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Abstract

The overall energy or stiffness of an elastic composite depends on the microgeom-

etry. Recently there has been a lot of work on “extremal microstructures” for elastic

composites, for example microstructures which minimize the elastic energy at a given

macroscopic strain. However, most attention has been focused on composites made of

the elastically isotropic component materials. Breaking with this tradition we consider

composites made of two fully anisotropic phases. Our approach, based on the well-

known translation method, provides not only the energy bound but also necessary and

sufficient conditions for optimality in terms of the local strain field. These optimality

conditions enable us to look for optimal microstructures in a more systematic way than

before. They also provide clarification of the relations between different problems, for

example bounding effective conductivity of a conducting composite versus minimizing

strain energy of an elastic composite.

Our analysis shows that anisotropy of the constituent materials is very important in

determining optimal microgeometries. Some constructions of extremal matrix-inclusion

composites made from isotropic components cease to be available when the matrix

material is anisotropic, even when the degree of anisotropy is small. Most of our

analysis is restricted to two space dimensions.

1 Introduction.

A composite material is by definition a mixture of homogeneous continua on a length scale
small compared to loads and boundary conditions, but large enough for continuum theory
to apply. On a macroscopic level it is characterized by its own elastic moduli, which are

∗This work was done while Y. G. was a student at the Courant Institute.
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called the effective moduli of the composite. They depend on both the composition and the
microstructure — the geometric arrangement of the component materials in the composite.

There is by now a large literature on bounds for the effective moduli of composites and
on microstructures that are in some sense extremal. Some of this work is in the mechanics
literature, e.g. [20, 21, 22, 34]. More recently such problems have received considerable
attention from mathematicians, e.g. [25, 31, 38, 44]. Close links have also emerged with
other areas, including nonconvex variational problems (e.g. [6, 24]) and Young measure
limits of gradients (e.g. [23]).

The main focus of this article is a direct link between extremal microstructures and the
translation method—one of the recently developed tools for obtaining geometry-independent
bounds. To prove the optimality of a bound it is necessary to show that it can be attained
by a microstructure. The translation method, the way it was frequently used, provided
few clues about what such a microstructure should be. Therefore, in many instances one
had to resort to some ad hoc means to find an extremal microgeometry. In this article we
present a systematic way of obtaining optimal microstructures directly from the derivation
of the bounds (see sections 3.3 and 3.4). A similar approach has previously been used for
polycrystalline composites in conductivity [4, 36] and elasticity [5]. For a general treatment
of the translation method we refer to the forthcoming book of Milton [33].

The microstructures we find to be optimal have already made their appearance in prior
work, sometimes under different guises. Indeed, sequentially layered composites have been
known since at least the work of Schulgasser [37]. The confocal ellipsoid construction has
been used to saturate various conductivity bounds [8, 26, 27, 29, 33, 38, 45]. The Vigdergauz
construction was first discovered by S. Vigdergauz for the problem of minimizing stress
concentrations in a plate with a regular system of holes [39, 40]; he later observed that this
microstructure also minimizes elastic energy [43]. Still, we provide some new insight as to
why the above geometries are optimal, while others are not.

To avoid repeating much of the known results, we test the power of the translation method
on applications to composites made from two fully anisotropic component materials—a
setting that has been avoided so far in the mathematics literature on explicit optimal bounds.
Our analysis includes a detailed discussion of the minimization of elastic and complementary
energies of periodic composites in two space dimensions (see Chapters 3 and 4). We achieve
a level of understanding for this problem in the anisotropic setting which is comparable
to that already available in the isotropic one [2, 1, 12, 14, 13]. In addition to these two
dimensional results this paper includes several new results in higher dimensions. We will
discuss them a little later in this introduction.

An interesting and somewhat unexpected fact emerges from our analysis. We find that
some of the microstructures known to be optimal in the case of composites made from
two isotropic materials, namely the confocal ellipse construction [18] and the Vigdergauz
construction [19, 41, 43], cease to be available when the matrix material is anisotropic, even
when the degree of anisotropy is small.

Another achievement of our approach is a link between elastic energy minimization and
bounding the effective conductivity of a composite conductor. This link explains why both
problems have similar extremal geometries, and it allows us to transfer optimal microstruc-
tures from one setting to the other. In particular, the Vigdergauz construction that mini-
mizes the strain energy of an elastic composite also saturates the conductivity trace bounds.
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This particular fact has already been observed by Vigdergauz in [42]. (Unfortunately there
is a significant misprint in [42]: in the formulas (14) and (15) all occurrences of ψ should
be read as φ.) Conversely, the confocal ellipsoid construction, which is known to attain the
conductivity trace bounds [33, 38], can also be regarded as an extremal geometry for one of
the elastic energy lower bounds. This fact was established in [18] for the two dimensional
case with isotropic components; the treatment here applies in any dimension and even to
some anisotropic component materials.

It should be emphasized, however, that we are not the first to link these problems. One
early connection is provided by Milton’s work [28], which bounds the effective conductivity
and bulk modulus of an isotropic composite in terms of a certain “geometrical parameter” ζ1.
This parameter ranges over [0, 1], and the bounds reduce to those of Hashin and Shtrikman
when ζ1 = 0 and ζ1 = 1. It follows that a microstructure achieving extremal effective
conductivity and producing an isotropic composite must also have extremal bulk modulus.
The same conclusion also follows from more recent work on bounds coupling the effective
conductivity and bulk modulus [10], [15, 16]. A quite different link between elasticity and
conductivity has recently been achieved by Milton and Movchan [32]. They find that for
two-component 2-D composites made from special (anisotropic) materials, the equilibrium
equations of linear elasticity can be reduced to a problem of electrostatics. To see that this
unification is different from the one achieved here, we observe that their special Hooke’s laws
are never isotropic.

2 Problem Formulation and Notation.

We focus for the moment on elastic composites in two space dimensions. The elastic proper-
ties at any point x of a periodic composite are described by the fourth order tensor (Hooke’s
law) C(x/ε), where C(x) is a periodic function on R2 with the period cell [0, 1]2, and ε
is small. C(x) takes just two values C1 and C2; the tensor Ci is the fourth order positive
definite elasticity tensor of the ith component material. Let χi(x/ε) be the characteristic
function of a set occupied by the ith component material. Then

C(x) = C1χ1(x) + C2χ2(x),

χ1(x) + χ2(x) = 1

In the limit as ε → 0 the composite represents a homogeneous elastic body described
by the effective Hooke’s law C∗. According to the periodic homogenization theory [7], C∗

is defined in terms of certain “cell problems”, as follows. Let us assume that the composite
is subjected to constant average strain ξ. Then the corresponding vector of displacements
v(x) solves

∇ · C(x)e(v) = 0 (2.1)

e(v) =
1

2
(∇v + (∇v)t) (2.2)

in the period cell Q = [0, 1]2, with Q-periodic strain e(v) constrained to have average value
ξ:

–

∫

Q

e(v)dx = ξ. (2.3)
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The average stress associated with ξ is

C∗ξ = –

∫

Q

C(x)e(v)dx. (2.4)

As ξ varies, (2.4) defines the effective tensor C∗. The equation (2.1) gives the local fields in
the composite, and the overall elastic energy is

U = (C∗ξ, ξ). (2.5)

Obviously the energy U depends on the microstructure. The problem we address is that of
minimizing U under fixed volume fractions of the component materials constraint, i.e. with

–

∫

Q

χ1(x)dx = θ1, (2.6)

θ1 ∈ (0, 1) held fixed.

