seemingly straightforward treatment in the introductory engineering courses, buck-
ling instability of slender elastic bodies is known to be tricky. Already the first computation
of a critical load for a strut under uniaxial compression by Euler was contested by D’Alembert
who claimed that due to flip instability (see Figure 1) the buckling load should be equal to
zero [42, p. 258]. In fact, the original Euler’s argument [12] left several mathematical ques-
tions unanswered. For instance, the formula for the critical load contains the slenderness
parameter h even though it is derived from the one-dimensional theory corresponding to the
limit h → 0. Furthermore, Euler’s apparent use of linear elasticity for the derivation of the
critical load formally contradicts the uniqueness theorem of Kirchhoff. Consequently, two dif-
ferent approaches have been pursued in an attempt to treat buckling with full mathematical
rigor.

The first approach is to perform, by driving h to zero, a controlled asymptotic dimension
reduction, and then study the stability problem in a low-dimensional setting [7]. While this
method was used by Euler himself, only recently the original insights into the structure of the
limiting energy functional for rods and plates have been confirmed by the rigorous analysis
implying global minimization of the energy [15, 30, 32, 33]. The formal problem remains,
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Figure 1: The two instability modes: (a) flip, (b) buckling

however, with the equally rigorous treatment of the local minima of the energy which are
often essential in structural stability. Another problem concerns the necessity to deal with
compressive prestress which lowers bending rigidity of the structure and ultimately triggers
the buckling instability. The prestress enters the linearized elasticity problem in a nontrivial
way since, somewhat paradoxically, the linearized strain during buckling is large while the
finite strain is small [3, 17, 41]. Despite those remaining analytical problems, the advanced
engineering theories of buckling which are based on semi-empirical low-dimensional models
for slender bodies, usually account for the above physical effects correctly and give adequate
predictions for the critical loads (e.g. [4, 24]). The problem is that those theories remain
largely intuitive and are therefore restricted to simple geometries. Most importantly, the
exact domain of their application is unclear.

The second approach to buckling is to deal directly with an instability at finite h. In this
case, the critical load can be found from the analysis of the positive definiteness of the second
variation for a 3D elasticity problem [9, 14, 18, 26, 34, 39]. The ensuing eigenvalue compu-
tations are notoriously tedious and specific to the particular geometry and energy density
structure. Although such studies, usually possible only for simple shapes and constitutive
laws, expose for thicker bodies a sequence of transitions between buckling and barreling, and
establish an important link between buckling and surface instabilities, they conceal, in the
case of slender bodies, a direct relation between the Euler’s buckling and the D’Alembert’s
flip, and obscure an intuitively appealing relation between the critical load and the Korn
constant. The theories which deal with finite slenderness but stop short of solving the full
eigenvalue problem are usually focused exclusively on the bounds for the critical load which
can be made explicit, again, only for bodies with simple geometry [1, 10, 11, 21].

In this paper we present a treatment of buckling instability which can be placed in between
the two above approaches. More precisely, we conduct the analysis of the second variation
for the full elastic problem and then take the limit h → 0. The fact that we perform the
dimension reduction in the stability conditions, instead of the energy itself, distinguishes our
approach from most other mathematical papers on the subject (see the recent review in [25]).
We find it necessary to deal directly with the conditions of instability because of our focus on
local rather than global minimization of the energy. The latter is the target of the powerful
methods based on Gamma-convergence which may or may not be adequate for buckling
depending on whether the bifurcation is supercritical or subcritical. An approach similar to
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ours, but based on formal asymptotic expansions, has been applied previously to prismatic
bars under specific constitutive assumptions in [37]. Here, we go further and and obtain
rigorous theorems that do not depend on the material model and are largely independent
of either the details of loading or the geometry of the domain, encompassing therefore the
problem of imperfection sensitivity.

Our approach is based on the new interpretation of buckling bifurcation as a delayed flip
instability taking place when the compressive dead loads are supplemented by additional
constraints that keep the flip from occurring at infinitesimal compression. The appropriate
additional constraints are expected to generate a genuinely mixed type loading because in
purely hard device buckling is forbidden, while in soft device it degenerates into flip. We show
that the delayed flip instability, i.e. near-flip buckling, involves the interplay of two factors.
On the one hand, the structure in purely soft device is unstable at arbitrarily small com-
pressive loads due to the intrinsic nonconvexity of the energy density function. On the other
hand, the mixed type boundary conditions promote stability. Buckling is then understood as
failure of the stabilizing force to overcome the destabilizing force. While Korn’s constant is
a known characteristic of the stabilizing effect of traction-dominated loading and slenderness
of the domain, the parameter which fully characterizes the destabilizing effect of compressive
loading has been unknown and is introduced in this paper for the first time.

We recall that the peculiarity of dead compressive loading was first realized by Signorini
[38] who has found that in soft device even for small loads there are multiple equilibria. While
all those equilibrium configurations have the Cauchy-Green strain tensor C close to I (the
identity matrix) only one of them has the deformation gradient F close to I. More recently,
the corresponding bifurcation has been studied in full detail [5, 6]. In particular, it was found
that the branch converging to I is not always stable and that in the case of a compressed
strut, the instability manifests itself through the rigid rotation (flip). In the present paper
we extend these ideas to the case of mixed loading for slender bodies with complex geometry
and explain how the flip bifurcation transforms into buckling. Along the way we re-evaluate
buckling from the perspective of the non-commutativity of the two apparently well understood
asymptotic procedures: linearization and dimension reduction. From the times of Signorini,
linearization has been known to be formally ill defined in the vicinity of a bifurcation point
[28], and in the case of near-flip buckling it is the dimension reduction that is responsible for
the ultimate shrinking of the domain where the linearization is legitimate [29]. As we make
clear, the non-uniformity of the classical linear elastic limit is due to the fact that the work of
the pre-stress is neglected during standard linearization while it clearly dominates the energy
in the dimension reduction limit.

The inherent nonlinear nature of buckling is concealed by the dependence of the critical
load exclusively on the linear elastic moduli. Yet, it has long been realized that buckling
results from the energy density non-convexity which, in turn, follows from material frame
indifference [2, 19, 42]. The apparent constitutive linearity of the Euler’s theory of the critical
load arises from the fact that in the case of near-flip buckling the prohibited full linearization
can be replaced by a procedure that we call “constitutive linearization” (see [3, 41] for the
earlier insights). In fact, our proof of the asymptotic equivalence between the full nonlinear
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and the constitutively linearized theories of near-flip buckling can be viewed as a rigorous
extension of the Föppl-von Kármán theory of buckling for plates and rods [8, 13, 16, 35, 44] to
bodies with complex geometries. Furthermore, we show that the engineering theory generates
satisfactory predictions for the critical loads only in the cases which we interpret as “smooth”
or “Euler” buckling. In those cases our main results are related to the domain of applicability
of the conventional approaches. More strikingly, we provide the counterexamples showing that
the engineering formulas may fail in the “non Eulerian” cases including buckling of the rather
common “multi-element” structures.

The paper is organized as follows. In Section 2 we introduce the main players: the intrinsic
energy nonconvexity and the Korn constant. The prototypical flip instability of D’Alembert is
introduced in Section 3. Buckling of slender bodies or the “near-flip” buckling is defined and
studied in Section 4. In Section 5 we demonstrate that behind the universality of the near-flip
buckling lies the possibility to perform partial (or constitutive) linearization of the problem.
We use the term “buckling equivalence” or B-equivalence for situations when the asymptotics
of the critical load can be computed directly from the partially linearized problem. Section 6
contains the preliminary definition of compressiveness of the loading device which allows us
to prove B-equivalence under special smoothness assumptions encompassing Euler’s original
setting (Section 7). We then show in Section 8 that Euler buckling is far from being generic.
A general study of B-equivalence, presented in Section 9, reveals a more subtle nature of the
concept of compressive loads. A convenient sufficient condition for B-equivalence, going far
beyond Euler’s case, is presented in Section 10. In Section 11 we show that if the loading is
compressive in the strong sense, the first term in the h-asymptotics of the critical load can be
interpreted as a generalized Korn constant. Subsequently we show how this interpretation can
be used to derive new bounds on both safe and unsafe loads. In the two technical Appendixes
we study existence of the homogeneous trivial branch and present a heuristic justification of
the Kirchhoff-Love ansatz for arbitrary anisotropic materials.

Throughout the paper we use standard index-free tensor notation and some other useful
conventions. For instance, 〈f〉 denotes the average of the function f over the domain of its
definition, |a| denotes the Euclidean norm for a vector a, Frobenius norm Tr (aat)1/2 for the
matrix a and an operator norm for the map a : End(R2) → End(R2). The symbol ‖f‖ always
denotes the L2 norm of |f (x)| and ‖f‖∞ denotes the L∞ norm of |f (x)|. The equivalence
relation a(h) ∼ b(h) is understood in the sense that limh→0 a(h)/b(h) = 1.

2 Preliminaries

To highlight ideas we limit our exposition to the simplest nontrivial case which is 2D elasticity,
even though our approach is largely dimension-independent.1 We assume that the elastic
response of the body is governed by the energy density function W (F ), which is C3 in the
vicinity of the stress-free state F = I. We also assume that F = I is the point of local

1We will indicate throughout the text, when 3D analogs of our results differ from their 2D counterparts.
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minimum for the energy density W (F ). In particular,

WF (I) = 0. (2.1)

If we load a body Ω by the dead loads t(x), x ∈ ∂Ω, the resulting deformation y(x) is
expected to be at least a weak local minimizer of the energy

E(y) =

∫

Ω

W (F (x))dx−
∫

∂Ω

(u(x), t(x))ds, (2.2)

where F (x) = ∇y(x) is the deformation gradient, u(x) = y(x) − x is the displacement
vector and ds is the element of the arc length on ∂Ω. The loading t(x) should be equilibrated
in the sense that: ∫

∂Ω

t(x)ds = 0,

∫

∂Ω

(t(x),Sy(x))ds = 0, (2.3)

where

S =

[
0 −1

1 0

]
(2.4)

is a skew-symmetric matrix. While only surface loads are explicitly indicated here, bulk dead
loads can be easily included as well.

In parallel to dead loading we shall also consider an equilibrium under mixed loading
when in addition to specifying information on applied boundary tractions we also impose
constraints on the boundary displacements, say

y(x) = y0(x), x ∈ ∂Ω1 ⊂ ∂Ω.

In general, we will assume that y is constrained to belong to the affine subspace F ⊂
W 1,∞(Ω; R2) of admissible deformations. In other words, we assume that there exists y0 ∈
W 1,∞(Ω; R2) and a subspace V 0 ⊂ W 1,∞(Ω; R2), such that F = y0 + V 0.

Both boundary conditions and equilibrium equations can be obtained from the following
variational equation

∫

Ω

(WF (F (x)),∇ϕ)dx−
∫

∂Ω

(ϕ(x), t(x))ds = 0 (2.5)

satisfied for all ϕ ∈ V 0. Let L(F ) = WFF (F ) denote the set of tangential elastic moduli. We
call the admissible deformation y(x) of the reference configuration Ω ⊂ R

2 infinitesimally
stable if it solves the equilibrium equations of elastostatics (2.5) and the second variation of
the energy

δ2E(F ,ϕ) =

∫

Ω

(L(F (x))∇ϕ,∇ϕ)dx (2.6)

is nonnegative for all ϕ ∈ V , where V is a closure of V 0 in W 1,2(Ω; R2). The above conditions
are known to be necessary and sufficient for y(x) to be a weak local minimizer for the energy
(2.2) (with uniform positivity of second variation for sufficiency, see [40, 43]).
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A crucial role in what follows will be played by an additional assumption that the energy
density function W (F ) is objective (material frame indifferent). It requires that

W (RF ) = W (F ) (2.7)

for all rotation matrices R ∈ SO(2) and all 2× 2 matrices F with positive determinant. The
condition (2.7) implies that F = I is not a strict local minimum of W (F ), in particular the
Hessian L0 of W (F ) at F = I,

L0 = L(I) = WFF (I) (2.8)

is singular:
L0S = 0. (2.9)

We assume that the degeneracy of L0 does not go beyond (2.9), meaning that

(L0ξ, ξ) ≥ γ0|ξ|2, for all ξ ∈ Sym(R2), (2.10)

where Sym(R2) is the space of symmetric 2 × 2 matrices and γ0 is the smallest eigenvalue of
L0 understood as a linear operator on Sym(R2).

