Connected Hopf algebras in positive characteristic

Xingting Wang

University of Washington

Seminar Talk at University of Pittsburgh

November 7, 2013
Outlines

Part I. Background and basic definitions.

Part II. Questions and conjectures.

Part III. Classification of low dim’l connected (pointed) Hopf algebras in positive characteristic.

Part IV Further projects.
Part I

- History.
- Basic definitions and notation.
- Examples.
The history of Hopf algebras.

- 1953, Borel introduced the expression Hopf algebra, honoring the foundational work of Heinz Hopf in algebraic topology.
- 1965, Milnor and Moore published their paper *On the structure of Hopf algebras*.
- 1985, Drinfeld and Jimbo constructed quantum groups $U_q(\mathfrak{g})$.

Nowadays, the progresses obtained in understanding the structure of Hopf algebras and its representations have entwined with different areas of mathematics: knot theory, topology, conformal field theory, ring theory, category theory, combinatorics and etc.
Definitions and Notation

Throughout, we work over a base field k. An algebra is a vector space A together with two linear maps

- multiplication $m : A \otimes A \to A$ and
- unit $u : k \to A$,

such that the following diagrams commute:

a) associativity

\[
\begin{array}{ccc}
A \otimes A \otimes A & \xrightarrow{m \otimes id} & A \otimes A \\
\downarrow id \otimes m & & \downarrow m \\
A \otimes A & \xrightarrow{m} & A
\end{array}
\]

b) unit

\[
\begin{array}{ccc}
k \otimes A & \xrightarrow{u \otimes id} & A \otimes A \\
\downarrow id \otimes u & & \downarrow m \\
A \otimes k & \xleftarrow{id \otimes u} & A
\end{array}
\]
A coalgebra is a vector space C together with two linear maps
- comultiplication $\Delta : C \to C \otimes C$ and
- counit $\epsilon : C \to k$,

such that the following diagram commute:

a) coassociativity

\[
\begin{array}{ccc}
C & \xrightarrow{\Delta} & C \otimes C \\
\downarrow{\Delta} & & \downarrow{\Delta \otimes id} \\
C \otimes C & \xrightarrow{id \otimes \Delta} & C \otimes C \otimes C
\end{array}
\]

b) counit

\[
\begin{array}{ccc}
k \otimes C & \xleftarrow{\epsilon \otimes id} & C \otimes C \\
\uparrow{1 \otimes \Delta} & & \uparrow{\Delta} \\
C & \xrightarrow{id \otimes \epsilon} & C \otimes k
\end{array}
\]

\[
\begin{array}{ccc}
C & \xrightarrow{\Delta} & C \otimes C \\
\downarrow{\Delta} & & \downarrow{\Delta \otimes id} \\
C \otimes C & \xrightarrow{id \otimes \Delta} & C \otimes C \otimes C
\end{array}
\]

\[
\begin{array}{ccc}
k \otimes C & \xleftarrow{\epsilon \otimes id} & C \otimes C \\
\uparrow{1 \otimes \Delta} & & \uparrow{\Delta} \\
C & \xrightarrow{id \otimes \epsilon} & C \otimes k
\end{array}
\]
 Definitions and Notation

A vector space B is a bialgebra if (B, m, u) is an algebra, (B, Δ, ϵ) is a coalgebra, and either of the following (equivalent) conditions holds:

- Δ and ϵ are algebra morphisms;
- m and u are coalgebra morphisms.
Let \((H, m, u, \Delta, \epsilon)\) be a bialgebra. Then \(H\) is a *Hopf algebra* if there exists an element \(S \in \text{Hom}_k(H, H)\), which satisfies the following commutative diagram:

\[
\begin{array}{ccc}
H \otimes H & \xrightarrow{S \otimes \text{id}} & H \otimes H \\
\Delta & \downarrow & \Delta \\
H & \xrightarrow{\epsilon} & k \\
\Delta & \downarrow & \downarrow \quad m \\
H \otimes H & \xrightarrow{\text{id} \otimes S} & H \otimes H \\
\end{array}
\]

We call \(S\) an *antipode* for \(H\).
Examples

1. **Group algebras.** For any group G, the group algebra kG is a Hopf algebra, with $\Delta(g) = g \otimes g$, $\epsilon(g) = 1$ and $S(g) = g^{-1}$ for any $g \in G$.