3 Optimal bounds and optimal microstructures.

In this Chapter we obtain the optimal lower bounds on the elastic strain energy U of a
two phase periodic composite in two space dimensions. We then “derive” the corresponding
optimal microgeometries from the optimality conditions which can easily be read off from the
translation method—our main tool for obtaining the bounds. What is new in our treatment
is the full anisotropy of both component materials.

Some of the microgeometries attaining the bounds will be found in a very systematic
way due to the direct link between the translation method and the optimal microstructures.
The optimality conditions play a crucial role in establishing this link. Their easy availability
and utility has been observed by Milton [33] but he did not apply them to our problem.

Some readers might be more interested in examples of extremal microstructures than in
the role of anisotropy or the “technology” of the translation method. Such readers may wish
to skip from the end of section 3.2 directly to Chapters 5 and 6, where we discuss the confocal
ellipsoid construction as an extremal microstructure for higher dimensional elasticity and
the Vigdergauz construction as an extremal microgeometry for conductivity.

3.1 The translation method.

Our present task is to minimize the energy U defined by (2.5) over all possible characteristic
functions χ1(x) subject to the constraint (2.6):

Wmin = inf
<χ1>=θ

inf
e(v)∈E(ξ)

–

∫

Q

(C(x)e(v), e(v))dx, (3.1)

where E(ξ) is a subset of L2(Q) of symmetrized gradients (2.2) with average value ξ, (2.3).
We begin our analysis with the simple yet very important harmonic mean bound, which

is obtained by ignoring the differential information (2.2) on the field e(v) but keeping the
constraint (2.3). This gives a lower bound for (3.1):

Wmin ≥ (Hξ, ξ), (3.2)
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where

H =
(

–

∫

Q

C−1(x)dx
)−1

(3.3)

is the harmonic mean of the tensor C(x). For this reason (3.2) is sometimes called the
harmonic mean bound.

We obtained the bound (3.2) using very simple algebraic inequalities. It is not difficult
to determine when these inequalities become equality. The answer is that (3.2) becomes
equality if and only if the local strain field e(v) satisfies

e(v) = C−1(x)Hξ. (3.4)

Surprisingly, this simple bound is already optimal for certain values of ξ. The translation
method elaborates on this property.

The general idea is to use the differential information about the field e(v) being a strain.
Some of this information is contained in the following identities:

det e(v) = det(∇v) − 1

8
|∇v − (∇v)t|2 (3.5)

–

∫

Q

det∇v = det ξ (3.6)

(assuming without loss of generality that the average infinitesimal rotation is zero). Of
course, the idea of using null-Lagrangians as a source of differential information on a field
is not new. It was used by Murat and Tartar [38] for bounding effective conductivity of a
two phase composite and also by Gibiansky and Cherkaev [13] for elastic composites made
from two isotropic materials. The same method will work for us as well. Notice that in two
space dimensions det e(v) is a quadratic function of e(v). Therefore there exists a fourth
order translation tensor T with the symmetry of a Hooke’s law (but which is not positive
definite) such that for every 2 × 2 symmetric matrix η

(Tη, η) = det η.

Let

W (v) = –

∫

Q

(C(x)e(v), e(v))dx.

Then we can represent W (v) as follows

W (v) = –

∫

Q

(

(C(x) + kT )e(v), e(v)
)

dx− k–

∫

Q

det e(v)dx (3.7)

for any k. Let us choose k > 0 such that C(x) + kT is positive semidefinite. Then we can
apply the harmonic mean bound to the first term of (3.7) and identities (3.5) and (3.6) to
the second term, thus obtaining a new energy bound. The microstructures attaining the
bound can be identified using the optimality conditions, which are essentially an analog of
(3.4) with the C(x) replaced by the translated tensor C(x)+ kT . Let us focus our attention
on the bounds first.
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3.2 Bounds.

Let
γ = sup{ρ : C(x) + ρT ≥ 0} > 0.

Let us assume that C2 + γT is singular, while C1 + γT is not. (There is a special case when
both C1 + γT and C2 + γT are singular, but we will not consider it here.) Then 1/γ can

be characterized as the largest eigenvalue of −C−1/2
2 TC

−1/2
2 . In the isotropic case γ = 4µ2,

where µ2 is the shear modulus of the second material.
According to (3.5) and (3.6), for any λ ∈ [0, 1]

W (v) = –

∫

Q

(

(C(x) + λγT )e(v), e(v)
)

dx− λγ det ξ +
1

8
λγ–

∫

Q

|∇v − (∇v)t|2dx. (3.8)

Applying the harmonic mean bound to the first term and discarding the last one we obtain

W (v) ≥
(

H(C(x) + λγT )ξ, ξ
)

− λγ det ξ =: B(λ), (3.9)

where H(A(x)) denotes the harmonic mean of the tensor A(x) (cf. (3.2), (3.3)). Equality in
(3.9) holds, by analogy with (3.4), if and only if

e(v) = (C(x) + λγT )−1H(C(x) + λγT )ξ (3.10)

and
λ(∇v − (∇v)t) = 0, (3.11)

for λ 6= 1.
The case λ = 1 is special in that (C(x) + γT )−1 does not exist. Nevertheless the

minimization of the first term in (3.8) over the fields e ∈ L2(Q) satisfying only the average
value restriction (2.3) can easily be carried out. Then it is a matter of simple linear algebra
to write out the necessary and sufficient conditions for optimality on the local strain field
e(v):

e(v) = PL(x) lim
λ→1−

(C(x) + λγT )−1H(C(x) + λγT )ξ, (3.12)

where PL(x) is the orthogonal projection onto a subspace L(x) =Range(C(x) + γT ). We
would like to note the discontinuity of the optimality conditions at λ = 1. Even though the
right hand side in (3.10) has a well-defined limit as λ → 1−, this limit is not equal to the
true optimality condition (3.12) for λ = 1. Nevertheless, as one can easily verify, the other
optimality condition (3.11) and the bound (3.9) are continuous at λ = 1.

To conclude the derivation of the bound we have to determine the value of λ that gives
the best bound (3.9). In other words we need to maximize B(λ) over λ ∈ [0, 1]:

B∗(ξ) = max
λ∈[0,1]

B(λ). (3.13)

Notice that B(λ) is a concave function of λ. This is easy to see from the variational principle
defining B(λ):

B(λ) = inf
e∈A(ξ)

{

–

∫

Q

((C(x) + λγT )e, e)dx− λγ det ξ
}

, (3.14)
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where A(ξ) is the set of second order 2 × 2 symmetric tensors in L2(Q) with average value
ξ. One can also verify that B(λ) is nowhere constant on [0, 1]. Thus (3.13) has unique
maximizer λ∗ on [0, 1].

In general three different cases are possible:
(i) λ∗ = 0 and (dB/dλ)(0) < 0;
(ii) λ∗ is a critical point of B(λ);
(iii) λ∗ = 1 and (dB/dλ)(1) > 0.
In order to study each of the three possibilities we need to evaluate the derivative dB/dλ
explicitly. The most enlightening way to do this is to differentiate (3.14) with respect to
λ. This can be accomplished by means of a technique from the nonsmooth analysis [11]
(Theorem 2.8.2, Corollary 2). For λ 6= 1

dB

dλ
= γ–

∫

Q

(

Te(x), e(x)
)

dx− γ(Tξ, ξ),

where e(x) is the unique minimizer for (3.14) and it is given by (3.10) above. We remark
that since e(x) depends smoothly on λ the same result can also be obtained by a simple
application of the chain rule. From (3.10) it follows that e(x) takes just two values which
we denote by ε1 and ε2 and has average value ξ. Then a simple calculation shows that

dB

dλ
= γθ1θ2 det(ε1 − ε2),

where according to (3.10)

ε1 = (C1 + λγT )−1H(C(x) + λγT )ξ,

ε2 = (C2 + λγT )−1H(C(x) + λγT )ξ.