The objectivity assumption (2.7) implies that there exists a function Ŵ (C), defined on
symmetric positive definite matrices C = F tF (Green’s strain tensor), such that W (F ) =
Ŵ (C). According to our assumptions, the function Ŵ (C) has a strict local minimum at
C = I. The straightforward computation gives WF (F ) = 2F ŴC(C) and

(L(F )ξ, ξ) = 2(ŴC(C), ξtξ) + 4(ŴCC(C)(F tξ),F tξ) (2.11)

for any 2 × 2 matrices ξ and F .
If C ≈ I, the second term in the right hand side of (2.11), representing the stabilizing

effect of the conventional elastic rigidity, is always non-negative, while the first term may
be either positive or negative. In the case of compressive loading, the first term is negative
and represents the destabilizing effect of stiffness reduction. The study of the competition
between these two terms constitutes the main subject of any theory of buckling.

To clarify the meaning of the two terms in the right hand side of (2.11), we recall that
there exist matrices F , arbitrarily close to the identity matrix, such that the quadratic form
ξ 7→ (L(F )ξ, ξ) is non-convex [20]. Indeed, if F is close to I and ξ = S—a skew-symmetric
matrix, defined in (2.4), then, by symmetry of C, the second term in (2.11) is of order
O(|F − I|2):

(ŴCC(C)(F tS),F tS) = (ŴCC(C)((F − I)tS), (F − I)tS) = O(|F − I|2). (2.12)

The first term in (2.11), however, is of order O(|F − I|):

2(ŴC(C),StS) = 2Tr (ŴCC(I)(C−I))+O(|F−I|2) = Tr (L0(F−I))+O(|F−I|2). (2.13)

Therefore, when ξ = S and F is close to the identity matrix, the first term in (2.11) may
dominate the second term causing an instability. More specifically, if Tr (L0(F − I)) < 0
(compressive stresses), then (L(F )S,S) < 0.
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The other two main pre-conditions of buckling—traction-dominated loading and slender-
ness of the domain—are conveniently characterized by the smallness of Korn’s constant. The
Korn constant is a non-negative number K(V ) associated with the subspace V ⊂ W 1,2(Ω; R2).
It is defined as the largest number for which the Korn inequality [22]

∫

Ω

|e(ϕ)|2dx ≥ K(V )

∫

Ω

|∇ϕ|2dx (2.14)

holds for all ϕ ∈ V , where e(ϕ) = (∇ϕ + (∇ϕ)t)/2 is the symmetrized gradient. One can
think of K(V ) as the “distance” between V and the 1D subspace spanned by Sx.

We will need a slightly extended notion of the Korn constant. If L is a fourth order tensor
of the positive definite quadratic form ξ 7→ (Lξ, ξ) on Sym(R2), then we define KL(V ) as the
largest number for which the inequality

∫

Ω

(Le(ϕ), e(ϕ))dx ≥ KL(V )

∫

Ω

|∇ϕ|2dx (2.15)

holds for all ϕ ∈ V . The classical Korn constant simply corresponds to L = I – the fourth
order identity tensor. Sometimes it will be convenient to represent the Korn constant in the
variational form:

KL(V ) = inf
ϕ∈V

‖∇ϕ‖=1

∫

Ω

(Le(ϕ), e(ϕ))dx. (2.16)

Formula (2.16) shows that all Korn-type constants are equivalent in the following sense. Take
any pair of positive definite quadratic forms L1 and L2. Then there are constants c(L1, L2)
and C(L1, L2), independent of V , such that

c(L1, L2)KL1(V ) ≤ KL2(V ) ≤ C(L1, L2)KL1(V ). (2.17)

For this reason the geometric meaning of KL(V ) as a function of V is not different from K(V ),
except that KL(V ) also depends on the degree of convexity of the quadratic form L. More
precisely, if L1 < L2 in the sense of quadratic forms, then KL1(V ) < KL2(V ).

3 Flip instability

Consider a body loaded by dead tractions and occupying an equilibrium configuration y(x).
If we replace this configuration by its rotation through the angle ǫ

yǫ(x) = Rǫy(x) (3.1)

the associated energy increment can be written, in view of (2.7), as

∆E = −
∫

∂Ω

(t(x),Rǫy(x) − y(x))ds.

7



By using Rǫ = I cos ǫ + S sin ǫ we obtain, via (2.3)2

∆E = (1 − cos ǫ)

∫

∂Ω

(t(x),y(x))ds. (3.2)

If the actual configuration of the body is Ω∗ = y(Ω) then

∫

∂Ω

(t(x),y(x))ds =

∫

Ω∗

Tr τ (y)dy,

where τ (y) is the Cauchy stress tensor. Therefore for compressive loading with

Tr 〈τ 〉 < 0, (3.3)

the rotations through the infinitesimal angle ǫ will lower the total energy producing flip
instability. Despite its infinitesimal character, the flip instability can not be captured by
linearized theory because expansion in ǫ in (3.2) starts with quadratic terms.

To study the bifurcation leading to flip instability we need to analyze the second variation
of the energy. Assume that the body is subjected to tractions t(x; λ) parameterized by a
small parameter λ. Consider a family of deformations yλ(x) that satisfy the equations of
equilibrium (2.5) with V 0 = W 1,∞(Ω; R2) and assume that it is sufficiently regular in λ.2

More precisely, we assume that y0(x) = x and the function T : λ 7→ yλ(x) that maps a small
neighborhood of zero in R into W 1,∞(Ω; R2) is of class C1 (in the norm topology of W 1,∞).
In other words we assume that there exists a Lipschitz function u′(x) such that

Fλ(x) = ∇yλ(x) = I + λH ′(x) + o(λ), as λ → 0, (3.4)

where H ′ = ∇u′ and o(·) is understood in the sense of uniform convergence. In what follows
we will refer to H ′(x) as the incremental strain and to

σ′(x) = L0e(u
′) (3.5)

as the incremental stress.
An example is provided by the family yλ(x) = Fλx of deformations corresponding to the

loading program
t(x; λ) = λP0n(x), (3.6)

where P0 is a given constant symmetric matrix. For the homogeneous deformation gradient
Fλ the Euler-Lagrange equation (2.5) reduces to

WF (Fλ)n(x) = t(x; λ), x ∈ ∂Ω,

which is equivalent to
WF (Fλ) = λP0. (3.7)

2Note, that we do not assume neither uniqueness nor stability of these deformations.
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If TrP0 6= 0 the existence of Fλ satisfying (3.7) is guaranteed by Lemma A.1 proved in
Appendix A.3

We are now in a position to formulate the sufficient conditions for flip instability. To
emphasize compressive character of the loading we set λ < 0 throughout the paper.

Theorem 3.1 Consider dead loading t(x; λ) and assume that yλ(x) is regular in the sense
of (3.4). Assume that Tr 〈σ′〉 > 0. Then there exists ς > 0 such that δ2E(Fλ,Sx) < 0 for all
λ ∈ (−ς, 0).

Proof: Let Lλ(x) = L(∇yλ(x)). Substitute ϕ(x) = Sx in (2.6) and observe that in
view of (2.12) and (2.13)

(Lλ(x)S,S) = Tr (L0(Fλ(x) − I)) + O(|Fλ − I|2).
Then, by (3.4) and (3.5)

(Lλ(x)S,S) = λTr (L0H
′(x)) + o(λ) = λTrσ′(x) + o(λ). (3.8)

Equation (3.8) can be regarded as a Taylor expansion of (Lλ(x)S,S) and therefore the
coefficient in front of λ can be expected to represent the third order elastic moduli. However,
the relevant non-linearity is of purely geometrical nature and therefore this coefficient can
be reduced to the expression depending only the second order elastic moduli. One can show
that behind this reduction are material-independent relations between second and third order
elastic moduli, that can be derived from (2.7) by differentiation.

Observe that the trivial branch may be flip-unstable even without our sufficient conditions
being satisfied. Indeed, if we replace λ by −λ2 in the simplest case of homogeneous loading
(3.6), the incremental stress and strain become equal to zero, while flip instability persists.
Therefore our condition Tr 〈σ′〉 > 0 performs two tasks: it signifies the compressive nature
of the loading and simultaneously identifies its scale. The condition analogous to Tr 〈σ′〉 > 0
in Theorem 3.1 in 3D is that at least one of the following three inequalities hold (e.g. [20])

σ1 + σ2 > 0, σ2 + σ3 > 0, σ3 + σ1 > 0, (3.9)

where σ1, σ2 and σ3 are the eigenvalues of 〈σ′〉.
We now turn to the necessary conditions for flip instability. Define

m(λ) = inf
‖∇ϕ‖=1

∫

Ω

(Lλ(x)∇ϕ(x),∇ϕ(x))dx. (3.10)

If m(λ) > 0 then the second variation is positive and the trivial branch is stable. If m(λ) < 0
we can identify the energy-decreasing variation ϕλ. Let ϕλ be such that ‖∇ϕλ‖ = 1 and

δ2E(Fλ,ϕλ) − m(λ) = o(λ), (3.11)

where Fλ = Fλ(x) = ∇yλ(x). We will call ϕλ an almost-minimizer4 for m(λ).

3In 3D the equivalent condition would be that P0 has no pairs of opposite eigenvalues.
4The variational problem (3.10) may have no solutions.
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Theorem 3.2 Consider dead loading t(x; λ) generating the trivial branch yλ(x) which is
regular in the sense of (3.4). Then, either there exists ς > 0 such that m(λ) > 0 for all
λ ∈ (−ς, 0) or Tr 〈σ′〉 ≥ 0 and the family of almost-minimizers ϕλ has a subsequence λn → 0
such that

lim
n→∞

∇ϕλn
= ± S√

2|Ω|
in L2(Ω).

Proof: Assume that that there exists a sequence λn → 0− such that m(λn) ≤ 0 for all
n. Let ϕn = ϕλn

, then
∫

Ω

{(L0e(ϕn), e(ϕn)) + ((Lλn
(x) − L0)∇ϕn,∇ϕn)}dx− m(λn) = o(λn). (3.12)

Assumption of regularity for the trivial branch implies that

|Lλn
(x) − L0| ≤ C|λn|

for all x ∈ Ω. We therefore can write
∫

Ω

(L0e(ϕn), e(ϕn))dx ≤ C|λn|.

Since L0 is a positive definite tensor, there exists C > 0 such that for all n ≥ 1

‖e(ϕn)‖2 ≤ C|λn| → 0, n → ∞. (3.13)

Lemma 3.3 Suppose ‖∇ϕn‖ = 1 and ‖e(ϕn)‖ → 0, as n → ∞. Then there exists a subse-
quence nk such that ∇ϕnk

→ α0S as k → ∞ in L2(Ω; R2×2), where |α0| = 1/
√

2|Ω|.

Proof: Let us choose a subsequence (not relabeled) such that 〈∇ϕn〉 → ξ0 as n → ∞.
By Korn’s inequality there exists a constant K0 depending only on Ω such that for all ϕ ∈
W 1,2(Ω; R2)

‖e(ϕn) − 〈e(ϕn)〉‖ ≥ K0‖∇ϕn − 〈∇ϕn〉‖.
Then

‖∇ϕn − ξ0‖ ≤ ‖∇ϕn − 〈∇ϕn〉‖ + ‖〈∇ϕn〉 − ξ0‖ ≤ 1

K0
‖e(ϕn) − 〈e(ϕn)〉‖ + ‖〈∇ϕn〉 − ξ0‖.