2. **Enveloping algebras.** Let \mathfrak{g} be a Lie algebra. Then the enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra, with $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\epsilon(x) = 0$ and $S(x) = -x$ for any $x \in \mathfrak{g}$.

3. **Coordinate ring of algebraic groups.** Let G be an algebraic group. Then its coordinate ring $\mathcal{O}(G)$ is a Hopf algebra, with $\epsilon(f) = f(1_G)$, $\Delta(f)$ the function in $\mathcal{O}(G) \otimes \mathcal{O}(G) \cong \mathcal{O}(G \times G)$ defined by $\Delta(f)(x \times y) = f(xy)$ for $x, y \in G$, and $S(f)(x) = f(x^{-1})$ for $x \in G$.

4. **Quantum groups.** We have quantized enveloping algebras $U_q(\mathfrak{g})$ and quantized coordinate rings $\mathcal{O}_q(G)$ with parameter $0 \neq q \in k$ (not a root of unity). They are non-commutative and non-cocommutative noetherian Hopf algebras.
Quantum group $U_q(\mathfrak{sl}_2(k))$

Assume $\text{Char} k = 0$, and $0 \neq q \in k$ is not a root of unity. Recall $\mathfrak{sl}_2(k)$ has k-basis $\{e, f, h\}$ with relations

$$[e, f] = h, \ [h, e] = 2e, \ [h, f] = -2f.$$

The quantized enveloping algebra $U_q(\mathfrak{sl}_2(k))$ is defined as follows: $U_q(\mathfrak{sl}_2(k)) = k\langle E, F, K, K^{-1}\rangle$ with relations

$$KE = q^2EK, \ KF = q^{-2}FK, \ EF - FE = \frac{K^2 - K^{-2}}{q^2 - q^{-2}}.$$

The Hopf algebra structure is given by

$$\Delta(E) = E \otimes K^{-1} + K \otimes E, \quad S(E) = -q^{-2}E, \quad \epsilon(E) = 0,$$

$$\Delta(F) = F \otimes K^{-1} + K \otimes F, \quad S(F) = -q^2F, \quad \epsilon(F) = 0,$$

$$\Delta(K) = K \otimes K, \quad S(K) = K^{-1}, \quad \epsilon(K) = 1.$$
Part II.

- Noetherian Hopf algebras.
- AS-Gorenstein rings.
- Kaplansky’s sixth conjecture.
- Cohomology rings of finite dim’l Hopf algebras.
Questions and Conjectures

1. **Noetherian property.** When is a Hopf algebra H noetherian?

 - If kG is (left) Noetherian, is G polycyclic-by-finite? (The inverse statement is proved by Hall in 1959.)
 - (Brown-Small), suppose that $U(g)$ is (left) noetherian, is $\dim g < \infty$?

Example. Witt algebra W is defined to be the Lie algebra W with basis $\{e_n\}_{n \in \mathbb{Z}}$ and Lie bracket $[e_n, e_m] = (m - n)e_{n+m}$.

Recently, Walton-Sierra (2013) showed that the enveloping algebra of the Witt algebra is not Noetherian (Dean-Small 1990).
Questions and Conjectures

2. **AS-Gorenstein.** A Hopf algebra A is *AS-Gorenstein* if its right and left injective dimension equals $d < \infty$, and $\text{Ext}^i_A(k, A) = \delta_{id} k$.

Questions and Conjectures

3. **Representations.** (Kaplansky’s sixth conjecture 1975) Any semisimple Hopf algebra H is of Frobenius type, i.e., suppose V is an irreducible representation of H, then $\dim V | \dim H$. Suppose $\text{Char } k = 0$.

