Finite-dimensional connected Hopf algebras

Xingting Wang

University of Washington

2013 AMS Fall Sectional Meeting Special Session, Philadelphia

October 12, 2013
We work over a base field k, algebraically closed. A Hopf algebra H is called \textit{connected} if its coradical equals k.

Throughout, let H be a finite-dimensional connected Hopf algebra over k. Then, H satisfies the following basic facts.

- The characteristic of k is $p > 0$.
- $\dim H = p^n$ for some integer $n \geq 0$.
- The dual Hopf algebra H^* is local.

Since finite-dimensional connected Hopf algebras only appear in positive characteristic, we let $\text{char} k = p > 0$.

Associated graded Hopf algebras

Let $k = H_0 \subset H_1 \subset H_2 \subset \cdots H_n \subset \cdots$ be the coradical filtration of H. The associated graded Hopf algebra of H is defined to be

$$\text{gr}H = \bigoplus_{n \geq 0} H_n/H_{n-1}.$$

Theorem 1 As an algebra,

$$\text{gr}H \cong k[x_1, x_2, \cdots, x_d]/(x_1^p, x_2^p, \cdots, x_d^p),$$

where $\dim H = p^d$.

Idea: we study the dual Hopf algebra $(\text{gr}H)^*$ to show that $\text{gr}H$ is local commutative. Then, we prove inductively by using the result of finite connected group schemes.
Classification

Examples of finite-dimensional connected Hopf algebras:

- dual of p-group algebras;
- restricted universal enveloping algebras of finite-dimensional restricted Lie algebras;
- finite unipotent group schemes.

Denote by K the Hopf subalgebra of H generated by all primitives $P(H)$.

- If $K = H$, then $H \cong u(P(H))$.
- If $K \neq H$, we need to recover H by K and other generators and relations.
The cobar construction on K

The *cobar construction* on K is the differential graded algebra ΩK defined as follows:

- As a graded algebra, ΩK is the tensor algebra $T(K^+)$, where K^+ is the augmentation ideal of K;
- The differentials are given by

\[
d^n = \sum_{i=0}^{n-1} (-1)^{i+1} 1^i \otimes \Delta \otimes 1^{n-i-1},
\]

where $\overline{\Delta}(a) = \Delta(a) - a \otimes 1 - 1 \otimes a$ for any $a \in K^+$.
The cohomology group $H^\bullet(\Omega K)$

For the cobar construction on K, we have the following complex:

\[k \xrightarrow{0} K^+ \xrightarrow{d^1} K^+ \otimes K^+ \xrightarrow{d^2} K^+ \otimes K^+ \otimes K^+ \xrightarrow{d^3} \cdots. \]

The differentials are given by

\[d^1(a) = -\overline{\Delta}(a), \quad d^2(a \otimes b) = -\overline{\Delta}(a) \otimes b + a \otimes \overline{\Delta}(b), \]

for any $a, b \in K^+$. It is easy to see that we can identify $H^1(\Omega K)$ with $P(H)$.
The cohomology group $H^\bullet(\Omega K)$

Define the map $\omega : H^1(\Omega K) \rightarrow H^2(\Omega K)$ by

$$\omega(a) = \left[\sum_{1 \leq i \leq p-1} \left(\frac{p}{i}\right) / p \ a^i \otimes a^{p-i} \right],$$

for any $a \in P(H)$.

Proposition 1 The map ω is semi-linear, i.e., we have

$$\omega(\alpha a + b) = \alpha^p \ \omega(a) + \omega(b),$$

for any $a, b \in P(H)$ and $\alpha \in k$.

This map is related to Bockstein homomorphism in cohomology of elementary abelian p-groups.
The cohomology ring $H^\bullet(\Omega K)$

Moreover, as cohomology ring,

$$H^\bullet(\Omega K) \cong \begin{cases}
S(P(H)) & p = 2; \\
\Lambda(P(H)) \otimes S(\omega P(H)) & p > 2.
\end{cases}$$

where Λ and S are the exterior and symmetric algebra functors.