It follows from (3.13) that ∇ϕn → ξ0 in L2 and therefore e(ϕn) → (ξ0)sym, so that ξ0 = α0S.

Here |α0| can be found from the condition that 1 = ‖∇ϕn‖ → ‖ξ0‖ =
√

2|Ω||α0|.

Now consider a subsequence nk from Lemma 3.3 and relabel in back into n. The inequality
m(λn)/λn ≥ 0 and relation (3.12) imply that

lim
n→∞

1

λn

∫

Ω

((Lλn
(x) − L0)∇ϕn,∇ϕn)}dx ≥ 0.

By way of (3.8) and Lemma 3.3 we can now conclude that α2
0Tr 〈σ′〉 ≥ 0.
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To avoid immediate flip instability in a compressive loading one must impose additional
constraints that exclude the infinitesimal rotations Sx. In hard device the instability is
eliminated completely, while in mixed device the bifurcation point may shift to small but non-
zero loads. Below we will be using the term near-flip buckling to characterize this “postponed”
instability which shares with flip the essential link to the failure of convexity of the elastic
energy, due to objectivity.

4 Near-flip buckling

To distinguish the near-flip buckling from the flip we introduce a new small parameter h.
Suppose that both the applied tractions and the domain geometry depend on h. Assume
that the admissible set of deformations has the form

Fh,λ = yh(x; λ) + V 0
h ,

where yh(x; λ) is a given function and V 0
h is a subspace in W 1,∞(Ωh; R

2) that is independent
of λ. Let Vh be the closure of V 0

h in W 1,2(Ωh; R
2). The role of h is to parameterize the se-

quence of Korn constants K(Vh) representing increasing distance between the current loading
configuration and the soft device configuration.

Assume again that there exists a trivial branch yh,λ(x) and a Lipschitz function u′
h(x)

such that
Fh,λ(x) = ∇yh,λ(x) = I + λH ′

h(x) + o(λ), as λ → 0−, (4.1)

where H ′
h = ∇u′

h and o(·) is understood in the sense of uniform convergence in both x and
h. In addition, H ′

h(x) is assumed to be uniformly bounded as h → 0.5 We note that in order
to compute u′

h it is not necessary to know the function Fh,λ(x); it is sufficient to show that
(4.1) holds. Indeed, Fh,λ(x) solves (2.5) with t(x) replaced by th(x; λ) and V 0 replaced by
V 0

h . Differentiating this equation in λ at λ = 0 we obtain

∫

Ωh

(L0e(u
′
h), e(ϕ))dx−

∫

∂Ω

(tlinh ,ϕ)ds = 0, (4.2)

for all ϕ ∈ Vh. Here u′
h − uh ∈ V 0

h , where

uh =
∂yh

∂λ
(x; 0), tlinh (x) =

∂th
∂λ

(x; 0).

Next we introduce the function

m(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

(L(Fh,λ(x))∇ϕ(x),∇ϕ(x))dx (4.3)

5While we are not aware of a general theorem that would guarantee the existence of such equilibrium
deformations yh,λ satisfying (4.1), the existence of a trivial branch for the special case of a thin periodic plate
was proved in [29].
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which defines the stability locus

S = {(h, λ) ∈ (0, +∞) × (−∞, 0) : m(h, λ) ≥ 0}.

The critical load can now be defined as the smallest in absolute value λ making the trivial
branch unstable. More precisely,

λ(h) = sup{λ < 0: m(h, λ) < 0}. (4.4)

Definition 4.1 An instability of the trivial branch is called a near-flip buckling if

λ(h) < 0 (4.5)

for sufficiently small h and
lim
h→0

λ(h) = 0. (4.6)

Below we show that the near-flip buckling is indeed “close” to flip in the sense that the
variation ϕ that decreases the energy is close to the space of infinitesimal rotations.

First observe that since the admissibility of a variation

ϕ = Sx+ a (4.7)

already leads to flip in a stress-free configuration, the infinitesimal stability of a configuration
that is close to the stress-free state should be linked to the order of magnitude of the Korn
constant KL0(Vh), which vanishes if Vh contains a map (4.7). Thus,

|m(h, λ) − KL0(Vh)| ≤ sup
ϕ∈Vh

‖∇ϕ‖=1

∣∣∣∣
∫

Ωh

((L(Fh,λ(x)) − L0)∇ϕ,∇ϕ)dx

∣∣∣∣ ≤ C|λ| (4.8)

and, in particular,

lim
λ→0

m(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

(L0e(ϕ), e(ϕ))dx = KL0(Vh). (4.9)

One can see that if K(Vh) does not vanish as h → 0 (recall that K(Vh) = 1/2 in hard device),
buckling will be prohibited. We conclude that condition

KL0(Vh) → 0, as h → 0 (4.10)

is necessary for near-flip buckling. Moreover, we can prove the following bound on the critical
load (see also [21]).

Lemma 4.2 There exists a constant c > 0 such that

λ(h) ≤ −cKL0(Vh). (4.11)

12



Proof: The inequality (4.8) can be written as

KL0(Vh) − C|λ| ≤ m(h, λ) ≤ KL0(Vh) + C|λ|, (4.12)

where C > 0. Taking λ = λ(h) and using m(h, λ(h)) = 0, we obtain (4.11) with c = 1/C.

The lemma says that the Korn constant provides a lower bound on the magnitude of the
critical load. While condition (4.10) is necessary for (4.6), it is surely not sufficient. Indeed,
a square body under dead tension has Korn constant zero, but is perfectly stable. This shows
that the smallness of the Korn constant expresses only the potential susceptibility of the
structure to buckling that may occur under an appropriate load (or to flip, if Korn constant
is zero). For a given load that potential may or may not be realized.

As a corollary of Lemma 4.2, we conclude that the condition

KL0(Vh) > 0 (4.13)

is sufficient for (4.5). Yet, it is not necessary for the near-flip buckling. Indeed, if the structure
is a square under a dead tension with an attached slender arm under a dead compression, then
the Korn constant is again zero. At the same time flip instability is ruled out by the large
and positive value of the average Cauchy stress (condition (3.3) is violated). The slender arm,
however, will buckle at a finite compressive loading. This example confirms that in general
we cannot expect the Korn constant alone to give even the order of magnitude for the critical
load.

Our next aim is to find, in the case of near-flip buckling, the analog of the condition
Tr 〈σ′〉 > 0, which has proved to be sufficient for the flip. To this end, we observe that the
inequality

m0(λ) = lim
h→0

m(h, λ) < 0,

that holds for all sufficiently small λ < 0 (compressive loads), is a sufficient condition for
(4.6). Taking a limit in the inequality (4.8), as h → 0 and using (4.10) we obtain

|m0(λ)| ≤ C|λ|.

Thus, to understand the sign of m0(λ) at small λ < 0, we need to study the sign of

m′
0 = lim

λ→0−

m0(λ)

λ
. (4.14)

In particular, we may already conclude that the inequality m′
0 > 0 is sufficient for (4.6).

The sufficient condition we have just derived is not entirely satisfactory because m′
0 is not

represented in terms of the linear elastic parameters as one would expect, given the smallness
of the load. Our next step is therefore to replace the function m(h, λ) by a simpler ”linearized”
expression, which preserves its asymptotics near (0, 0).
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5 Constitutive linearization

When λ is small, while h is finite, one would normally fully linearize the problem by discarding
terms that are infinitesimal in λ and replace δ2E(Fh,λ,ϕ) with

∫
Ωh

(L0e(ϕ), e(ϕ))dx. Indeed,

if ‖∇ϕ‖ = 1 then ∣∣∣∣δ
2E(Fh,λ,ϕ) −

∫

Ωh

(L0e(ϕ), e(ϕ))dx

∣∣∣∣ ≤ C|λ|, (5.1)

where the constant C > 0 is independent of h and ϕ. The second term on the left hand
side of (5.1) is bounded from below by the Korn constant KL0(Vh), because ϕ ∈ Vh. If the
Korn constant degenerates in the limit of small h (e.g. if condition (4.10) is satisfied), the
zeroth order term,

∫
Ωh

(L0e(ϕ), e(ϕ))dx, may not necessarily dominate the terms that we

have discarded in our development of δ2E(Fh,λ,ϕ). In other words, the classical linearization
procedure may fail when both λ and h are small.

In order to recover the full two-parameter structure of the asymptotics of m(h, λ) we
utilize the view of buckling as a near-flip instability. More precisely, we show that, in parallel
with Theorem 3.2 the almost minimizers ϕh,λ for m(h, λ) are close to infinitesimal rotations.
The mean-square distance from the former to the latter, ‖e(ϕh,λ)‖, is to be regarded as a
measure of the deviation of the near-flip buckling from the flip.

Let ϕh,λ ∈ Vh be an almost-minimizer in (4.3), i.e. ‖∇ϕh,λ‖ = 1 and

δ2E(Fh,λ,ϕh,λ) − m(h, λ) = o(λ), (5.2)

where o(λ) is understood in the sense of uniform in h convergence, as λ → 0. Then, according
to (5.1) and (5.2),

‖e(ϕh,λ)‖2 ≤ 1

γ0

m(h, λ) + C|λ|,

where γ0 > 0 is the smallest eigenvalue of L0 regarded as an operator on Sym(R2). Applying
inequality (4.8), we obtain the desired estimate

‖e(ϕh,λ)‖2 ≤ 1

γ0
KL0(Vh) + C|λ| (5.3)

meaning, in particular, that
lim

(h,λ)→(0,0)
‖e(ϕh,λ)‖ = 0. (5.4)

Relation (5.4) will allow us to improve the naive linearization attempt (5.1). We recall that
according to (2.11),

δ2E(Fh,λ,ϕh,λ) = T1 + T2,

where

T1 =

∫

Ωh

4(ŴCC(Ch,λ)(F
t
h,λ∇ϕh,λ),F

t
h,λ∇ϕh,λ)dx

and

T2 =

∫

Ωh

2(ŴC(Ch,λ), (∇ϕh,λ)
t∇ϕh,λ)dx.
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Expanding Fh,λ by means of (4.1), we obtain the asymptotic expansions of T1 and T2, as
(h, λ) → (0, 0):

T1 =

∫

Ωh

(L0e(ϕh,λ), e(ϕh,λ))dx+ O(λ‖e(ϕh,λ)‖) + o(λ).

and

T2 = λ

∫

Ωh

(σ′
h(x), (∇ϕh,λ)

t∇ϕh,λ)dx+ o(λ).

Here
σ′

h(x) = L0e(u
′
h) (5.5)

is the incremental stress (cf. (3.5)).
In classical linearization one drops all terms of order λ and smaller. However, if ∇ϕh,λ

were skew-symmetric, relations (2.12) and (2.13) would tell us that it is the “main term”
that needs to be discarded. In our case, when ∇ϕh,λ are close to infinitesimal rotations, both
the main term and order-λ term need to be retained. Our error estimates show that, unless
order-λ term vanishes, the error terms are negligible in the limit (h, λ) → (0, 0). Thus,

m(h, λ) ∼
∫

Ωh

(L0e(ϕh,λ), e(ϕh,λ))dx+ λ

∫

Ωh

(σ′
h(x), (∇ϕh,λ)

t∇ϕh,λ)dx.

This analysis suggests that m(h, λ) may be replaced by a much simpler functional

m̂3D(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

{(L0e(ϕ), e(ϕ)) + λ(σ′
h(x), (∇ϕ)t∇ϕ)}dx. (5.6)

In what follows we refer to this reduction of the problem as constitutive linearization because
only the material behavior has been linearized, not the geometry. While such approximation
is similar in spirit to the nonlinear Föppl-von Kármán theory of plates [8, 13, 16, 35, 44],
our functional (5.6) deals with arbitrary geometries and should be rather considered as the
extension and formalization of a heuristic linearization approach of Biot [3]).