- Nichols-Richmond (1998) proved the case when H has a simple module of dimension two.
- Etingof-Gelaki (1998) proved the case when H is semisimple quasitriangular.
Questions and Conjectures

4. **Cohomology rings.** Let A be a finite dim’l Hopf algebra. Define the cohomology ring $H^\bullet(A, k) := \text{Ext}_A(k, k)$. (Etingof-Ostrik 2004) It is conjectured that $H^\bullet(A, k)$ is finitely generated.

- (Friedlander-Suslin 1997): finite group schemes.
- (Ginzburg-Kumar 1993, Bendel-Nakano-Parshall-Pillen 2007): finite dim’l (Lusztig’s) small quantum group $u_q(\mathfrak{g})$ over \mathbb{C}.
- (Mastnak-Pevtsova-Schauenburg-Witherspoon 2010): finite dim’l pointed Hopf algebra (under some assumptions) over \mathbb{C}.
Part III

- Definition of connected and pointed Hopf algebras.
- Overview for classification of finite dim’l Hopf algebras.
- Low dim’l connected Hopf algebras.
- Pointed p^2-dim’l Hopf algebras in positive characteristic.
- Ideas and techniques.
- Examples of parametric families.
More definitions and notation

Let H be a Hopf algebra.

- The **coradical** H_0 of H is the sum of all simple subcoalgebras of H.

- For each $n \geq 1$, set $H_n := \Delta^{-1}(H \otimes H_{n-1} + H_0 \otimes H)$. Then the chain of subcoalgebras $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1} \subseteq H_n \cdots$ is the **coradical filtration** of H.

- All the group-like elements in H is denoted by $G(H) = \{g \in H | \Delta(g) = g \otimes g\}$, and the primitive space of H is denoted by $P(H) = \{x \in H | \Delta(x) = x \otimes 1 + 1 \otimes x\}$.

- H is **pointed** if every simple subcoalgebra of H is one-dim'l, or spanned by a group-like element. Moreover, H is connected if H_0 is one-dim'l.
Classification

When \(k = \mathbb{C} \). Finite dim’l Hopf algebras over \(\mathbb{C} \) have been studied by many researchers.

- Low dim’l Hopf algebras: other than dimension 24, all Hopf algebras over \(\mathbb{C} \) of dimension less than 32 are classified.
- Certain Hopf algebras over \(\mathbb{C} \) of products of distinct primes dimensions \(pq, p^2 q, pqr \) have been classified. In general, Hopf algebras of dimension \(3p \) are not classified.
- Hopf algebras over \(\mathbb{C} \) of dimensions \(p^n \) for small integers \(n \).
When \(\text{Char} k = p > 0 \).

- Henderson (1995) classified cocommutative connected graded Hopf algebras of dimension up to \(p^3 \).

- Etingof-Gelaki (1998) studied finite dim’l semisimple and cosemisimple Hopf algebras in positive characteristic and showed that if \(p > q \), then any \(q \)-dim’l Hopf algebra is isomorphic to \(kC_q \).

- Scherotzke (2008) classified the finite dim’l pointed rank one Hopf algebras.
We are interested in classification of finite dimensional connected (pointed) Hopf algebras in positive characteristic. Examples are from

- dual of p-group algebras;
- finite restricted enveloping algebras;
- finite unipotent group schemes.
Finite-dim’l connected Hopf algebras only appear in positive characteristic. Assume that $k = \bar{k}$ and $\text{Char} k = p > 0$. Let H be a finite-dim’l connected Hopf algebra. It is known that $\dim H = p^n$ for some integer $n \geq 1$.

1. $\dim H = p$. H is isomorphic to $k[x]/(x^p)$, or $k[x]/(x^p - x)$, where $\Delta(x) = x \otimes 1 + 1 \otimes x$.
Classification in low-dimensional connected Hopf algebras

2. $\dim H = p^2$. (i) Further assume that $\dim P(H) = 2$.