}

(3.15)

In terms of the physical parameters

dB

dλ
= γθ1θ2 det

{

(θ1C2 + θ2C1 + λγT )−1(C1 − C2)ξ
}

. (3.16)

Then it is easy to describe each of the three regimes explicitly.

The Harmonic Mean Bound regime:

λ∗ = 0 and is not a critical point of B if and only if

det{(θ1C2 + θ2C1)
−1(C1 − C2)ξ} < 0. (3.17)

Then
B∗(ξ) = (Hξ, ξ).

The Rank-1 Intermediate regime:

λ∗ is a critical point of B if and only if

det{(θ1C2 + θ2C1)
−1(C1 − C2)ξ} ≥ 0

det{(θ1C2 + θ2C1 + γT )−1(C1 − C2)ξ} ≤ 0.

}

(3.18)
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Then
B∗(ξ) = (H(C(x) + λ∗γT )ξ, ξ) − λ∗γ det ξ,

where λ∗ is the unique solution of (dB/dλ)(λ∗) = 0.

The Degenerate regime:

λ∗ = 1 and is not a critical point of B if and only if

det{(θ1C2 + θ2C1 + γT )−1(C1 − C2)ξ} > 0. (3.19)

Then
B∗(ξ) =

(

(C2 + γT )(θ1C2 + θ2C1 + γT )−1(C1 + γT )ξ, ξ
)

− γ det ξ.

The last two formulas can also be obtained from their respective counterparts for λ 6= 1 by
passing to the limit as λ→ 1−.

It turns out that the above bound is optimal. In the case when C1 and C2 are isotropic
these bounds were obtained by Allaire and Kohn [2, 1, 3] and by Gibiansky and Cherkaev
[13]. Our formulas reduce to theirs for isotropic C1 and C2.

We knew at the start that our method produces an energy bound, but we did not know
that the bound we obtain would be optimal. In the next two sections we will use the
optimality conditions in order to find extremal microgeometries, thus proving the sharpness
of the bounds.

3.3 The non-degenerate regimes.

Let us concentrate on the first two regimes defined above. The key to our analysis is the
“small miracle” that we have already observed deriving the explicit formula for dB/dλ: for
any λ 6= 1

dB

dλ
= γθ1θ2 det(ε1 − ε2), (3.20)

where ε1 and ε2 are given by (3.15) above.
Consider the Harmonic Mean Bound regime (λ∗=0). In this regime one of the

optimality conditions (3.11) is trivially satisfied. As for the other one (3.10), let us recall
that if a linear strain takes only two values ε1 and ε2 in two space dimensions then these
values have to be compatible:

det(ε1 − ε2) ≤ 0. (3.21)

Due to (3.20) and according to the definition of the Harmonic Mean Bound regime the
compatibility condition (3.21) is satisfied. Then it is easy to check that

ε1 − ε2 =
α

2
(n1 ⊗ n2 + n2 ⊗ n1)

for some scalar α and a pair of non-parallel unit vectors n1 and n2. It is well-known that a
rank-1 layered composite with layers orthogonal to either n1 or n2 generates a strain field
e(v) taking values ε1 and ε2 only. Thus we have found two optimal rank-1 laminates.

We would like to remark at this point that these two rank-1 laminates are the simplest
optimal microgeometries. We can show that there are a great variety of other more complex
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microstructures, also in some sense laminates of higher or even infinite rank, attaining the
bound. The problem of describing all of them using Young measures is still open (and,
possibly, very difficult).

Now let us turn to the Rank-1 Intermediate regime (λ∗ is a critical point of B(λ)).
Here one of the optimality conditions, (3.11), implies that e(v) = ∇v. Then the inequality
(3.21) is not enough for the two values of the strain given by (3.15) for λ = λ∗ to be
compatible. Instead we need a stronger relation:

det(ε1 − ε2) = 0. (3.22)

But this conditions is indeed satisfied by (3.20) and the definition of λ∗:

dB

dλ
(λ∗) = 0.

The equation (3.22) in two space dimensions says that ε1 and ε2 are rank-1 related:

ε1 − ε2 = α(n⊗ n)

for some scalar α and some unit vector n. It is well-known that the rank-1 layered composite
with layers orthogonal to n generates a displacement field v with ∇v taking values ε1 and
ε2 only. Thus the stain field e(v) satisfies the optimality condition (3.10). Conversely, if a
microstructure attains the bound then it has to be a rank-1 laminate, as was proved by Ball
and James [6]. This is the only regime where all optimal microstructures have been fully
characterized.

3.4 The Degenerate regime.

The third, degenerate, regime is the most interesting one. We recall that it is defined by
λ∗ = 1 and (dB/dλ)(1) > 0. The two strains ε1 and ε2 are no longer compatible. But now
the optimality conditions are given by (3.11) and (3.12) and not by (3.10). Let us restate
them in a longer but more enlightening form:
In phase 1

e(v) = (θ1C2 + θ2C1 + γT )−1(C2 + γT )ξ; (3.23)

in phase 2
PLe(v) = PL(θ1C2 + θ2C1 + γT )−1(C1 + γT )ξ, (3.24)

and in the whole period cell Q
curl(v) = 0. (3.25)

Here PL denotes the orthogonal projection onto a proper subspace L =Range(C2 + γT ) of
a three dimensional space of 2 × 2 symmetric matrices.

In particular, if C1 and C2 are isotropic, i.e. given by

Ciη = 2µi(η −
1

2
(Trη)I) + ki(Trη)I
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for any symmetric matrix η, then in place of (3.23), (3.24) we obtain:
In phase 1

e(v) = ε0I = constant, (3.26)

where

ε0 =
(µ2 + k2)Trξ

2(µ2 + θ1k2 + θ2k1)
;

in phase 2
div v = d, (3.27)

where

d =
(k1 + µ2)Trξ

(µ2 + θ1k2 + θ2k1)
;

It is not easy to find the optimal microstructures just by looking at the optimality conditions.
Yet they will enable us to determine at least some of the extremal geometries.

Let
{

e1 = (θ1C2 + θ2C1 + γT )−1(C2 + γT )ξ;

e2 = (θ1C2 + θ2C1 + γT )−1(C1 + γT )ξ.
(3.28)

These quantities are important in studying the optimal geometries, as is already seen from
the optimality conditions (3.23), (3.24). Notice that e2 is not the value of the local strain
in phase 2. Instead we have PLe(v)χ2(x) = PLe2χ2(x). There are two major cases distin-
guished by the dimension of the projection PL.

The Generic Case dimL = 2.

In this case we can try, as before to find a periodic function v such that e(v) satisfies the
optimality conditions. It is tedious but straightforward calculation to show that there is no
such periodic function v when dimL = 2. Thus, what we are interested in is sequences vε

satisfying the optimality conditions only in the limit.
First we observe that if ∇v satisfies (3.24) exactly in an open connected subset of phase

2 then ∇v has to be constant there. Condition (3.23) requires that ∇v be a constant in
phase 1 as well. Thus any smooth interface between the two phases must be a straight line.
This observation suggests laminates as well as rules out the “confocal ellipse construction”
[18] and the “Vigdergauz construction” [19, 43] as candidates for optimal geometries. The
characterization of all optimal microstructures is still an open problem.