In 2D (our main case of interest) one can simplify the functional m̂3D(h, λ) a bit further,
by replacing ∇ϕ with its skew-symmetric part ∇ϕ− e(ϕ) and observing that in 2D

(∇ϕ− e(ϕ))t(∇ϕ− e(ϕ)) =
1

4
|∇ × ϕ|2I.

Thus, using the identity

|∇ϕ|2 = |e(ϕ)|2 +
1

2
|∇ ×ϕ|2,

we obtain:

(σ′
h(x), (∇ϕh,λ)

t∇ϕh,λ) =
1

2
Trσ′

h(x)|∇ϕh,λ|2 + O(|e(ϕh,λ)|). (5.7)

Notice that Trσ′
h in (5.7) and Trσ′ in (3.8) appear for the same reason: an application of

(2.11) with ξ = S.
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We can now summarize our results. After the partial linearization of the problem, we
obtained that

m(h, λ) =

∫

Ωh

{
(L0e(ϕh,λ), e(ϕh,λ)) + λth(x)|∇ϕh,λ|2

}
dx+ O(λ‖e(ϕh,λ)‖) + o(λ), (5.8)

as (h, λ) → (0, 0), where

th(x) =
1

2
Trσ′

h(x). (5.9)

This suggests that we may replace the original functional m(h, λ) with

m̂(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

{
(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2

}
dx. (5.10)

Next we define the analogs of m′
0 and λ(h) (see (4.14) and (4.4)) as

m̂′
0 = lim

λ→0−
lim
h→0

m̂(h, λ)

λ
(5.11)

and
λ̂(h) = sup{λ < 0: m̂(h, λ) < 0}. (5.12)

Observe that the quantities m̂′
0 and λ̂(h) are expressed in terms of linear elastic parameters.

As such they are much simpler to compute than the original quantities m′
0 and λ(h). For

example, in the special case of homogeneous trivial branch th(x) = th, the functional m̂(h, λ)
can be computed explicitly: m̂(h, λ) = KL0(Vh) + λth. Therefore m̂′

0 = limh→0 th and

λ̂(h) = −KL0(Vh)

th
.

By contrast, m(h, λ) cannot always be computed explicitly even in the homogeneous case.

Definition 5.1 We say that m(h, λ) and m̂(h, λ) are buckling-equivalent or B-equivalent, if

m̂′
0 = m′

0 and the corresponding critical loads λ(h), λ̂(h) have the same asymptotics as h → 0,
i.e.

lim
h→0

λ̂(h)

λ(h)
= 1. (5.13)

One of the goals of the paper is to formulate a criterion for B-equivalence of m(h, λ) and
m̂(h, λ). To this end we first notice that by (5.8) and (5.3)

m(h, λ) ≥ m̂(h, λ) + o(λ), (5.14)

as (h, λ) → (0, 0). The reverse inequality is also true because the process of passing from
m(h, λ) to m̂(h, λ) is reversible. Indeed, the argument leading to (5.14) is based on the
estimate (5.3) for the almost minimizer ϕh,λ for m(h, λ). The estimate (5.3) in turn, follows
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from regularity of the trivial branch (4.1) and the inequality (5.1). Clearly, the estimate
(5.3) also holds for the almost minimizer ϕ̂h,λ of m̂(h, λ) because the inequality (5.1) holds if
δ2E(Fh,λ,ϕ) is replaced by

∫

Ωh

{
(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2

}
dx.

Thus,
m(h, λ) = m̂(h, λ) + o(λ), (5.15)

as (h, λ) → (0, 0). The relation (5.15) already incorporates the preceding asymptotic analysis
and will serve as a main tool for proving B-equivalence.

6 Compressive loads

In Section 4 we have identified m′
0 > 0 as a sufficient condition for near-flip buckling. In

this section we show that this condition may be interpreted as the criterion for existence of
a sufficiently compressed slender element. We begin with an introduction of a new implicit
measure of compressiveness for the applied loads.

Definition 6.1 We say that the loading is compressive if c > 0, where

c = sup
ϕh∈Vh

‖∇ϕh‖=1
‖e(ϕh)‖→0

lim
h→0

∫

Ωh

th(x)|∇ϕh|2dx. (6.1)

Theorem 6.2 If (4.10) and (4.13) hold, and the loading is compressive, then the trivial
branch undergoes a near-flip buckling instability in the sense of Definition 4.1. Moreover,

m′
0 = m̂′

0 = c. (6.2)

Proof: The first equality in (6.2) is an immediate consequence of (5.15). To prove the
second equality in (6.2), we recall that an almost-minimizer ϕh,λ for m(h, λ) satisfies (5.8).
Then, by positive definiteness of L0, we have

m′
0 ≤ lim

λ→0−
lim
h→0

∫

Ωh

th(x)|∇ϕh,λ|2dx.

We claim that

lim
λ→0−

lim
h→0

∫

Ωh

th(x)|∇ϕh,λ|2dx ≤ c. (6.3)

Indeed, there exist sequences λn → 0− and hn → 0+ such that

lim
λ→0−

lim
h→0

∫

Ωh

th(x)|∇ϕh,λ|2dx = lim
n→∞

∫

Ωhn

thn
(x)|∇ϕhn,λn

|2dx.
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Thus, in view of (5.4), the inequality (6.3) holds.
Conversely, suppose that ϕh ∈ Vh is any sequence satisfying both ‖∇ϕh‖ = 1, and

‖e(ϕh)‖ → 0 as h → 0, (such sequences exist, due to condition (4.10)). Using this sequence
as test functions in the variational principle (5.10) we obtain

m̂′
0 ≥ lim

h→0

∫

Ωh

th(x)|∇ϕh|2dx.

Taking supremum over all such sequences we confirm that m′
0 ≥ c.

7 Euler buckling

We can prove B-equivalence of the original and the linearized problems by making additional
smoothness assumptions on m̂(h, λ).

Theorem 7.1 Assume that for all h sufficiently close to zero the function λ 7→ m̂(h, λ)
is differentiable in a neighborhood of λ = 0 and that the partial derivative ∂m̂(h, λ)/∂λ is
continuous at (0, 0). Assume further that c > 0. Then m and m̂ are B-equivalent and

λ(h) ∼ −KL0(Vh)

c
. (7.1)

Proof: The behavior of the function m̂(h, λ) in the vicinity of (0, 0) is described by the
Lagrange’s mean value theorem

m̂(h, λ) = KL0(Vh) + λch,λ, (7.2)

where

ch,λ =
∂m̂

∂λ
(h, θ(h, λ)),

and θ(h, λ) ∈ (λ, 0). Formula (5.11) gives m̂′
0 = ∂m̂(0, 0)/∂λ. Therefore, by Theorem 6.2 and

continuity of ∂m̂(h, λ)/∂λ at (0, 0), we get

lim
(h,λ)→(0,0)

ch,λ = c.

If c > 0, then, according to Theorem 6.2, λ̂(h) < 0, λ(h) < 0 and

lim
h→0

λ̂(h) = lim
h→0

λ(h) = 0. (7.3)

Substituting λ = λ̂(h) into (7.2), dividing by λ̂(h) and passing to the limit as h → 0, we
obtain

0 = lim
h→0

KL0(Vh)

λ̂(h)
+ c. (7.4)
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Figure 2: Flip that is not close to buckling

Combining (7.2) and (5.15), we can write that

m(h, λ) = KL0(Vh) + λch,λ + o(λ), (7.5)

as (h, λ) → (0, 0). Substituting λ = λ(h) into (7.5), dividing by λ(h) and passing to the limit
as h → 0, we obtain

0 = lim
h→0

KL0(Vh)

λ(h)
+ c.

Observe that the formula (7.1) makes explicit the competition between the stabilizing and the
destabilizing forces. In particular, the parameter c > 0 indicates the destabilizing presence
of flip instability, while KL0(Vh) is a measure of the stabilizing effect of the domain geometry
and mixed type loading. In the special case of a homogeneous trivial branch, Theorem 7.1 is
applicable and condition c > 0 is equivalent to Trσ∗ > 0, where

σ∗ = lim
h→0

σ′
h.

Comparing this with Theorem 3.1 we see that in the homogeneous case the sufficient condi-
tions for flip instability and buckling instability coincide. This phenomenon is peculiar to two
dimensions. In 3D, the sufficient conditions for buckling is that all three inequalities (3.9)
hold, where σ1, σ2 and σ3 are now the eigenvalues of σ∗. This is different from the sufficient
condition for flip, requiring that only one of the inequalities (3.9) hold. Figure 2 shows the
loading of a slender structure that is susceptible to flip, but not to buckling. In other words
every near-flip buckling instability is close to a flip, but in 3D, unlike in 2D, not every flip
instability is close to buckling.

To illustrate the case when the smoothness assumptions in Theorem 4 are justified consider
the problem of the Euler buckling (e.g. [9, 25, 26, 39, 45]). Suppose that the domain Ωh is
a rectangle Rh = [0, 1] × [−h/2, h/2] depicted in Figure 3; here h can be viewed as the
non-dimensional aspect ratio. The long sides x2 = ±h/2 are assumed to be free

WF (F (x))e2 = 0, at x2 = ±h/2, (7.6)
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x1

x2

−h/2

h/2

1

Figure 3: Two-dimensional Euler strut Rh

while on the short sides x1 = 0, 1 we apply compressive dead loading

WF (F (x))e1 = λe1, at x1 = 0, 1, λ < 0. (7.7)

If a homogeneous deformation yλ(x) satisfies (7.6)–(7.7) then its deformation gradient Fλ

satisfies (3.7) with P0 = e1 ⊗ e1:

WF (Fλ) = λe1 ⊗ e1. (7.8)

Notice that Lemma A.1 in Appendix A guarantees the existence of the smooth in λ function
Fλ satisfying (7.8). Differentiating (7.8) in λ at λ = 0 we obtain

σ′
h = e1 ⊗ e1, th =

1

2
.

In order to avoid flip instability, we augment the boundary conditions (7.6)–(7.7) with an
additional requirement that the average displacements of the sides x1 = 0, 1 in the x2 direction
are zero6: ∫ h/2

−h/2

y2(0, x2)dx2 =

∫ h/2

−h/2

y2(1, x2)dx2 = 0. (7.9)

It is easy to see that the deformation yλ(x) = Fλx satisfies additional boundary conditions
(7.9). Indeed, due to frame indifference the matrix WF (Fλ)F

t
λ = λe1 ⊗ Fλe1 is necessarily

symmetric and therefore e1 must be an eigenvector for Fλ. Then

(yλ(1, x2), e2) = (Fλe1, e2) + x2(Fλe2, e2) = x2(Fλe2, e2) = (yλ(0, x2), e2),

and (7.9) is satisfied. Next we verify conditions (4.13) and (4.10) that are necessary for near-
flip buckling. The space Vh of admissible variations corresponding to the Euler strut with

6In his classical paper [12, pp. 102-103] Euler speaks about the column “placed vertically upon the base”
and adds that it has “to be so constituted that it can not slip”.
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loading (7.6)–(7.9) is

Vh =

{
ϕ ∈ W 1,2(Rh; R

2) :

∫ h/2

−h/2

(ϕ(0, x2), e2)dx2 =

∫ h/2

−h/2

(ϕ(1, x2), e2)dx2 = 0

}
. (7.10)

Condition (4.13) is satisfied because Vh does not contain maps of the form Sx+a. Condition
(4.10) follows from [36], where it was shown that

K(V R
h ) =

1

4

(
1 − πh

sinh(πh)

)
∼ π2h2

24
.

Here

V R
h =

{
ϕ ∈ W 1,2(Rh; R

2) : (ϕ(0, x2), e2) = (ϕ(1, x2), e2) = 0, x2 ∈
[
−h

2
,
h

2

]}
,

and V R
h ⊂ Vh.

The asymptotics of the critical load is determined by Theorem 7.1, which gives

λ(h) ∼ −2KL0(Vh), (7.11)

where we have used that c = limh→0 th = 1/2. Also, according to [36], λ(h) = O(h2). In fact,
we can compute the asymptotics of the (anisotropic) Korn constant exactly.