(A1) $k[x, y]/(x^p, y^p)$,

(A2) $k[x, y]/(x^p - x, y^p)$,

(A3) $k[x, y]/(x^p - y, y^p)$,

(A4) $k[x, y]/(x^p - x, y^p - y)$,

(A5) $k\langle x, y \rangle/([x, y] - y, x^p - x, y^p)$, where x and y are primitive.

(ii) Further assume that $\dim P(H) = 1$.

(A6) $k[x, y]/(x^p, y^p)$,

(A7) $k[x, y]/(x^p, y^p - x)$,

(A8) $k[x, y]/(x^p - x, y^p - y)$, where x is primitive and

$$\Delta(y) = y \otimes 1 + 1 \otimes y + \sum_{1 \leq i \leq p-1} \binom{p}{i}/p \ x^i \otimes x^{p-i}.$$
Classification in low-dimensional connected Hopf algebras

3. \(\dim H = p^3 \).
 - \(\dim P(H) = 1 \). There are 5 isomorphism classes and one infinite parametric family.
 - \(\dim P(H) = 2 \) and \(P(H) \) is non-abelian. There are 3 isomorphism classes.
 - \(\dim P(H) = 2 \) and \(P(H) \) is abelian. Expecting more infinite parametric families of isomorphism classes.
 - \(\dim P(H) = 3 \). There are 15 isomorphism classes and one finite parametric family.
Classification of p^2-dim’l pointed Hopf algebras

In recent joint work [W2], we classify pointed Hopf algebras of dimension p^2 over an algebraically closed field of arbitrary characteristic. In this part, we assume that k has arbitrary characteristic.

1. **Char** $k \neq p$, such Hopf algebras can only isomorphic to Taft algebras $T_{p,\omega}$ or group algebras $k[C_{p^2}]$ or $k[C_p \times C_p]$. Let ω be a pth primitive root of unity. Then

$$T_{p,\omega} := k\langle g, x \rangle / (g^p - 1, x^p, gx - \omega xg)$$

with the Hopf algebra structure determined by

$$\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1},$$

$$\Delta(x) = x \otimes 1 + g \otimes x, \quad \epsilon(x) = 0, \quad S(x) = -g^{-1}x.$$
Classification of p^2-dim’l pointed Hopf algebras

2. Char$k = p$, there are 14 isomorphism classes of such Hopf algebras, including a unique non-commutative and non-cocommutative one, which is given by

$$k\langle g, x \rangle/(g^p - 1, gx - xg - g(g - 1), x^p - x),$$

with the Hopf algebra structure determined by

$$\Delta(g) = g \otimes g, \epsilon(g) = 1, S(g) = g^{-1},$$

$$\Delta(x) = x \otimes 1 + g \otimes x, \epsilon(x) = 0, S(x) = -g^{-1}x.$$
We conjecture that any p or p^2 dim’l Hopf algebra over an algebraically closed field of arbitrary characteristic is of Frobenius type. Or more precisely, let V be any irreducible representation of such Hopf algebra, then $\dim V = 1$.

- (Masuoka-Ng-Zhu) The statement holds true for $\text{Char} k = 0$.
- (Etingof-Gelaki) The statement holds true for dimension p and $\text{Char} k > p$.
- Until now, we do not have any counterexample.
Denote by K the Hopf subalgebra of H generated by all primitives $P(H)$.

- If $K = H$, then $H \cong u(P(H))$, the restricted enveloping algebra of $P(H)$ (Milnor-Moore 1965).
- If $K \neq H$, we try to recover H by K and other non-primitive elements.
The cobar construction on K

The cobar construction on K is the differential graded algebra ΩK defined as follows:

- As a graded algebra, ΩK is the tensor algebra $T(K^+)$, where K^+ is the augmentation ideal of K;
- The differentials are given by

$$d^n = \sum_{i=0}^{n-1} (-1)^{i+1} 1^i \otimes \Delta \otimes 1^{n-i-1},$$

where $\Delta(a) = \Delta(a) - a \otimes 1 - 1 \otimes a$ for any $a \in K^+$.