Now let us use the optimality conditions to find the simplest optimal laminates. We
start by rewriting (3.24) as

e(v) = e2 + ca,

where a spans the one-dimensional subspace L⊥ and c is a locally constant scalar. A rank-1
laminate is not enough because e1 and e2 + ca cannot produce average ξ and be rank-1
related at the same time. We are going to show that a rank-2 laminate will suffice. In the
innermost laminate the phases 1 and 2 are layered together. This is achieved by the choice
of the free parameter c:

det(∆ + ca) = 0, (3.29)
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where
∆ = e2 − e1. (3.30)

Notice that (3.29) is a quadratic equation in c:

c2 + 2c
(Ta,∆)

det a
+

det∆

det a
= 0. (3.31)

The last term in the above equation is negative because from (3.20)

det∆ =
1

γθ1θ2

dB

dλ
(1) > 0,

while a ∈Ker(C2 + γT ), which implies that det a = −(1/γ)(C2a, a) < 0. Thus the equation
has two distinct real roots, which we denote by c1 and c2. Choosing any one of them will
provide compatible gradients with optimal values. Suppose we have chosen c1 and suppose
that in the innermost laminate the phases are mixed in the volume fractions ρ1 and 1− ρ1.
So the average field in that laminate will be

e3 = ρ1e1 + (1 − ρ1)(e2 + c1a)

and the layering normal will be n1 defined by

∆ + c1a = α(n1 ⊗ n1),

due to (3.29).
Next we have to “layer” e3 with either e1 or e2 + ca. Choosing e1 will produce the

layering normal n1 again. Effectively we will obtain the same rank-1 laminate with an
increased volume fraction ρ1. To layer e3 with e2 + ca we have to choose the value of c such
that

det(e2 + ca− e3) = 0,

or equivalently

det(∆ +
c− (1 − ρ1)c1

ρ1
a) = 0.

Comparing the last equation with (3.29) we obtain:

c− (1 − ρ1)c1
ρ1

= ci.

If i = 1 then c = c1 and the layering normal is n1 again, so we obtain the same rank-1
laminate but with increased volume fraction of the second material. Thus we need to use
the remaining possibility i = 2. Then

c = ρ1c2 + (1 − ρ1)c1.

If we mix e3 and e2 + ca in the volume fractions ρ2 and 1 − ρ2 then the average strain is

< e >= ρ2e3 + (1 − ρ2)(e2 + ca)
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and the layering direction n2 is defined by

∆ + c2a = α(n2 ⊗ n2),

where α, by convenient abuse of notation, denotes any scalar.
Let us show that choosing ρ1 and ρ2 appropriately we can achieve the average strain ξ

and the volume fraction θ1 of the material 1. The total volume fraction of the material 1
in our construction is obviously ρ1ρ2. Then we need to solve the system

ρ1ρ2 = θ1,

< e >= ξ.

We can easily find ρi, i = 1, 2:

1 − ρ1 = θ2
c2

c2 − c1
,

1 − ρ2 = −θ2
c1

θ1c2 − c1
.

Since c1c2 < 0 it follows that ρi ∈ (0, 1). By interchanging c1 and c2 we obtain another
rank-2 laminate that is also optimal.

The Non-generic Case dimL = 1.

This case is non-generic among all anisotropic Hooke’s laws. Yet it is very important, as
composites made of isotropic component materials fall in this category. We start with an
obvious remark that all of the above arguments extend to the case dim(L) = 1, since we
used only the existence of a matrix a ∈ L⊥ and not its uniqueness. However, in this case
the microstructure does not have to be a laminate at all. For example, in the isotropic
case there are essentially different microstructures that attain the energy minimum, namely,
the “confocal ellipse construction” [18] and the “Vigdergauz construction” [19, 43]. We
will devote the remainder of this section to extending these geometries to the case of the
anisotropic matrix material C2 that falls in the class dimL = 1.

The rest of this section is essentially an addendum to our articles [18, 19]. It is not
necessary for understanding Chapters 4–6.

Let the 2 × 2 symmetric matrix b span the one-dimensional subspace L. Then

C2 + γT = α(b ⊗ b)

for some constant positive real number α. (The isotropic case corresponds to the matrix
b being isotropic.) From the fact that C2 is positive definite it follows that det(z) < 0
whenever z is orthogonal to b. It is not hard to show that this implies det(b) > 0. Thus
without loss of generality we can suppose that the matrix b is positive definite. We also
normalize b so that det b = 1, for later convenience.

Now let us rewrite the optimality conditions (3.24), (3.25) as

v = ∇φ (3.32)

for some scalar potential φ, and
(e(v), b) = (e2, b) (3.33)
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Figure 1: The concentric “something” construction.

in phase 2. Substituting (3.32) into (3.33) we obtain that in phase 2

(∇∇φ, b) = (e2, b) (3.34)

The formula (3.34) is equivalent to Laplace’s equation since b is positive definite. Now we
are ready to calculate the optimal microstructures explicitly.

The stretched confocal ellipse construction.

In this section we look for an optimal microgeometry which is an analogue of the confocal
ellipse construction described in detail in [18] (see Figure 1). We will reduce our problem to
a problem in complex variables that has already been solved in [18]. In order to do so we
rewrite the optimality conditions in terms of φ:
in phase 1

∇φ = e1x; (3.35)

in phase 2
(∇∇φ, b) = (e2, b). (3.36)

We also have the continuity of displacements across the interfaces Γ and ∂Ω:

∇φ = e1x on Γ,

∇φ = ξx on ∂Ω.
(3.37)

We do not have to use the continuity of tractions by the same argument as in [18]; alter-
natively, one can check directly that the continuity of tractions follow from the conditions
listed above. We are now in a position to reformulate our problem in terms of complex
variables. Let x = b1/2y and

φ̃(y) = φ(b1/2y) − 1

4
(e2, b)|y|2.

13



The function φ̃(y) is constructed in such a way as to be harmonic due to (3.36). Now let
z = y1 + iy2 and

Φ(z) =
∂φ̃

∂y1
− i

∂φ̃

∂y2
.

One can easily check that Φ(z) is an analytic function. The major difference from the
isotropic case is that the problem in complex variables is formulated not in physical space
but in the linearly transformed variables (by the operator b−1/2). The transformed phases
will be denoted 1′ and 2′ respectively. We remark that the volume fractions of the phases and
the total area of Ω do not change under the linear transformation due to our normalization
of b, namely det b = 1.

Let us reformulate condition (3.37) in terms of the analytic potential Φ:

Φ(z) = −1

2
(∆, b)z̄ − 1

2
a(b1/2e1b

1/2)z, on Γ′

Φ(z) = −1

2
θ1(∆, b)z̄ −

1

2
a(b1/2ξb1/2)z, on ∂Ω′.















Here a(A) denotes the “complex deviatoric part” of the matrix A:

a(A) = A22 −A11 + 2iA12,

and the quantity ∆ is defined in (3.30). If we consider the function

Ψ(z) = −2Φ(z)− a(b1/2e1b
1/2)z,

we obtain a problem analogous to the one considered in [18]:

Ψ(z) = (∆, b)z̄, on Γ′

Ψ(z) = θ1(∆, b)z̄ + θ2a(b
1/2∆b1/2)z, on ∂Ω′.

}

(3.38)

Now, we can continue exactly as in [18]. We discovered there that the problem (3.38) has a
solution if and only if |q| < θ2 ([18], formula (4.4)), where

q =
θ2a(b

1/2∆b1/2)

(∆, b)
. (3.39)

When this condition holds, the interfaces Γ′ and ∂Ω′ are the confocal ellipses. Taking into
account that det b = 1, the existence condition (3.39) reduces to det∆ > 0, which coincides
exactly with the definition of the Degenerate regime (3.19).