Theorem 7.2

lim
h→0

KL0(Vh)

h2
=

Eπ2

24
,

where
E = (L−1

0 (e1 ⊗ e1), e1 ⊗ e1)
−1 (7.12)

is the (anisotropic) Young’s modulus.7

Proof: The idea of the proof is to bound the asymptotics of the Korn constant from
above and from below and show that the bounds agree. The upper bound is obtained by
means of the special test function in Korn’s inequality (2.15) (the reasoning behind this choice
is presented in Appendix B)

ϕ0(x) = α(x1)e2 − α′(x1)x2e1 +
1

2
α′′(x1)νx2

2 −
1

24
α′′(x1)νh2. (7.13)

Here ν is the anisotropic Poisson’s ratio (B.2) and α(x1) ∈ C2([0, 1]) with α(0) = α(1) = 0.
Clearly, the map ϕ0, restricted to Rh belongs to the space Vh for all h > 0. The ansatz
essentially equivalent to (7.13) was first proposed by Kirchhoff in his analysis of the bending

7If L0 is isotropic, i.e L0ξ = κ(Tr ξ)I + µ(ξ + ξt − (Tr ξ)I), then E = 4κµ/(κ + µ) is the 2D Young’s
modulus.
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of thin plates [23] and was later generalized for shells by Love [27]. The link between buck-
ling (and therefore bending) and the Korn constant is suggested by Theorem 7.1 that holds
for the Euler strut (plate in 3D). The formula (7.1) in Theorem 7.1 implies that minimiz-
ers representing buckling modes and the optimal functions in the Korn inequality (2.15) are
asymptotically equivalent. Hence, Kirchhoff-Love ansatz for bending should also be appro-
priate for estimating the Korn constant.

Observe that the gradient of the ansatz ϕ0 can be interpreted as a “parameterized flip”,

∇ϕ0(x) = α′(x1)S + O(h). (7.14)

In other words, if the slender Euler strut is viewed as a union of loosely connected rigid square
blocks of size h, then formula (7.14) interprets buckling as a coherent combination of flips of
the individual blocks.

Using ϕ0 as a test function in the generalized Korn’s inequality (2.15) we obtain

lim
h→0

KL0(Vh)

h2
≤ lim

h→0

∫
Rh

(L0e(ϕ0), e(ϕ0))dx

h2‖∇ϕ0‖2
=

∫ 1

0
(L0Ω(x1),Ω(x1))dx1

24
∫ 1

0
(α′(x1))2dx1

, (7.15)

where
Ω(x1) = α′′(x1)(ν ⊙ e2 − e1 ⊗ e1) (7.16)

and ⊙ denotes the symmetrized tensor product

a⊙ b =
1

2
(a⊗ b+ b⊗ a). (7.17)

Observing that

(L0(ν ⊙ e2 − e1 ⊗ e1),ν ⊙ e2 − e1 ⊗ e1) = (L−1
0 (e1 ⊗ e1), e1 ⊗ e1)

−1 = E,

we get

lim
h→0

KL0(Vh)

h2
≤ E

∫ 1

0
(α′′(x1))

2dx1

24
∫ 1

0
(α′(x1))2dx1

.

However,

min
α(0)=α(1)

∫ 1

0
(α′′(x1))

2dx1∫ 1

0
(α′(x1))2dx1

= π2, (7.18)

and so we obtain

lim
h→0

KL0(Vh)

h2
≤ Eπ2

24
.

The reverse inequality can be proved by the application of the dimension reduction lemma,
which is a linearized version of the results obtained in [15, 30]. Indeed, if we rescale the domain
Rh to R1 = [0, 1] × [−1/2, 1/2] through the change of variables z2 = x2/h and introduce the
rescaled operators

∇hu =

(
∂u

∂x1
,
1

h

∂u

∂z2

)
, eh(u) =

1

2
(∇hu+ (∇hu)t),

with u = u(x1, z2), we can prove the following
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Lemma 7.3 Suppose a sequence uh ∈ W 1,2(R1; R
2) satisfies ‖∇huh‖ ≤ C and ‖eh(uh)‖ ≤

Ch for small h and for some constant C independent of h. Then there exists a subsequence
(not relabeled) and a function α(x1) ∈ W 2,2([0, 1]) such that

∇huh → α′(x1)S (7.19)

in L2(R1; End(R2)), as h → 0, and

lim
h→0

1

h2

∫

R1

(L0e
h(uh), e

h(uh))dx1dz2 ≥
E

12

∫ 1

0

(α′′(x1))
2dx1.

Here the Young modulus E is given by (7.12).

The proof of Lemma 7.3 is analogous to the proof in [30, Th. 2.1] with SO(3) replaced by
RS—the Lie algebra of SO(2), and we only indicate here the main idea: apply Korn inequality
to each square of size h (after scaling back from R1 to Rh) and derive the difference quotient
estimate for ∇hu, [31]. Essentially we need to estimate how closely the deformation in each of
the “loosely connected” rigid square block of size h alluded to above, matches the infinitesimal
rotation (flip).

Returning to the proof of the Theorem 7.2, we let ϕh ∈ Vh be such that ‖∇ϕh‖ = 1 and

lim
h→0

∫
Rh

(L0e(ϕh), e(ϕh))dx

KL0(Vh)
= 1.

Then the sequence uh(x1, z2) =
√

hϕh(x1, z2h) satisfies conditions of Lemma 7.3. It follows
that there exists α(x1) ∈ W 2,2([0, 1]) such that

1 = lim
h→0

‖∇ϕh‖2 = lim
h→0

∫

R1

|∇huh|2dx1dz1 = 2

∫ 1

0

(α′(x1))
2dx1 (7.20)

and

lim
h→0

1

h2

∫

Rh

(L0e(ϕh), e(ϕh))dx = lim
h→0

1

h2

∫

R1

(L0e
h(uh), e

h(uh))dx1dz2 ≥
E

12

∫ 1

0

(α′′(x1))
2dx1.

Thus,

lim
h→0

KL0(Vh)

h2
≥ E

∫ 1

0
(α′′(x1))

2dx1

24
∫ 1

0
(α′(x1))2dx1

. (7.21)

Let us show that ϕh ∈ Vh implies that α(0) = α(1). Indeed, (7.19) implies that ∇vh → 0 in
L2(R1), where

vh = uh − α(x1)e2.

By the Poincaré inequality, there exists a sequence of constant vectors ch such that vh−ch → 0

in W 1,2(R1). Therefore,

lim
h→0

∫ 1/2

−1/2

(vh(0, z2) − ch, e2)dz2 = lim
h→0

∫ 1/2

−1/2

(vh(1, z2) − ch, e2)dz2 = 0.

23



0

0

h

λ

λ(h)

homogeneous deformation

buckled state

Figure 4: Asymptotic regions of stability in the (h, λ) plane near (0, 0)

We also have ∫ 1/2

−1/2

(uh(0, z2), e2)dz2 =

∫ 1/2

−1/2

(uh(1, z2), e2)dz2 = 0,

since uh(x1, x2/h) ∈ Vh. Thus,

α(0) = − lim
h→0

(ch, e2) = α(1),

and the inequality (7.21) implies together with (7.18) that

lim
h→0

KL0(Vh)

h2
≥ min

α(0)=α(1)

E
∫ 1

0
(α′′(x1))

2dx1

24
∫ 1

0
(α′(x1))2dx1

=
Eπ2

24
.

Our Theorem 7.2 together with (7.11) gives the explicit asymptotics of the critical load for
the Euler strut:

lim
h→0

λ(h)

h2
= −π2E

12
. (7.22)

Furthermore, the preceding analysis results in the asymptotic stability digram shown in
Figure 4. It is instructive to examine the domain of small compressive loadings on this
diagram. In the region between the lines λ = 0 (dotted line) and λ = λ(h) (thick line)
the classical linearization procedure is valid and the trivial solution is unique (the Kirchhoff
theorem applies). However, the range of λ corresponding to this classical linearization domain
shrinks to zero as h → 0, making the linearization limit non-uniform in h ( see also [29]).
Notice that any path corresponding to small fixed λ < 0 and h → 0 eventually enters into the
region of the stability diagram where the linearization around a trivial branch does not make
sense. Therefore the two limiting procedures, linearization and dimension reduction, do not
commute and the critical curve λ = λ(h) marks the crossover between the two qualitatively
different asymptotic regimes.
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8 Non-Euler buckling

Theorem 7.1 established B-equivalence between the finite elasticity problem and the constitu-
tively linearized problem when the function m̂(h, λ) is smooth (Euler buckling). In this section
we show that for structures containing multiple slender elements the function ∂m̂(h, λ)/∂λ is
never continuous at (0, 0) leading to what we call non-Euler buckling.

To emphasize ideas, we consider a somewhat schematic setting, where all irrelevant diffi-
culties are eliminated. More specifically, we assume that the structure Ωh is represented by
a union of three disjoint8 Euler struts of aspect ratios h,

√
h and h2. We will be referring

to them as C1, C1/2 and C2 respectively. The load within each strut is homogeneous but
different struts have different loads, so that

th(x) =





1, if x ∈ C1,
10, if x ∈ C1/2,
−1, if x ∈ C2.

The most slender strut C2 is under tension and is therefore stable. The thickest strut C1/2

is much more compressed than the strut C1 of intermediate thickness. Nevertheless it is the
latter strut that will buckle first, and so,

λ(h) ∼ −Eπ2h2

24
. (8.1)

To show that Theorem 7.1 fails to deliver the correct asymptotics for the critical load
(8.1) we first observe that the Korn constant for the domain Ωh is

KL0(Vh2) ∼ Eπ2h4

24
,

with the most slender strut C2 responsible for the value. At the same time the value c = 10
is determined by the load on the thickest strut C1/2. Then the expression

−KL0(Vh2)

c
∼ −Eπ2h4

240

neither delivers the correct asymptotics to the critical load nor makes any physical sense,
as it combines quantities that are produced by the unrelated elements of the structure. To
understand the problem we need to examine the function

m̂(h, λ) = min{KL0(Vh) + λ, KL0(V
√

h) + 10λ, KL0(Vh2) − λ}.

Here in a convenient abuse of notation, Vhα denotes the space of variations (7.10) for the
single Euler strut with aspect ratio hα; the space of variations corresponding to our problem

8Disjointness in this example should not be understood literally. Our conclusions remain valid for an Euler
strut which is cracked, meaning that the elements remain attached to the main structure by their slender
bases.
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Figure 5: The graph of m̂(h, λ) for the split strut example.

is then Vh ⊕ V√
h ⊕ Vh2. We may also write

m̂(h, λ) =






KL0(Vh2) − λ, if λ ∈
[
1

2
(KL0(Vh2) − KL0(Vh)), 0

]

KL0(Vh) + λ, if λ ∈
[
1

9
(KL0(Vh) − KL0(V

√
h)),

1

2
(KL0(Vh2) − KL0(Vh))

]

KL0(V
√

h) + 10λ, if λ ≤ 1

9
(KL0(Vh) − KL0(V

√
h)).

It is easy to see that m̂(0, λ) = 10λ and c = ∂m̂(0, 0)/∂λ = 10. The function ∂m̂(h, λ)/∂λ

has jump discontinuities along the curves λ =
1

2
(KL0(Vh2) − KL0(Vh)) and λ =

1

9
(KL0(Vh) −

KL0(V
√

h)), shown in Figure 5, violating both assumptions of Theorem 7.1.9

We conclude that Theorem 7.1 is not applicable to complex structures with multiple
slender elements. Notice, however, that buckling in the above example is determined by
the instability of a single Euler strut C1 and therefore, even though the conditions of the
Theorem 7.1 are violated, the problems for m and m̂ are B-equivalent. Therefore, we could
have solved the problem by applying Theorem 7.1 to the Euler buckling of the strut C1—the
substructure of Ωh that determines the critical load λ̂(h). The nontrivial question, however,
is how to extract such “most vulnerable” substructure in the general case.