Denote by n the minimal integer such that $K_n \neq H_n$. (Stefan and Van Oystaeyen 1998) There is an injection induced by d^1 such that

$$H_n/K_n \hookrightarrow H^2(\Omega K).$$

For element $z \in H_n \setminus K_n$, the comultiplication of z is given by

$$\Delta(z) = z \otimes 1 + 1 \otimes z + (\text{cocyles of degree two in } \Omega K).$$
Comultiplication of non-primitives

We fix a basis \(\{x_1, x_2, \cdots, x_d\} \) for \(P(H) \). We define the expression

\[
\omega(a) = \sum_{1 \leq i \leq p-1} \left(\frac{p}{i} \right) / p \ a^i \otimes a^{p-i}
\]

as an element of \(K^+ \otimes K^+ \) for any \(a \in K^+ \).

Theorem 1 We can find some \(z \in H \setminus K \) such that

\[
\Delta(z) = z \otimes 1 + 1 \otimes z + \omega \left(\sum_{i=1}^{d} \alpha_i \ x_i \right) + \sum_{1 \leq i < j \leq d} \alpha_{ij} \ x_i \otimes x_j,
\]

for some coefficients \(\alpha_i, \alpha_{ij} \in k \) not all zero.
The parametric family when $\dim P(H) = 1$

Example 1\cite{W2} Let $\lambda \in k$, and let $A(\lambda)$ be the k-algebra of dimension p^3 generated by elements x, y, z, subject to the following relations

$$
[x, y] = 0, \ [x, z] = 0, \ [y, z] = x,
$$
$$
x^p = 0, \ y^p = 0, \ z^p + x^{p-1}y = \lambda x.
$$

Then $A(\lambda)$ becomes a connected Hopf algebra via

$$
\Delta(x) = x \otimes 1 + 1 \otimes x, \ \Delta(y) = y \otimes 1 + 1 \otimes y + \omega(x),
$$
$$
\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(x)(y \otimes 1 + 1 \otimes y)^{p-1} + \omega(y),
$$
$$
\epsilon(x) = \epsilon(y) = \epsilon(z) = 0, \ S(x) = -x, \ S(y) = -y, \ S(z) = -z.
$$

When $p > 2$, $A(\lambda) \cong A(\lambda') \iff \lambda = \gamma \lambda'$ for some $\gamma \in \frac{p^2 + p - 1}{\sqrt{1}}$.
Example 2[W'^2] Let $\lambda \in k$, and let $B(\lambda)$ be the k-algebra of dimension p^3 generated by elements x, y, z subject to the following relations

\[
[x, y] = 0, \quad [x, z] = 0, \quad [y, z] = 0,
\]

\[
x^p = y, \quad y^p = 0, \quad z^p = \lambda x.
\]

Then $B(\lambda)$ becomes a connected Hopf algebra via

\[
\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \Delta(y) = y \otimes 1 + 1 \otimes y,
\]

\[
\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(y) + x \otimes y,
\]

\[
\epsilon(x) = \epsilon(y) = \epsilon(z) = 0, \quad S(x) = -x, \quad S(y) = -y, \quad S(z) = -z + xy.
\]

When $p > 2$, $B(\lambda) \cong B(\lambda') \iff \lambda = \gamma\lambda'$ for some $\gamma \in \frac{p^2 - p - 1}{\sqrt{1}}$.
Part V

- Algebra structure of finite-dimensional connected Hopf algebras.
- Cohomology rings of connected Hopf algebras.
- Semisimple connected Hopf algebras.
1. Affine connected Hopf algebras over an algebraically closed field of characteristic 0 are classified up to GKdim 4 by Brown, Goodearl, Zhang and Zhuang. Result shows that any such Hopf algebra H is isomorphic, as an algebra, to some universal enveloping algebra $U(g)$ where $\dim g = \text{GKdim } H$. Furthermore, it is proved that the statement is true for $P(H) = \text{GKdim } H - 1 < \infty$.
Further Projects

In the classification of connected Hopf algebra H, where $\dim H = p^3$, $\dim P(H) = 2$ and $P(H)$ is non-abelian, we obtain 3 isomorphism classes.