In summary, the stretched confocal ellipse geometry is obtained by starting with the
confocal ellipse construction (as presented in [18]) corresponding to volume fraction θ1 and
parameter q given by (3.39), then transforming the geometry by b1/2. The ellipses in the
construction will no longer be confocal on account of the linear transformation. That is why
this geometry has been called the “Stretched confocal ellipse construction” by G. Milton
[33].
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The Vigdergauz construction.

This construction can be obtained as a generalization of the Vigdergauz construction, de-
scribed in detail in [19]. The argument is entirely parallel to the one given above, so we
need not give further details. We have to comment on one thing, though. In [19] we showed
how to solve the periodic problem only with a rectangular period cell Q. The analogous
problem with general parallelogram of fundamental periods seems to be much more difficult
technically. Therefore, here we have to make a rather artificial technical assumption that
b−1/2Q is a rectangle. Thus the Vigdergauz geometry in the period cell Q is obtained from
another Vigdergauz geometry in the rectangular period cell Q′ by transforming it back by
the linear operator b1/2. The Vigdergauz construction in Q′ has the volume fraction θ1 and
the parameter q given by (3.39). In physical space the requirement that Q′ should be rect-
angular is equivalent to having the sides of the period cell Q parallel to the two eigenvectors
of the nonsymmetric matrix b∆.

In the next chapter we consider another important minimization problem for which the
translation method is applicable. It is the problem of minimizing the complementary energy.
This problem is related to maximization of the elastic energy via convex duality [2]. But as
we will see, it is also related to the problem of elastic energy minimization considered above.

4 Minimization of the complementary energy.

In many problems of optimal design it is important to find the “stiffest” material obtained
as a mixture of two given components taken in fixed volume fractions. One such problem,
the minimization of the complementary elastic energy for a given average stress in two space
dimensions, is considered here:

Vmin = inf
<χ>=θ

inf
∇·σ=0

<σ>=σ0

–

∫

Q

(C−1(x)σ, σ)dx, (4.1)

where χ denotes a characteristic function of one of the phases. The key to the solution in
two space dimensions is the reduction of the problem (4.1) to another one which is very
much like the minimization of the strain energy considered in Chapter 3. The reduction is
done via an Airy stress potential.

Let us recall that any 2 × 2 symmetric tensor σ with div σ = 0 can be represented in
terms of a scalar Airy stress potential φ by

σ = R∇∇φ,

where

Rη =

(

η22 −η12
−η12 η11

)

for any 2 × 2 symmetric matrix η. Denoting Rσ0 by ξ we obtain

Vmin = inf
<χ>=θ

inf
<∇∇φ>=ξ

–

∫

Q

(S(x)∇∇φ,∇∇φ)dx, (4.2)
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where
S(x) = RtC−1(x)R.

Comparing (4.2) with (3.1) we conclude that in general

Vmin ≤Wmin, (4.3)

where Wmin is computed using the Hooke’s law S(x). The equality in (4.3) is obviously
achieved if and only if the optimal v for Wmin is curl-free. We notice that this is exactly
the case in the Rank-1 Intermediate regime and in the Degenerate regime. Thus, if ξ lies
in one of the above regimes (calculated using S(x) instead of C(x)), the problem of finding
Vmin is equivalent to the problem of finding Wmin but with a different Hooke’s law. See [19]
for an application of this idea to the problem of structural optimization involving isotropic
component materials.

If ξ lies in the Harmonic Mean Bound regime then the two problems are different and the
inequality in (4.3) becomes strict. In order to analyze the lower bound on complementary
energy in this regime we need to apply the translation method once again. The calculations
and formulas are very similar to those done in sections 3.2 and 3.4.

Let

V (φ) = –

∫

Q

(S(x)∇∇φ,∇∇φ)dx.

Then making use of the usual translation, the determinant, we obtain:

V (φ) = –

∫

Q

((S(x) + λT )∇∇φ,∇∇φ)dx − λdet ξ; (4.4)

but now λ ranges on the interval [γ−, γ+], where γ− < 0 and γ+ > 0. The interval (γ−, γ+)
is the maximal interval of the values of λ on which the tensor S(x) + λT remains positive
definite.

Let us assume that S1 + γ+T is singular, while S2 + γ+T is not. We also assume that
S− + γ−T is singular, while S+ + γ−T is not, where {S+, S−} = {S1, S2}. Since we do not
assume the well-orderedness of the original Hooke’s laws, S− (or S+) can be either S1 or S2.

Now we return to the formula (4.4) and apply the harmonic mean bound:

V (φ) ≥ (H(S(x) + λT )ξ, ξ) − λ det ξ = B(λ).

To obtain the best bound we need to maximize B(λ):

B∗ = max
λ∈[γ

−
,γ+]

B(λ) (4.5)

The study of (4.5) parallels the one for (3.13). As before, λ∗ denotes the unique maximizer
of (4.5) and we distinguish the three cases:
(i) λ∗ = γ− and is not a critical point of B(λ). In this case (dB/dλ)(γ−) < 0.
(ii)λ∗ ∈ [γ−, γ+] and is a critical point of B(λ). In this case (dB/dλ)(γ−) ≤ 0 and
(dB/dλ)(γ+) ≥ 0.
(iii) λ∗ = γ+ and is not a critical point of B(λ). In this case (dB/dλ)(γ+) > 0.
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If λ∗ ≥ 0 then, as we remarked above, Vmin = Wmin and similar microgeometries attain
the bounds for the two minimization problems.

If λ∗ < 0 and belongs to the second regime, then it is clear that the situation here is
analogous to the Rank-1 Intermediate regime of the strain energy bounds. We leave the
details to the reader.

If λ∗ = γ− then we obtain another degenerate regime. Here, one might think, we have to
distinguish between the two cases dimL = 2 and dimL = 1, where L = Range(S− + γ−T ).
However the following lemma rules out the second possibility.

Lemma 1 For any positive definite Hooke’s law S−

Rank(S− + γ−T ) = 2.

Proof. Suppose that Rank(S− + γ−T ) = 1. Then there exists a symmetric 2 × 2 matrix b
and a positive number α such that

S− + γ−T = α(b ⊗ b).

Let us show that we can choose a matrix ξ such that (ξ, b) = 0 and (Tξ, ξ) < 0. Let ξ be
trace free, for example. Then

(Tξ, ξ) = −1

2
|ξ|2 < 0,

and we need only (b, ξ) = 0. We have

(b, ξ) = (b11 − b22)ξ11 + 2b12ξ12.

If b11 = b22 and b12 = 0, then (b, ξ) = b11Trξ = 0. Otherwise, let ξ11 = 2b12 and ξ12 =
b22 − b11. Then (b, ξ) = 0.

For such a ξ

(S−ξ, ξ) = −γ−(Tξ, ξ) + α(b, ξ)2 =
1

2
γ−|ξ|2 < 0,

which contradicts the positivity of the tensor S−. The Lemma is proved. 2

Thus we conclude that the regime λ∗ = γ− is analogous to the case dimL = 2 of the
Degenerate regime of the strain energy bound. The actual calculations are so parallel to the
ones in section 3.4 that we do not do them here. Below we give the summary of our results
on the complementary energy bounds.

Summary.