9If we had assumed that the individual struts were in fact attached to the “main structure” by their slender
bases, only the continuity of ∂m̂/∂λ at (0, 0) would have failed.
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9 B-equivalence

In this section we relax the smoothness assumptions on m̂(h, λ), and prove a more general
B-equivalence theorem that is able to handle the non-Euler buckling discussed in Section 8.

First, to every sequence λ̃(h) < 0 such that λ̃(h) → 0 as h → 0, we associate a non-
negative number10 (including infinity)

p = lim
h→0

λ̃(h)

λ̂(h)
.

We regard two different sequences λ̃(h) as equivalent if they correspond to the same p. Our
goal then is to find sufficient conditions for the sequence λ(h) to belong to the class p = 1.

The idea is to show that when h → 0, m(h, λ̃(h)) has different asymptotics for se-

quences λ̃(h) that belong to different p-classes. The desired information on the asymptotics

of m(h, λ̃(h)) can be obtained via the relation (5.15). In what follows we show that λ(h)
belongs to the class p = 1, if the ratio of the main term to the residual in (5.15) is sufficiently
large.

For each p > 0 we use the sequence λ̃(h) = pλ̂(h) as a representative of the class p. Then,
from (5.15) we obtain

m(h, pλ̂(h)) = m̂(h, pλ̂(h)) + o(λ̂(h)).

The first term on the right-hand side is the main term, while the second term represents the
residual. We may normalize the residual to obtain

m(h, pλ̂(h))

λ̂(h)
= fh(p) + o(1), (9.1)

where

fh(p) =
m̂(h, pλ̂(h))

λ̂(h)
. (9.2)

The plan is to show that when h → 0 the normalized main term fh(p) depends on p in an
“essential way” in the vicinity of p = 1.

It is easy to see that functions fh(p) are uniformly bounded and uniformly Lipschitz
continuous on any compact subset of (0, +∞). Thus, by the Ascoli-Arzela theorem, there
exists a subsequence hk and a continuous function M(p) such that

lim
k→∞

fhk
(p) = M(p) (9.3)

uniformly in p on compact subsets of (0, +∞). From now on we restrict our attention to this
subsequence hk and relabel it back to h to simplify notation.

10If the limit does not exists, we restrict h to a convergent subsequence.
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To distinguish sequences λ̃(h) belonging to different classes p, we need the function M(p)
to be strictly monotone in the vicinity of p = 1. First we observe that

N(s) = lim
h→0

sfh

(
1

s

)
(9.4)

is a convex and non-increasing function on (0, +∞). Indeed, we can write

N(s) = lim
h→0

n

(
h,

s

λ̂(h)

)
,

where

n(h, τ) = sup
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

{
τ(L0e(ϕ), e(ϕ)) + th(x)|∇ϕ|2

}
dx (9.5)

is a strictly monotone increasing and convex function of τ . Thus, N(s) is also convex and
non-increasing function of s. By passing to the limit as h → 0 in (9.4), we obtain

M(p) = pN

(
1

p

)
. (9.6)

This formula implies that M(p) is strictly monotone increasing in the vicinity of p = 1 if
and only if N(s) is strictly decreasing around s = 1. For real-valued, convex, non-increasing
functions there is a simple characterization of strict monotonicity near a point.

Lemma 9.1 Let N(s) be a non-increasing, convex function on (0, +∞). N(s) is strictly
decreasing around s0 > 0 if and only if N ′(s0+) < 0.

Proof: For real-valued convex, non-increasing functions the one-sided derivatives

N ′(s±) = lim
ǫ→0±

N(s + ǫ) − N(s)

ǫ

always exist and are non-positive. If N ′(s0+) < 0 then N ′(s0−) ≤ N ′(s0+) because N(s) is
a convex function and its (one-sided) derivative is therefore a non-decreasing function of s (if
we assume that s− < s+). But then N(s) is strictly decreasing around s0.

Assume now that N ′(s0+) = 0. Then for any s > s0 we have

0 ≥ N ′(s+) ≥ N ′(s−) ≥ N ′(s0+) = 0.

Therefore, N ′(s±) = 0 for every s > s0. We conclude that N(s) = N(s0) for all s > s0.

Lemma 9.1 implies that M(p) is strictly monotone increasing around p = 1 if and only if
c
∗ > 0, where

c
∗ = −N ′(1+) = M ′(1−). (9.7)
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One can see that c
∗ is exactly the measure of compressiveness c in the example from Section 8

corresponding to the strut C1. Indeed, a straightforward calculation shows that in this case

M(p) = max{−p, p − 1} =

{
−p, if p ∈ [0, 1/2]

p − 1, if p > 1/2.

Thus, c
∗ = M ′(1) = 1.

Clearly, computing c
∗ may be demanding in cases, where m̂(h, λ) is not known explictly. It

is important to realize, however, that we only need to verify that c
∗ is positive without having

to compute its value. The following alternative, that is a simple corollary of Lemma 9.1 and
formula (9.6), is important in both theory and examples.

Corollary 9.2 Either c
∗ > 0 and M(p) < 0, for all p ∈ (0, 1), and M(p) > 0, for all p > 1

or c
∗ = 0 and M(p) = 0 for all p ∈ (0, 1].

In order to complete the theory we need to show that B-equivalence indeed takes place when
the asymptotics of m̂(h, pλ̂(h)) depends on p in an “essential way”.

Theorem 9.3 Assume that c
∗ > 0. Then m(h, λ) and m̂(h, λ) are B-equivalent.

Proof: According to Corollary 9.2, c
∗ > 0 implies that M(p) < 0 for all p ∈ (0, 1) and

M(p) > 0 for all p > 1. Let us choose any p > 1. Then

lim
h→0

m(h, pλ̂(h))

λ̂(h)
= lim

h→0

m̂(h, pλ̂(h))

λ̂(h)
= M(p) > 0,

due to (9.1). Therefore, there exists h0 > 0 such that m(h, pλ̂(h)) < 0 for all h < h0. It

follows from the definition of λ(h) that λ(h) ≥ pλ̂(h). Thus,

lim
h→0

λ(h)

λ̂(h)
≤ p.

We conclude that

lim
h→0

λ(h)

λ̂(h)
≤ 1,

since, p > 1 was arbitrary.
Now, let p ∈ (0, 1). Then M(p) < 0 and, arguing as before, we conclude that there exists

h0 > 0 such that m(h, pλ̂(h)) > 0 for all h < h0. At this point, however, we cannot conclude

that λ(h) ≤ pλ̂(h) because the definition of λ(h) does not imply that m(h, λ) is negative for all
λ < λ(h) and m(h, λ) does not have to enjoy the same monotonicity properties as m̂(h, λ). Let
us show, however, that the desired limit inequality nevertheless holds. Arguing ad absurdum,
we assume that there is a sequence hn → 0 such that λ(hn) > pλ̂(hn). According to the
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definition (4.4) of λ(h) there exists λn ∈ (pλ̂(hn), λ(hn)) such that m(hn, λn) < 0. Hence, by
(5.15)

lim
n→∞

m̂(hn, λn)

λn
= lim

n→∞

m(hn, λn)

λn
≥ 0.

But
m̂(h, λ)

λ
= n

(
h,

1

λ

)
,

where n(h, τ), defined by (9.5), is a strictly monotone increasing function. Therefore,

m̂(hn, λn)

λn
<

m̂(hn, pλ̂(hn))

pλ̂(hn)
,

since λn > pλ̂(hn). Passing to the limit in the last inequality, we obtain

0 ≤ lim
n→∞

m̂(hn, λn)

λn

≤ M(p)

p
< 0.

The contradiction above shows that there exists h0 > 0, such that λ(h) ≤ pλ̂(h) for all h < h0.
Thus,

lim
h→0

λ(h)

λ̂(h)
≥ p

for all p < 1.

The measure of compressiveness c
∗ has the same meaning as c, except that it is generated by

the “substructure” of Ωh that is responsible for the critical load, while c corresponds to the
most compressed slender element. For the Euler strut those two measures of compressiveness
coincide, while for the split Euler strut from Section 8 they are different. Intuitively, it is
obvious that c ≥ c

∗, however to prove this inequality rigorously one needs to formalize the
“extraction of substructure” procedure.

Lemma 9.4 Assume that λ̂(h) < 0 for all small enough h and

lim
h→0

λ̂(h) = 0. (9.8)

Then
c ≥ c

∗ ≥ 0. (9.9)

Proof: Let ϕh ∈ Vh be an almost-minimizer for m̂(h, λ̂(h)) such that ‖∇ϕh‖ = 1 and

lim
h→0

∫

Ωh

{
(L0e(ϕh), e(ϕh))

λ̂(h)
+ th(x)|∇ϕh|2

}
dx = M(1) = 0. (9.10)
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According to (5.3), ‖e(ϕh)‖ → 0, as h → 0. Using ϕh as a test function for m̂(h, pλ̂(h)) we
obtain

fh(p) ≥
∫

Ωh

{
(L0e(ϕh), e(ϕh))

λ̂(h)
+ pth(x)|∇ϕh|2

}
dx.

Passing to the limit as h → 0 and using (9.10) we obtain, for p < 1, that

M(p) ≥ (p − 1) lim
h→0

∫

Ωh

th(x)|∇ϕh|2dx.

Thus,

c
∗ = lim

p→1−

M(p)

p − 1
≤ lim

h→0

∫

Ωh

th(x)|∇ϕh|2dx ≤ c.

To prove the last inequality in (9.9) we recall that N(s) is non-increasing. This implies that
M(p) is non-negative, when p > 1 and non-positive, when p < 1. Thus, c

∗ ≥ 0.

10 Failure of B-equivalence

In this section we give examples showing that the variational problems for m and m̂ can be
non B-equivalent even in the case when λ̂(h) → 0. Obviously, in this situation we must have
c
∗ = 0, i.e. the integral ∫

Ωh

th(x)|∇ϕh,λ|2dx

must be small. This can be achieved if th(x) is either small or very oscillatory. The application
of oscillatory forces will not result in the oscillatory stress field because of the St. Venant’s
principle (that expresses the smoothing properties of Green’s functions of elliptic operators).
Therefore, we concentrate on the case when th(x) is uniformly small.

Consider the rectangular domain Rh as in the Euler’s example in Section 7 and the loading
given by (7.8), with λ replaced by ρλh+λ2. The parameter ρ > 0 is fixed, but arbitrary. Let

λ(h) and λ̂(h) = 2KL0(Vh) denote the critical load of the Euler strut and its constitutively
linearized counterpart, respectively. Let Fλ be the homogeneous deformation gradient of the
trivial branch for the Euler strut from Section 7. If F̃h,λ and λ̃(h) are the trivial branch and
the critical load for our example with re-parameterized loading, then

F̃h,λ = Fλ(λ+ρh)

and

λ̃(h) = −1

2

(
ρh −

√
ρ2h2 + 4λ(h)

)
.

In other words λ̃(h) is the larger (smaller in absolute value) of the two negative roots of

x2 + xρh = λ(h), (10.1)
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provided

ρ >
2
√
−λ(h)

h
= ρc.

If ρ < ρc the strut never gets sufficiently compressed to buckle.
In order to determine th for our example we differentiate

WF (F̃h,λ) = (ρλh + λ2)e1 ⊗ e1 (10.2)

in λ at λ = 0 to obtain
σ̃h = ρhe1 ⊗ e1.

Therefore,

th =
ρh

2
,

and c = 0. The constitutively linearized critical load
̂̃
λ(h) for our example is related to the

constitutively linearized critical load λ̂(h) for Euler strut via

̂̃
λ(h) =

λ̂(h)

ρh
.