Stefan and Van Oystaeyen’s idea: $H^\bullet(\Omega K) \cong H^\bullet(K^*, k) \cong H^\bullet(C_p^d, k)$, where $d = \text{dim } P(H)$.

By abuse of notations, we also consider $\omega(a) = \sum_{1 \leq i \leq p-1} \binom{p}{i}/p \ a^i \otimes a^{p-i}$ as an element of $K^+ \otimes K^+$ for any $a \in K^+$.
Consider $K \subsetneq H$ as an inclusion of connected Hopf algebras. Denote by n the minimal integer such that $K_n \neq H_n$. There is an injection induced by d^1 such that

$$d^1 : H_n/K_n \longrightarrow H^2(\Omega K).$$

Theorem 2 Choose x_1, x_2, \cdots, x_d as a basis of $P(H)$. Then, we can find some $z \in H \setminus K$ such that

$$\Delta(z) = z \otimes 1 + 1 \otimes z + \omega \left(\sum_{i=1}^{d} \alpha_i x_i \right) + \sum_{1 \leq i < j \leq d} \alpha_{ij} x_i \otimes x_j,$$

for some coefficients $\alpha_i, \alpha_{ij} \in k$ not all zero.
K is normal in H

Suppose \(\dim H / \dim K = p^s \), and \(H \) is generated by \(K \) and some \(z \in H \) as an algebra. Also assume that \(\Delta(z) = z \otimes 1 + 1 \otimes z + u \), where \(u \in K \otimes K \) and \([K, z] \subseteq K + Kz\).

Theorem 3 We have \(H \) is a free (left) \(K \)-module such that

\[
H = \bigoplus_{i=0}^{p^s-1} Kz^i.
\]

Furthermore, if \(K \) is normal in \(H \), i.e., \(K^+H = HK^+ \), then \(z \) satisfies a polynomial equation as follows:

\[
z^{p^s} + \sum_{i=0}^{s-1} \alpha_i z^{p^i} + a = 0,
\]

for some \(\alpha_i \in k \) and \(a \in K \).
When \(\dim P(H) = 1 \)

Suppose \(\dim P(H) = 1 \). Then, we know \(H^* \) is isomorphic to \(k[x]/(x^{p^d}) \) as algebras for some \(d \geq 0 \).

Proposition 2

- \(H \) is cocommutative.
- \(P(H) \subset Z(H) \), the center of \(H \).
- There exists an increasing sequence of normal Hopf algebras:

\[
k = N_0 \subset N_1 \subset N_2 \subset \cdots \subset N_d = H,
\]

where \(\dim N_{i+1}/ \dim N_i = p \).
Example for \(\dim P(H) = 1 \)

Example 1 \([W^2]\) Let \(\lambda \in k \), and let \(A(\lambda) \) be the \(k \)-algebra of dimension \(p^3 \) generated by elements \(x, y, z \), subject to the following relations

\[
[x, y] = 0, \quad [x, z] = 0, \quad [y, z] = x, \\
x^p = 0, \quad y^p = 0, \quad z^p + x^{p-1}y = \lambda x.
\]

Then \(A(\lambda) \) becomes a connected Hopf algebra via

\[
\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \Delta(y) = y \otimes 1 + 1 \otimes y + \omega(x), \\
\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(x)(y \otimes 1 + 1 \otimes y)^{p-1} + \omega(y), \\
\epsilon(x) = \epsilon(y) = \epsilon(z) = 0, \quad S(x) = -x, \quad S(y) = -y, \quad S(z) = -z.
\]

When \(p > 2 \), \(A(\lambda) \cong A(\lambda') \iff \lambda = \gamma \lambda' \) for some \(\gamma \in p^2 + p^{-1} \sqrt{1} \).
Let H be cocommutative, and $L = H^*$, which is commutative.