1. The rank-2 regime.

det{(θ1S2 + θ2S1 + γ−T )−1(S2 − S1)ξ} < 0;

Vmin = ((S2 + γ−T )(θ1S2 + θ2S1 + γ−T )−1(S1 + γ−T )ξ, ξ) − γ− det ξ.

The optimality conditions on ∇∇φ are
In phase “+”

∇∇φ = (θ1S2 + θ2S1 + γ−T )−1(S− + γ−T )ξ;
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in phase “−”

PL
−

∇∇φ = PL
−

(θ1S2 + θ2S1 + γ−T )−1(S+ + γ−T )ξ,

where PL
−

is the orthogonal projection onto a two-dimensional subspace

L− = Range(S− + γ−T )

in the three-dimensional space of 2×2 symmetric matrices. The last condition implies
that ∇∇φ is locally constant throughout phase “−”. The known optimal microstruc-
tures are the two variants of a rank-2 laminate. (Hence the name of the regime.)

2. The Rank-1 Intermediate regime

{

det{(θ1S2 + θ2S1 + γ−T )−1(S2 − S1)ξ} ≥ 0,

det{(θ1S2 + θ2S1 + γ+T )−1(S2 − S1)ξ} ≤ 0;

Vmin = (H(S(x) + λ∗T )ξ, ξ) − λ∗ det ξ.

The optimality condition on ∇∇φ is

∇∇φ = (S(x) + λ∗T )−1H(S(x) + λ∗T )ξ,

where λ∗ is the unique solution of

det{(θ1S2 + θ2S1 + λ∗T )−1(S2 − S1)ξ} = 0.

The optimal microstructure must be a particular rank-1 laminate.

3. The Degenerate regime

det{(θ1S2 + θ2S1 + γ+T )−1(S2 − S1)ξ} > 0;

Vmin =
(

(S2 + γ+T )(θ1S2 + θ2S1 + γ+T )−1(S1 + γ+T )ξ, ξ
)

− γ+ det ξ.

The optimality conditions on ∇∇φ are
In phase 1

PL+
∇∇φ = PL+

(θ1S2 + θ2S1 + γ+T )−1(S2 + γ+T )ξ,

in phase 2
∇∇φ = (θ1S2 + θ2S1 + γ+T )−1(S1 + γ+T )ξ,

where PL+
is the orthogonal projection onto the subspace L+ = Range(S1 + γ+T ).

The set of optimal microstructures depends on r = dimL+. If r = 2 then there are two
variants of the second rank laminate which are known to be optimal. If r = 1 then the
optimal microgeometries that we know of include the rank-2 laminates just mentioned,
the stretched confocal ellipse construction and the Vigdergauz construction.
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5 Anisotropic conductivity revisited.

Continuing our systematic application of the translation method we now use it to make
precise the relation between the conductivity and elasticity problems. We shall obtain
by this method a new result for anisotropic conductivity, as well as some new results in
elasticity. More specifically, the translation method establishes a link that allows us to
regard any microstructure optimal for n-dimensional conductivity as an extremal geometry
for the elasticity problem and, under some conditions, vice versa. In particular we are going
to show that the Vigdergauz microstructure saturates the conductivity trace bounds in two
space dimensions while the confocal ellipsoid construction attains the minimum energy of
an elastic composite in any dimension. The optimality conditions will play crucial part in
establishing these results.

Let us consider a periodic conductivity problem in Rn with period cell Q:

{ ∇ · σ(x)(∇φ + e0) = 0

∇φ ∈ E ,
(5.1)

where σ(x) = Aχ1(x) + Bχ2(x), and E is the subspace of L2(Q) consisting of Q-periodic
gradients with average zero. This problem has a unique (up to an additive constant) solution
for every fixed average field e0 and microgeometry χ1(x) (χ2(x) = 1 − χ1(x)). The conduc-
tivities A and B are assumed to be well-ordered, A > B. This is a technical assumption
which ensures that the translation we propose works. It also ensures the familiar form of
the trace bounds, as found in [31]. (For the discussion of the non-well-ordered case see [35].)
We note that in the case of isotropic conductivity, well-orderedness is not a restriction.

In this Chapter, as in the previous one, we fix the volume fractions of the components:

–

∫

Q

χ1(x)dx = θ1. (5.2)

Let us consider a problem of minimizing the sum of the n energies for n linearly inde-
pendent average electric fields e1, . . . , en:

Σmin = inf
<χ1>=θ1

inf
{∇φ1,...,∇φn}⊂E

n
∑

i=1

–

∫

Q

(σ(x)(∇φi + ei),∇φi + ei)dx

We can significantly simplify the above formula and consequent calculations if instead of
handling n vectors of length n each we work with two-dimensional arrays whose n columns

correspond to our n vectors. Let ξij = e
(i)
j and let φ denote the vector-function (φ1, . . . , φn).

Then our problem simplifies to

Σmin = inf
<χ1>=θ1

inf
∇φ∈E

–

∫

Q

(σ(x)(∇φ + ξ),∇φ+ ξ)dx. (5.3)

We remark that in our new notation (∇φ)ij = ∂φj/∂xi. (This is a transpose of the usual
convention, using which would make all the formulas much less readable due to the profusion
of transpose signs.)
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The problem (5.3) is related to the Gθ-closure problem of describing all effective con-
ductivities σ∗ obtained by mixing conductors A and B in the prescribed volume fraction θ1.
The Gθ-closure problem has been completely solved [25, 30, 31, 38]. We consider it again
to establish a link to the elasticity via the optimality conditions. The relation between the
Gθ-closure problem and (5.3) is

Σmin = min
Gθ1

(σ∗ξ, ξ), (5.4)

where σ∗ is the effective conductivity tensor. We will find Σmin in closed form for a range
of matrices ξ (see Appendix). For ξ’s not in this range the problem of finding a formula for
Σmin becomes more difficult technically. In any case, the goal of this Chapter is to establish
a relation between the elasticity problem from the previous chapters, the problem (5.3) and
a Gθ1

-closure of A and B. Our main tool is once again the translation method.
To apply the method successfully we need a good choice of the translation tensor. The

article of Murat and Tartar [38], where (5.3) was solved for isotropic component conductors,
provides us with a clue. They employed the translation R(ξ) = |ξ|2 − (Trξ)2. In the
anisotropic case we use the modified translation T (ξ) = R(B1/2ξ), which reduces to R if
the tensor B is isotropic. At this point the well-orderedness of the conductivities (A > B)
becomes important. If the two conductivities are not well ordered then in the formula for
the translation T we should use a tensor which is neither A nor B. The choice of that new
tensor is not obvious. The appropriate analysis was done by V. Nesi in [35] when A and B
are coaxial. What happens in the more general case is not clear. We avoid this problem by
assuming well-orderedness.

The translation T has the following useful property: For any ∇φ ∈ E we have

–

∫

Q

T (∇φ+ ξ)dx = T (ξ) +
1

2
–

∫

Q

|B1/2∇φ − (B1/2∇φ)t|2dx. (5.5)

Now let

Σ(φ) = –

∫

Q

(σ(x)(∇φ + ξ),∇φ+ ξ)dx.

Then using (5.5) we obtain

Σ(φ) = –

∫

Q

((σ(x) − T )(∇φ+ ξ),∇φ + ξ)dx+ T (ξ) +
1

2
–

∫

Q

|B1/2∇φ− (B1/2∇φ)t|2dx.