If 0 < ρ < ρc then constitutively linearized problem predicts a buckling load
̂̃
λ(h) → 0 while,

in fact, the strut does not buckle at all. We also observe that if ρ > ρc then

lim
h→0

λ̃(h)

̂̃
λ(h)

=

6ρ

(
ρ −

√
ρ2 − Eπ2

3

)

Eπ2
> 1

and therefore m and m̂ are not B-equivalent. Taking into account (7.22) and (5.13) we obtain
̂̃
λ(h) → 0, as h → 0 and thus, by Lemma 9.4, 0 = c ≥ c

∗ ≥ 0. Therefore, c
∗ = 0.

The above example can be viewed as a generalization of our remark at the end of Section 3
showing the possibility of a similar degeneracy in the case of flip. Here again the theory fails
because it implicitly assumes that λ gives the scale of magnitude of the applied loads. As in
the case of the flip, the condition c

∗ > 0 plays a dual role: it ensures B-equivalence of m and
m̂, and endows the parameter λ with the expected physical meaning.

Notice that in our example the surface m̂(h, λ) was smooth and there was no difference
between c

∗ and c. To show how the same scaling degeneracy presents itself in the non smooth
case, where c 6= c

∗, we consider two Euler struts, one with aspect ratio hα, the other with
aspect ratio h. The load on the first strut will be given by (7.8), with λ replaced by −λ2,
while the load on the second strut will be exactly as in (7.8). The first strut will buckle when
the load is

−
√

−λ(hα) ∼ −πhα
√

E

2
√

3
,
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while the second column will buckle at a load

λ(h) ∼ −Eπ2h2

12
.

If α < 2 and h is sufficiently small, the second strut will buckle first.
Now let us compute c

∗. We easily see that

th(x) =






0, x ∈ first strut

1

2
, x ∈ second strut

and

m̂(h, λ) = min{KL0(Vhα), KL0(Vh) +
1

2
λ}.

A simple calculation yields, M(p) = (p − 1)/2, if 0 < α ≤ 1, and

M(p) = max{0, 1

2
(p − 1)} =






0, if p ∈ [0, 1]

1

2
(p − 1), if p > 1,

if α ∈ (1, 2). Thus, when α ∈ (0, 1], we have c
∗ = 1/2 > 0, while c

∗ = M ′(1−) = 0, when
α ∈ (1, 2). At the same time, we have c = 1/2 > 0 for all α > 0. The problems m and m̂ are
B-equivalent for all α ∈ (0, 2), but c

∗ = 0 for α ∈ (1, 2). Hence, B-equivalence does not imply
c
∗ = 0.

To summarize, even when the loading on a slender element that determines the critical
buckling load is compressive and scales “nicely” with λ, it does not guarantee that c

∗ is
positive. In fact, the condition c

∗ > 0 requires that λ determines the scale of the load, not
only on the element that buckles first, but also on the elements that are more slender.

11 Simple sufficient conditions for B-equivalence

It is desirable to have conditions that guarantee positivity of c
∗ without the full knowledge

of the function M(p). Intuitively it is clear that if the most slender element in the structure
is under compression, then c

∗ > 0. To express this condition we introduce a new measure of
compressiveness

cK = sup
‖e(ϕh)‖2=O(K(Vh))

‖∇ϕh‖=1

lim
h→0

∫

Ωh

th(x)|∇ϕh|2dx. (11.1)

The idea behind introducing cK is that condition ‖e(ϕh)‖2 = O(K(Vh)) forces us to include
only those variations ϕh that are supported on the most slender element(s). Then, the condi-
tion cK > 0 says that one of the most slender elements in the structure is under compressive
load.11

11If Ωh contains multiple elements of maximal slenderness then cK corresponds to the most compressed one
of those. The element that buckles first will necessarily have maximal slenderness, but in general can still be
different from the one that generates cK .
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The parameter cK has several useful properties. First, its definition (11.1) implies that

c ≥ cK . (11.2)

Then, in view of the second example in Section 10, condition cK > 0 ensures that λ is the
correct loading scale on the most slender element. Moreover we can prove

Lemma 11.1 The following three statements are equivalent

(a) λ̂(h) = O(K(Vh)).

(b) cK ≥ c
∗ > 0.

(c) cK > 0.

Proof: Let us show that (a) ⇒ (b). By our assumption

M(0) = lim
h→0

KL0(Vh)

λ̂(h)
< 0. (11.3)

Therefore, by Corollary 9.2, c
∗ > 0. The proof of cK ≥ c

∗ simply repeats the proof of the
inequality (9.9) in Lemma 9.4. We only need to point out that the almost-minimizer ϕh for

m̂(h, λ̂(h)) always satisfies ‖e(ϕh)‖2 = O(|λ̂(h)|). The test function ϕh is admissible in the

definition (11.1) of cK , since by assumption λ̂(h) = O(K(Vh)).
The implication (b) ⇒ (c) is straightforward, so it remains to prove that (c) ⇒ (a).

Arguing ad absurdum we assume that there is a subsequence (not relabeled) such that

K(Vh)/λ̂(h) → 0, as h → 0. Let ϕh ∈ Vh be a sequence of test functions such that ‖∇ϕh‖ = 1,
‖e(ϕh)‖2 = O(K(Vh)) and

lim
h→0

∫

Ωh

th(x)|∇ϕh|2dx = cK .

Using the above sequence ϕh as a test function in the definition (5.10) of m̂ and applying the

identity m̂(h, λ̂(h)) = 0, we get

0 =
m̂(h, λ̂(h))

λ̂(h)
≥ lim

h→0

∫

Ωh

th(x)|∇ϕh|2dx = cK > 0.

This contradiction shows that λ̂(h) = O(K(Vh)).

Even though positivity of cK ensures positivity of c
∗, it is still possible for the element that

buckles first to be different from the element responsible for the value of the parameter cK .
Therefore inequality (b) in Lemma 11.1 may be strict. Consider for example a structure Ωh

consisting of two disjoint Euler struts under compression with aspect ratios h and 2h. If th(x)
on the second strut is twice as large as on the first one: t2 = 2t1, then, according to results of
Section 7, the first strut will buckle first, resulting in c

∗ = t1. At the same time cK = t2 = 2c∗.
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If we add a third Euler strut of aspect ratio
√

h with the value of th(x) equal to t3 > t2, then
we get c = t3 > cK . Thus, even within the context of Lemma 11.1, all the numbers c, cK and
c
∗ may be distinct. Observe also, that under the smoothness assumptions of Theorem 7.1,

we have c
∗ = c = cK . The first equality follows from the proof of Theorem 7.1, where in this

case M(p) = c(p − 1). The last equality is the consequence of (11.2) and Lemma 11.1(b).
A new sufficient condition of B-equivalence is provided by the following

Theorem 11.2 If cK > 0 then m(h, λ) and m̂(h, λ) are B-equivalent and λ(h) = O(K(Vh)).

Proof: If cK > 0 then, according to Lemma 11.1, c
∗ > 0 and λ̂(h) = O(K(Vh)). In that

case Theorem 9.3 ensures that the functionals m(h, λ) and m̂(h, λ) are buckling-equivalent,
and therefore, λ(h) = O(K(Vh)).

Corollary 11.3 If th(x) > t0 > 0 then m(h, λ) and m̂(h, λ) are B-equivalent.

We remark that the different measures of compressiveness and slenderness that have ap-
peared so far in the paper are in one way or another associated with the function M(p). For
instance, the quantities cK and KL0(Vh) are associated with the behavior of M(p) at p = 0.
Indeed, by Lemma 11.1, cK > 0 if and only if M(0) < 0, because

M(0) = lim
h→0

KL0(Vh)

λ̂(h)
.

The constant c = m̂′
0 is associated with the behavior of M(p) at p = ∞ because it corresponds

to the limit h → 0 at fixed λ. In fact,

N(0) ≥ m̂′
0 ≥ lim

p→∞

M(p)

p
= N(0+). (11.4)

The equality in the second position is secured if the element that buckles first is the most
compressed one. If the second inequality (11.4) is strict, we may interpret it as a statement
that m̂′

0 is determined by the behavior of M(p) “beyond p = ∞”. Finally, the quantities c
∗

and λ̂(h) are associated with the behavior of M(p) at p = 1 by virtue of their definitions,.

12 Critical load as a generalized Korn constant

The definition of Korn’s constant can be generalized as follows. Let Ω be an open and bounded
subset of R

2 and let V be a closed subspace of W 1,2(Ω; R2). Suppose that t(x) is an arbitrary
L∞ function on Ω. We say that t(x) is V -positive if there exists ϕ ∈ V such that

∫

Ω

t(x)|∇ϕ|2dx > 0.
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Let L be a fourth order elasticity tensor. Define

KL[t(x); V ] = inf
ϕ∈V

R

Ω t(x)|∇ϕ|2dx=1

∫

Ω

(Le(ϕ), e(ϕ))dx. (12.1)

Clearly, if t(x) = 1, we obtain the definition (2.15) of the Korn constant KL(V ). If t(x) is
not V -positive then the infimum in (12.1) is taken over an empty set, and KL[t(x); V ] = +∞.

Theorem 12.1 Let λ̂(h) < 0 be the critical load corresponding to m̂(h, λ). Then th is Vh-
positive and

λ̂(h) = −KL0 [th(x); Vh].

Proof: Suppose λ < 0, is such that m̂(h, λ) < 0. Then there exists ϕ ∈ Vh, such that
‖∇ϕ‖ = 1 and ∫

Ωh

{(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2}dx < 0. (12.2)

In particular, ∫

Ωh

th(x)|∇ϕ|2dx > 0, (12.3)

and th is Vh-positive. By using the definition (12.1) we obtain
∫

Ωh

(L0e(ϕ), e(ϕ))dx ≥ KL0 [th(x); Vh]

∫

Ωh

th(x)|∇ϕ|2dx.

Applying this inequality to (12.2) we get

0 > (KL0 [th(x); Vh] + λ)

∫

Ωh

th(x)|∇ϕ|2dx.

In view of (12.3), the inequality

λ < −KL0 [th(x); Vh]

is satisfied whenever m̂(h, λ) < 0. By definition of λ̂(h) there exists a sequence λn < λ̂(h)

such that m̂(h, λn) < 0 and such that λn → λ̂(h) as n → ∞. Thus, we conclude that

λ̂(h) ≤ −KL0 [th(x); Vh]. (12.4)

To prove equality in (12.4), let ϕ
(n)
h ∈ Vh be a minimizing sequence in the definition of

KL0 [th(x); Vh], i.e. ∫

Ωh

th(x)|∇ϕ(n)
h |2dx = 1

and

lim
n→∞

∫

Ωh

(L0e(ϕ
(n)
h ), e(ϕ

(n)
h ))dx = KL0 [th(x); Vh].
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Then, substituting

ϕ̂
(n)
h =

ϕ
(n)
h

‖∇ϕ(n)
h ‖

into (5.10) we get

m̂(h, λ) ≤ 1

‖∇ϕ(n)
h ‖2

(∫

Ωh

(L0e(ϕ
(n)
h ), e(ϕ

(n)
h ))dx+ λ

)
.

If λ < 0 is such that m̂(h, λ) > 0, then for every n ≥ 1

λ > −
∫

Ωh

(L0e(ϕ
(n)
h ), e(ϕ

(n)
h ))dx.

Passing to the limit, as n → ∞, we obtain

λ ≥ −KL0 [th(x); Vh]. (12.5)

If the inequality (12.4) is strict then there exists λ0 such that λ̂(h) < λ0 < −KL0 [th(x); Vh].

Therefore m̂(h, λ0) > 0, by definition of λ̂(h). Thus, λ0 satisfies (12.5), which is a contradic-
tion.

An important property of KL[t(x); V ] is its monotone dependence on t.

Theorem 12.2 Suppose t1(x) ≤ t2(x) for all x ∈ Ω and suppose that t1(x) is V -positive.
Then

KL[t1(x); V ] ≥ KL[t2(x); V ].

Proof: Clearly, t2(x) is V -positive, if t1(x) is. Moreover, if ϕ ∈ V is such that

∫

Ω

t1(x)|∇ϕ|2dx = 1, (12.6)

then ∫

Ω

t2(x)
∣∣∣∇
(ϕ

α

)∣∣∣
2

dx = 1,

where

α2 =

∫

Ω

t2(x)|∇ϕ|2dx ≥ 1.