Example 3 $[W^2]$ As algebras, these 3 isomorphism classes are

- $k\langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z], x^p - x, y^p, z^p)$;
- $k\langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z] - yf(x), x^p - x, y^p, z^p - z)$ with $f(x) = \sum_{1 \leq i \leq p-1} (-1)^{i-1}(p - i)^{-1}x^i$;
- $k\langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z] - y^2, x^p - x, y^p, z^p)$, where $p > 2$.
Further Projects

2. We want to compute the cohomology rings for those connected Hopf algebras (and their duals) of dimensions p, p^2 and p^3 that we have classified.

Recall Taft algebra $T_{p,\omega}$, where ω is pth primitive root of unity.

$$T_{p,\omega} := k \langle g, x \rangle / (g^p - 1, x^p, gx - \omega xg)$$

with the Hopf algebra structure determined by

\[
\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1},
\]

\[
\Delta(x) = x \otimes 1 + g \otimes x, \quad \epsilon(x) = 0, \quad S(x) = -g^{-1}x.
\]

(Nguyen 2012)

$$H^n(T_{p,\omega}, k) \cong \begin{cases}
0 & n = \text{odd} \\
1 & n = \text{even}.
\end{cases}$$

Moreover,

$$H^\bullet(T_{p,\omega}, k) \cong k[\xi], \text{ where } \deg(\xi) = 2.$$
3) (Masuoka 2009) The following are equivalent:

- H is semisimple;
- H is commutative and semisimple;
- $H \cong (k[G])^\ast$ for some p-group G;
Let $p = 2$. For semisimple connected Hopf algebras, which are almost primitive generated, the following are in 1-1 correspondence with each other:

- The isomorphism classes of semisimple connected Hopf algebras of dimension p^{d+1} with $\dim \mathbb{P}(H) = d$.
- The isomorphism classes of quadratic curves in $\mathbb{P}^{d-1}_{\mathbb{F}_p}$ up to the automorphisms of the projective space.
- The isomorphism classes of p-groups of order p^{d+1}, whose Frattini group is isomorphic to C_p.
References

N. Andruskiewitsch,
About finite dimensional Hopf algebras,

N. Andruskiewitsch and H.-J. Schneider,
Lifting of quantum linear spaces and pointed Hopf algebras of order p^3,

M. Beattie,
A survey of Hopf algebras of low dimension,

M. Beattie and G. Garcia,
Classifying Hopf algebras of a given dimension,

P. Etingof and S. Gelaki,
On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic.

E. M. Friedlander and B. J. Parshall,
Cohomology of Lie agebras and algebraic groups,

G. Henderson,
Low-dimensional cocommutative connected Hopf algebras,
References

A. Masuoka,
Self-dual Hopf algebras of dimension p^3 obtained by extension,

S.-H. Ng,
Non-semisimple Hopf algebras of dimension p^2,

S.-H. Ng,
Hopf algebras of dimension pq II,
J. Alg. **319** (2008), 2772-2788.

D. Radford,
Operators on Hopf algebras,
Amer. J. Math. **99** (1977), 139-158.

S. Scherotzke,
Classification of pointed rank one Hopf algebras,

D. Ştefan and F. Van Oystaeyen,
Hochschild cohomology and the coradical filtration of pointed coalgebras: applications,

W,
Connected Hopf algebras of dimension p^2,
*J. Algebra** **391** (2013), 93–113.
References

W,
Local Criteria for cocommutative Hopf algebras,

W,
Connected Hopf algebras with large abelian primitive space,
in preparation.

W,
Another proof of Masuoka’s Theorem for semisimple irreducible Hopf algebras,

W²,
Classification of pointed Hopf algebras of dimension p^2 over any algebraically closed field,

W²,
Classification of Connected Hopf algebras of dimension p^3 I,

W²,
Classification of Connected Hopf algebras of dimension p^3 II,
in preparation.

Q.-S. Wu and J. J. Zhang,
Noetherian PI Hopf algebras are Gorenstein,