We get the bound by minimizing the first term in the above identity forgetting that ∇φ is a
gradient and using only the fact that ∇φ has average value zero. By removing the differential
constraints we can only make the infimum in (5.3) smaller. After some straightforward
algebraic calculations that are analogous to the derivation of the harmonic mean bound in
section 3.1 we obtain

Σmin ≥ T (ξ) +
1 + Tr(B(A−B)−1)

θ2 + Tr(B(A−B)−1)
(B1/2, ξ)2. (5.6)

Examining all the inequalities involved in obtaining the bound (5.6) we can easily find the
necessary and sufficient conditions on the electric field ∇φ for equality in (5.6). They are as
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follows:
In phase 1 (conductivity A)

∇φ+ ξ =
(B1/2, ξ)(A −B)−1B1/2

θ2 + Tr(B(A−B)−1)

in phase 2 (conductivity B)

(B1/2,∇φ+ ξ) =
1 + Tr(B(A −B)−1)

θ2 + Tr(B(A−B)−1)
(B1/2, ξ)

and in the whole period cell Q

B1/2∇φ = (B1/2∇φ)t.

Instead of proving the attainability of the bound (5.6) we will reduce it to the well-known
trace bound, which is known to be attainable [38]. The reduction is achieved by taking

ξ = λ(σ∗ −B)−1B1/2, (5.7)

where λ is an arbitrary scalar. Then (5.6) becomes

Tr(B(σ∗ −B)−1) ≤ 1

θ1
Tr(B(A−B)−1) +

θ2
θ1
. (5.8)

Notice that the choice (5.7) assigns a ξ to every σ∗, but not every ξ arises this way. In fact
every ξ has an associated optimal σ∗, but, one can show (see Appendix) that unless ξ is
given by (5.7) the bound (5.6) contradicts (5.8). For more details we refer the reader to the
Appendix.

Now let us change our point of view. Suppose that we are looking for a microstructure
with effective conductivity σ∗ ∈ Gθ1

, where σ∗ achieves equality in (5.8). The microstructure
that attains it must have the property that the local electric fields (in matrix form) ∇φ+ ξ
satisfy the optimality conditions presented above when the average fields ξ are given by
(5.7). Since ξ is non-singular, the matrix ∇φ + ξ contains the local fields associated to n
linearly independent vectors in Rn; these determine the local fields corresponding to any
average field by taking linear combinations. To proceed further it is more convenient to
use the vector-potential Φ corresponding to the standard basis of average fields (represented
by the identity in matrix notation) rather than ∇φ + ξ, which corresponds to the basis of
average fields given by ξ. There is a simple relation between the two potentials:

∇φ+ ξ = ∇Φξ.

We remark that both φ and Φ correspond to the same optimal microstructure with effective
conductivity σ∗. Rewriting the optimality conditions in terms of σ∗ and Φ, we obtain
In phase 1 (conductivity A)

∇Φ =
1

θ1
(A−B)−1(σ∗ −B) (5.9)
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in phase 2 (conductivity B)

(∇Φ, B(σ∗ −B)−1) =
1

θ1
(1 + Tr(B(A−B)−1)) (5.10)

and in the whole period cell Q

∇Φ(σ∗ −B)−1 = (σ∗ −B)−1∇Φt (5.11)

–

∫

Q

∇Φdx = I (5.12)

To make a connection with the elasticity optimality conditions (3.23)–(3.25) we let

v = (σ∗ −B)−1Φ

then ∇v = ∇Φ(σ∗ −B)−1 (using the convention that (∇Φ)ij = ∂Φj/∂xi). In terms of v the
optimality conditions read
In phase 1

∇v =
1

θ1
(A−B)−1 (5.13)

in phase 2

(∇v,B) =
1

θ1
(1 + Tr(B(A−B)−1)) (5.14)

and in the whole period cell Q
curl(v) = 0; (5.15)

–

∫

Q

∇vdx = (σ∗ −B)−1 (5.16)

Now it is easy to relate the two problems in two space dimensions. The existence condition
(3.19) for elasticity corresponds to the condition det ∆c > 0 for conductivity, where

∆c =
1

θ1θ2
(A−B)−1(θ1A+ θ2B − σ∗)(σ∗ −B)−1.

Thus we recovered a theorem proved in [38] (see also [17]) that any tensor σ∗ achieving
equality in the lower trace bound (5.8) and satisfying

B < σ∗ < θ1A+ θ2B

is attained by some composite. In 2-D we see that the trace bound is saturated not only by
laminates, but also by stretched confocal ellipse construction or Vigdergauz microstructure
with parameter q = qc (see (3.39), also [18, 19]), where

qc =
θ2a(B

1/2∆cB1/2)

(∆c, B)
.

In three space dimensions we also would like to have a Vigdergauz construction to satu-
rate the trace bounds. Unfortunately there is no rigorous proof that one exists, though the
numerical computations in [41] are suggestive.
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6 The confocal ellipsoid construction in elasticity.

The confocal ellipse (and more generally, confocal ellipsoid) construction is known to be
optimal for the conductivity problem considered in Chapter 5 in any number of space di-
mensions [8, 9, 26, 27, 29, 33, 38, 45]. (The results from the literature are easily extendible
to the case of anisotropic component materials by a remark of Milton [33] that problems
involving general anisotropic conductors can be reduced to similar problems with isotropic
components by a suitable linear transformation.) In this Chapter we show that the same
confocal (or stretched confocal) ellipsoid construction minimizes the elastic energy of a two
phase composite in any space dimensions (the 2-D case was solved directly in [18]).

We begin by deriving a new optimal bound on the elastic strain energy in Rn. Then using
the optimality conditions we will establish the equivalence between the new elasticity bound
and the conductivity trace bound discussed in the previous chapter. By this equivalence,
the confocal ellipsoid construction which is known to saturate the trace bounds (see [38])
will also be seen to saturate the new elastic energy bound in Rn.

Consider the case of two isotropic elastic materials in Rn. Here we assume that the
materials are well ordered, i.e. k1 > k2 and µ1 > µ2. We need this assumption in order to
establish the equivalence to conductivity. The well-orderedness will not be required for the
derivation of the energy bound, though. Let

W (e) = –

∫

Q

(C(x)e, e)dx.

Since C(x) is locally isotropic we can represent the energy W (e) as

W (e) = –

∫

Q

[

(k(x) + 2
n− 1

n
µ(x))(Tre)2 − 4µ(x)J2(e)

]

dx,

where J2(A) is the quadratic rotational invariant of the tensor A:

J2(A) =
∑

i<j

∣

∣

∣

∣

aii aij

aji ajj

∣

∣

∣

∣

.

The representation above suggests the choice J2(e) as the translation. It satisfies

J2(e(v)) = J2(∇v) −
1

8
|∇v − (∇v)t|2

and

–

∫

Q

J2(∇v)dx = J2(ξ).

Here as in (3.6) we are fixing the infinitesimal rotations to be zero. Then

W (e) = –

∫

Q

[

(k(x) + 2
n− 1

n
µ(x))(Tre)2 − 4(µ(x) − µ2)J2(e)

]

dx

−4µ2J2(ξ) +
1

2
µ2–

∫

Q

|∇v − (∇v)t|2dx.