Then

KL[t2(x); V ] ≤ 1

α2

∫

Ω

(Le(ϕ), e(ϕ))dx ≤
∫

Ω

(Le(ϕ), e(ϕ))dx.

To prove the theorem we must now take infimum over all ϕ ∈ V satisfying (12.6).
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The monotonicity of the generalized Korn constant allows one to derive bounds on the critical
buckling load. For example, the inequality th(x) ≤ ‖th‖∞ implies that

λ̂(h) ≤ −KL0(Vh)

‖th‖∞
. (12.7)

If in addition we know that th(x) ≥ t0 > 0 then

−KL0(Vh)

t0
≤ λ̂(h) ≤ −KL0(Vh)

‖th‖∞
. (12.8)

The inequalities (12.8) supplement results of Lemma 11.1 and Corollary 11.3. The second
inequality in (12.8) is equivalent to the (h, λ) → (0, 0) asymptotics of the best finite h bound
obtained in [10, 11]. In the homogeneous case the bounds (12.8) collapse, providing an explicit
formula for the asymptotics of the critical load as we have illustrated in the case of Euler’s
strut.

A Trivial branch

Here we study the question whether for small λ 6= 0 the equation (3.7) has a unique smooth
solution Fλ in the vicinity of F = I. The question is nontrivial because the implicit function
theorem cannot be applied directly due to the fact that L0 = WFF (I) has rank 3 < 4.

Lemma A.1 Let P0 ∈ Sym(R2) be such that TrP0 6= 0. Then there exists a neighborhood N
of I in End(R2) where

WF (F ) = λP0 (A.1)

has a unique solution Fλ for all sufficiently small λ 6= 0. In addition, Fλ is as smooth as
WF (F ), and

lim
λ→0

Fλ = I. (A.2)

Proof: The objectivity of the energy WF implies that the matrix WF (F )F t is sym-
metric. Then according to (A.1) the matrix P0F

t must also be symmetric. Define

L = {F ∈ End(R2) : P0F
t = FP0}.

The space L is three-dimensional for any P0 6= 012 and the function

G(F , λ) = WF (F )F t − λP0F
t

maps the neighborhood of I × {0} in L × R into the neighborhood of 0 in Sym(R2). In
particular, G(I, 0) = 0 and

GF (I, 0) = L0,

12In 3D the subspace L is 6-dimensional, unless rank(P0) ≤ 1.
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where L0 is understood as a map between L and Sym(R2). One can check that Skew(R2)∩L =
{0} if and only if TrP0 6= 0. Thus, the map L0 : L → Sym(R2) is a bijection and the implicit
function theorem is applicable. So, there exists a smooth function Fλ such that for small λ it
satisfies (A.2) and G(Fλ, λ) = 0. Thus, for small λ the matrices Fλ are invertible. Therefore,
Fλ satisfies (A.1).

Both conditions on P0 in Lemma A.1 are necessary. Indeed, if Fλ is a solution of (A.1),
then, differentiating (A.1), with F = Fλ at λ = 0, we get L0F

′
0 = P0, from which it follows

that P0 must be a symmetric. If TrP0 = 0, the question of solvability of (A.1) depends on
the particular form of W , and below we present an example when solution does not exist.

Fix any symmetric P0 6= 0 such that TrP0 = 0. Then there exists a symmetric matrix
M0 such that M0P0 is not symmetric and (M0,P0) > 0. Now let L0 represent a matrix of
positive definite quadratic form on Sym(R2) such that L0M0 = P0. It is easy to verify that
such a matrix always exists.

Lemma A.2 Let W (F ) =
1

4
(L0(F

tF − I),F tF − I), where L0 has been defined above. Then

there is no C2 function Fλ satisfying (A.2) and solving (A.1).

Proof: Suppose, on the contrary, that the desired function Fλ does exist. Then, for
our particular choice of W

Fλ(L0(F
t
λFλ − I)) = λP0. (A.3)

If we substitute the asymptotics

Fλ = I + λF1 + λ2F2 + o(λ2)

into (A.3) we obtain, equating terms of order λ and λ2

2L0F1 = P0, L0(F
t
1F1 + 2F2) + 2F1(L0F1) = 0.

It follows from the first equation above and non-degeneracy of L0 that F1 =
1

2
M0 +N , where

N is a skew-symmetric matrix. The second equation implies that the matrix

F1(L0F1) =
1

4
M0P0 +

1

2
NP0

is symmetric. In 2D one can show that if P0 is symmetric and trace-free and N is skew-
symmetric then NP0 is again symmetric and trace-free. Thus, the symmetry of F1(L0F1) is
equivalent to the symmetry of M0P0, which is false by construction.
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B Justification of the Kirchhoff-Love ansatz

First recall that the almost minimizers ϕh in the definition of the Korn constant (2.16)
satisfy Lemma 7.3. Moreover, strong convergence in L2 of the rescaled gradients

√
h∇hϕh

prevents oscillatory behavior. Thus, without loss of generalitywe may assume that the almost
minimizer ϕh depends on h smoothly and we can expand ϕh(x) in the powers of (x2, h):

ϕh(x) = φ(x1) +ψ(x1)x2 + η1(x1)h +
1

2
ξ(x1)x

2
2 +

1

2
η2(x1)h

2 + η12(x1)hx2 + O(h3).

We have
∇ϕh(x) = φ′(x1) ⊗ e1 +ψ(x1) ⊗ e2 + O(h)

and

e(ϕh) = (φ′(x1) + x2ψ
′(x1) + hη′

1(x1)) ⊙ e1 + (ψ(x1) + x2ξ(x1) + hη12(x1)) ⊙ e2 + O(h2),

where ⊙ is the symmetrized tensor product, defined in (7.17). If ϕh is the optimal test
function in the Korn inequality, then the leading term in e(ϕh) must vanish, while the one in
∇ϕh must remain of order 1. It then follows that φ(x1) = α(x1)e2, while ψ(x1) = −α′(x1)e1.
In that case ∇ϕh(x) = α′(x1)S + O(h), while

e(ϕh) = x2Ω(x1) + hΞ(x1) + O(h2),

where
Ω(x1) = ξ(x1) ⊙ e2 − α′′(x1)e1 ⊗ e1

and
Ξ(x1) = η′

1(x1) ⊙ e1 + η12(x1) ⊙ e2.

Then we obtain

∫

Rh

(L0e(ϕh), e(ϕh))dx =
h3

12

∫ 1

0

{(L0Ω(x1),Ω(x1))+12(L0Ξ(x1),Ξ(x1))}dx1 +O(h4). (B.1)

Observe that the leading term in the asymptotics of ‖∇ϕh‖2 = 2h‖α′‖2 + O(h2) depends
only on α(x1). Therefore, in order to minimize

∫
Rh

(L0e(ϕh), e(ϕh))dx, while keeping ‖∇ϕh‖
fixed, we need to minimize the h3 term in (B.1) with respect to ξ(x1), η1(x1) and η12(x1).
The minimum is achieved at η1(x1) = 0 and η12(x1) = 0. Thus we arrive at the ansatz

ϕ0(x) = α(x1)e2 − α′(x1)x2e1 +
1

2
ξ(x1)x

2
2 +

1

2
η2(x1)h

2,

subject to the constraint that ϕ0 ∈ Vh. It follows that we need to require that α(0) = α(1) = 0
and (η2(x1), e2) = −(ξ(x1), e2)/12 at x1 = 0, 1. Observe, that η2 does not enter the estimate
for the Korn constant. Therefore, it will be convenient to choose η2(x1) = −ξ(x1)/12.
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Finally, we need to choose ξ(x1) in such a way as to minimize (L0Ω(x1),Ω(x1)). Performing
the minimization explicitly we obtain ξ(x1) = α′′(x1)ν, where

ν = A(e2)
−1A(e1, e2)e1 (B.2)

is the anisotropic Poisson’s ratio.13 Here we used the standard notation for the acoustic form

(A(m,n)u,v) = (L0(m⊗ u),n⊗ v)

and the acoustic tensor A(n) = A(n,n).
We finish by mentioning one curious effect of the anisotropy of L0. Recall that according to

the classical “Kirchhoff’s hypothesis” the transversal fibers in a bent strut remain straight and
orthogonal to the deformed middle surface. In our 2D setting the images of the transversal
fibers x1 = x0

1 (see Figure 3) under the incremental displacements uǫ = ǫϕ0(x) are given by
the parametric equations:





X1(t) = x0
1 − ǫα′(x0

1)t +
ǫ

2
α′′(x0

1)ν1(t
2 − h2/12),

X2(t) = t + ǫα(x0
1) +

ǫ

2
α′′(x0

1)ν2(t
2 − h2/12),

where t ∈ [−h/2, h/2]. The orthogonality of these curves to the deformed midline in the limit
h → 0 is readily verified. A simple calculation shows that the curvature of the lines X(t) in
the limit h → 0 is ǫα′′(x0

1)ν1. Thus, the curvature of the deformed cross-sections in the limit
h → 0 is zero if and only if ν1 = 0. The formula in the footnote 13 shows that this condition
is indeed satisfied for all isotropic tensors L0. However, for a generic anisotropic material the
curvature will be different from zero because of the axial Poisson effect (ν1 6= 0). Therefore
the Kirchhoff-Love ansatz ϕ0 given by (7.13) requires the transversal fibers to bend in an
anisotropic material.

Acknowledgments. The authors are grateful to Victor Berdichevsky, Stefan Müller, Scott
Spector and the anonymous reviewer for their valuable comments. This material is based
upon work supported by the National Science Foundation under Grants No. 0094089 (Y.G.)
and No. 0102841 (L.T.).

References

[1] M. F. Beatty. Estimation of ultimate safe loads in elastic stability theory. J. Elasticity,
1(2):95–120, 1971.

[2] V. L. Berdichevsky. Variational principles of continuum mechanics. (Russian) Nauka,
Moscow, 1983.

13If L0 is isotropic, then ν = νe2 and ν = (κ − µ)/(κ + µ) is the 2D Poisson ratio.

41



[3] M. A. Biot. Mechanics of incremental deformations. John Wiley & Sons Inc., New York,
1965.

[4] B. Budiansky. Theory of buckling and post-buckling behavior of elastic structures. Adv.
Appl. Mech., 14:1–65, 1974.

[5] G. Capriz and P. Podio-Guidugli. The role of Fredholm conditions in Signorini’s pertur-
bation method. Arch. Ration. Mech. Anal., 70(3):261–288, 1979.

[6] D. R. J. Chillingworth, J. E. Marsden, and Y. H. Wan. Symmetry and bifurcation in
three-dimensional elasticity. I. Arch. Ration. Mech. Anal., 80(4):295–331, 1982.

[7] P. G. Ciarlet. Mathematical elasticity. Vol. II, volume 27 of Studies in Mathematics and
its Applications. North-Holland Publishing Co., Amsterdam, 1997. Theory of plates.

[8] P. G. Ciarlet and P. Destuynder. A justification of nonlinear model in plate theory.
Comput. Methods Appl. Mech. Engrg, 17/18:227–258, 1979.

[9] P. J. Davies. Buckling and barrelling instabilities of non-linearly elastic columns. Quart.
Appl. Math., 49(3):407–426, 1991.

[10] G. Del Piero. Lower bounds for the critical loads of elastic bodies. J. Elasticity, 10(2):135–
143, 1980.

[11] G. Del Piero and R. Rizzoni. Two sided estimates for local minimizers in compressible
elasticity. preprint.

[12] L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I. De curvis
elasticis. Bousquet, Lausannae et Genevae, 1744. Opera Omnia, Ser. I, Vol. 24. English
translation by Oldfather, W. A. and Ellis, C. A. and Brown, D. M. in Isis, 20(1), pp.
72-160, 1933.
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