23



Applying the harmonic mean bound and discarding the last term we obtain

Wmin ≥ H(k(x) + 2
n− 1

n
µ2)(Trξ)2 − 4µ2J2(ξ). (6.1)

The inequality becomes equality if and only if the following optimality conditions are satis-
fied:
In phase 1

e(v) = ε0I = constant, (6.2)

where

ε0 =
H(k(x) + 2n−1

n µ2)

nk1 + 2(n− 1)µ2
Trξ;

in phase 2
div v = d, (6.3)

where

d =
H(k(x) + 2n−1

n µ2)

k2 + 2n−1
n µ2

Trξ;

and in the whole period cell Q
curl(v) = 0. (6.4)

Let us compare the formulas (5.13)–(5.16) to the formulas (6.2)–(6.4). There are two
obvious possibilities to make the identification. One is ve = vc and the other one is ve = −vc,
where the superscript c refers to conductivity and e to elasticity. Since the optimality
conditions for elasticity are linear in ξ, we can assume without loss of generality that Trξ > 0.
Then everything we prove for such ξ will also be true for −ξ. Comparing the two sets of the
optimality conditions we conclude that the conductivities A and B must be isotropic and

(σ∗ −BI)−1 = ξ; (6.5)

1

θ1(A−B)
= ε0; (6.6)

A+ (n− 1)B

θ1B(A−B)
= d. (6.7)

Solving this system for A, B and σ∗ we obtain

σ∗ = BI + ξ−1; (6.8)

A =
1

θ1(d− nε0)
+

1

θ1ε0
; (6.9)

B =
1

θ1(d− nε0)
. (6.10)

In order to have A > B > 0 we need d > nε0 > 0. From (6.5) we see that ξ has to be
positive definite. Therefore d > nε0 > 0 is equivalent to k1 > k2, which means that the
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two elastic materials have to be well-ordered. Finally, we use the fact [17] that σ∗ achieving
equality in the lower trace bound is attained if and only if

B < σ∗ ≤ θ1A+ θ2B.

Substituting the values of A, B and σ∗ in the above inequality we obtain that the positive
definite matrix ξ must satisfy

ξ ≥ KTrξI,

where

K =
H(k(x) + 2n−1

n µ2)

nk1 + 2(n− 1)µ2
.

This result is also true for the tensor −ξ. Thus we obtain the definition of the regime of
values of ξ for which the bound (6.1) is optimal. We write it in terms of the eigenvalues of
ξ: All eigenvalues ξi, i = 1, . . . , n have to be of the same sign and for each i

|ξi| ≥
H(k(x) + 2n−1

n µ2)

nk1 + 2(n− 1)µ2

n
∑

j=1

|ξj |. (6.11)

In [38] L. Tartar described a class of optimal microstructures, the confocal ellipsoid
construction, that saturates the trace bounds for conductivity. By the equivalence considered
above this same construction will saturate the elasticity bound (6.1) for all values of the
average strain ξ satisfying strict inequality in (6.11).

We remark that by analogy with the two dimensional elasticity (see Chapter 3), a generic
anisotropic perturbation of the isotropic Hooke’s law of the matrix material should break
the degeneracy of this problem by eliminating such geometries as the confocal ellipsoid
construction. But there are some special anisotropic Hooke’s laws for which the confocal
ellipsoid construction extends, namely laws like

(Cξ, ξ) = (b, ξ)2 − 4µJ2(ξ),

where b > 2µ(1 − 1/n)I. This case is equivalent to anisotropic conductivity.

7 Appendix: An explicit formula for Σmin.

Here we concentrate on the problem (5.3), which we reformulate as (5.4). The advantage
of (5.4) is that the set Gθ1

has been explicitly computed in [17]: The Gθ1
is the set of

symmetric tensors σ∗ satisfying

B < σ∗ ≤ θ1A+ θ2B (7.12)

Tr(B(σ∗ −B)−1) ≤ 1

θ1
Tr(B(A −B)−1) +

θ2
θ1

(7.13)

Tr(A(A − σ∗)−1) ≤ 1

θ2
Tr(A(A−B)−1) − θ1

θ2
(7.14)
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Now consider σ∗ satisfying strict inequality in the lower bound (7.13). Then, by mono-
tonicity properties of the trace bounds [17, Lemma 3.2], for an ε > 0 small and any e ∈ Rn,
|e| = 1, the matrix σ∗ − ε(e⊗ e) will still be in Gθ1

. At the same time

((σ∗ − ε(e⊗ e))ξ, ξ) = (σ∗ξ, ξ) − ε|ξte|2 < (σ∗ξ, ξ).

Thus any σ∗ achieving minimum in (5.4) must satisfy equality in (7.13). As we mentioned
in Chapter 6 any σ∗ achieving equality in (7.13) and satisfying strict inequalities in (7.12)
is attained exactly by a stretched confocal ellipse construction. Thus for any invertible
matrix ξ the non-convex minimization problem (5.3) has a classical solution. In
case ξ is singular the stretched confocal ellipsoid construction degenerates into “stretched
confocal cylinders” and simple layers (for ξ rank-1). These geometries are still classical
solutions of (5.3).

Next, let us derive an explicit formula for Σmin for a broad class of values of ξ. But first
let us show that (5.7) is the only choice of ξ for which the bound (5.6) is attained. Indeed,
if we have equality in (5.6) then

(σ∗ξ, ξ) = T (ξ) +
1 + Tr(B(A−B)−1)

θ2 + Tr(B(A −B)−1)
(B1/2, ξ)2,

where T (ξ) = |B1/2ξ|2 − (B1/2, ξ)2. If we denote

η = B1/2ξ,

then

(Cη, η) =
θ1

θ2 + Tr(B(A−B)−1)
(Trη)2,

where
C = B−1/2(σ∗ −B)B−1/2.

The matrix C is symmetric and positive definite with

TrC−1 ≤ θ2 + Tr(B(A −B)−1)

θ1
.

Lemma 2 If C is a symmetric positive definite matrix with TrC−1 ≤ K then for any matrix
η

(Cη, η) ≥ 1

K
(Trη)2

with equality if and only if TrC−1 = K and η = λC−1 for some scalar λ.

Proof. The idea is to diagonalize C. Let R be such a rotation that C = RDRt, where
D =diag(c1, . . . , cn). The positive numbers ci are the eigenvalues of the matrix C. Then

(Cη, η) = (Dρ, ρ),
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where ρ = RtηR. So, TrD−1 = TrC−1 ≤ K and Trρ = Trη. Therefore the following
inequalities are true:

(Trη)2 = (Trρ)2 = (
∑

i

1√
ci

√
ciρii)

2 ≤ TrD−1(Dρ, ρ) ≤ K(Cη, η).

Examining all the inequalities used, we conclude that equality is achieved if and only if
TrC−1 = K and η = λC−1. The lemma is proved. Thus we have established that in order
for the bound (5.6) to be optimal we must have (5.7) for some σ∗ ∈ Gθ1

achieving equality
in (7.13).

So far it seems that condition (5.7) places a lot of constraints on ξ (corresponding to the
constraints on σ∗). This situation can be improved by observing that

(σ∗ξ, ξ) = Tr(σ∗ξξt),

so that for any rotation R
(σ∗ξR, ξR) = (σ∗ξ, ξ).

From (5.7) it follows that (1/λ)B1/2ξ must be symmetric and positive definite. Thus, it is

clear that we should have applied the bound (5.6) to F = B−1/2
√

B1/2ξξtB1/2 ∈ ξ · SO(n)
rather then to ξ. If we denote

η = B1/2F,

then

Σmin ≥ |η|2 +
θ1

θ2 + Tr(B(A−B)−1)
(Trη)2, (7.15)

for
η

Trη
≥ B1/2(A−B)−1B1/2

θ2 + Tr(B(A−B)−1)
. (7.16)

The last inequality is equivalent to (7.12) and it ensures that (7.15) is attained. In the ξ
space the inequality (7.16) describes a set with nonempty interior in the space of all n× n
matrices.

If (7.16) is not satisfied then (7.15) is not a correct formula for Σmin. At present we were
not able to derive an explicit expression for Σmin in these other cases.
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