- Define the upper power series of H as:
 \[
 \Gamma^n(H) = k\langle H_{p^n-1}\rangle,
 \]
 for $n \geq 0$, where $k\langle H_{p^n-1}\rangle$ denotes the subalgebra generated by the $(p^n - 1)$-th term of its coradical filtration.

- Define the lower power series of L as:
 \[
 \Gamma_n(L) = \{ h^{p^n} | h \in L \},
 \]
 for all $n \geq 0$.

Upper and lower power series
Proposition 3 Upper and lower power series are sequences of normal Hopf subalgebras. Moreover, we have

$$\Gamma^n(H) \cong (L/\Gamma_n(L)^+L)^*, \quad \Gamma_n(L) \cong (H/\Gamma^n(H)^+H)^*.$$

Theorem 4 The following are equivalent:

- H is local.
- K is local.
- All elements in $P(H)$ are nilpotent.

Remark: The locality criteria for finite-dimensional cocommutative connected Hopf algebras parallel the unipotency criteria for finite connected group schemes over k.
Example for Local Noncocommutative Connected Hopf Algebras

Example 2 $[W^2]$ Let $\lambda \in k$, and let $B(\lambda)$ be the k-algebra of dimension p^3 generated by elements x, y, z subject to the following relations

$$[x, y] = 0, \ [x, z] = 0, \ [y, z] = 0,$$

$$x^p = y, \ y^p = 0, \ z^p = \lambda x.$$

Then $B(\lambda)$ becomes a connected Hopf algebra via

$$\Delta(x) = x \otimes 1 + 1 \otimes x, \ \Delta(y) = y \otimes 1 + 1 \otimes y,$$

$$\Delta(z) = z \otimes 1 + 1 \otimes z + + \omega(y) + x \otimes y,$$

$$\epsilon(x) = \epsilon(y) = \epsilon(z) = 0, \ S(x) = -x, \ S(y) = -y, \ S(z) = -z + xy.$$

When $p > 2$, $B(\lambda) \cong B(\lambda') \Leftrightarrow \lambda = \gamma \lambda'$ for some $\gamma \in \frac{p^2 - p - 1}{\sqrt{1}}$.
Example for Non-local Noncocommutative Connected Hopf Algebras

Example 3 \([W^2]\) Let \(\lambda \in \mathbb{F}_p\), and let \(C(\lambda)\) be the \(k\)-algebra of dimension \(p^3\) generated by elements \(x, y, z\), subject to the following relations

\[
\begin{align*}
[x, y] &= 0, \quad [x, z] = \lambda x, \quad [y, z] = (1 - \lambda)y, \\
x^p &= 0, \quad y^p = 0, \quad z^p = z.
\end{align*}
\]

Then \(C(\lambda)\) becomes a connected Hopf algebra via

\[
\begin{align*}
\epsilon(x) &= 0, \quad \Delta(x) = x \otimes 1 + 1 \otimes x, \quad S(x) = -x, \\
\epsilon(y) &= 0, \quad \Delta(y) = y \otimes 1 + 1 \otimes y, \quad S(y) = -y, \\
\epsilon(z) &= 0, \quad \Delta(z) = z \otimes 1 + 1 \otimes z + x \otimes y, \quad S(z) = -z + xy.
\end{align*}
\]

We have \(C(\lambda) \cong C(\lambda')\) if and only if \(\lambda = \lambda'\) or \(\lambda + \lambda' = 1\).
1) Recall \(\dim H = p^{d+1} \) for some \(d \geq 1 \). We are interested in the case when \(H \) is almost primitively generated, i.e., \(\dim K = p^d \). There are two cases.

- \(K \) is commutative. We prove that \(H \) is always an extension of restricted universal enveloping algebras. And the classification is accomplished in terms of automorphism groups acting on cohomology groups.

- \(K \) is noncommutative. We classified the case when \(\dim H = p^3 \).
Further Projects

Example 4 [W^2] Suppose dim $H = p^3$, and dim $K = p^2$. There are three isomorphism classes for K is noncommutative. As algebras, they are

- $k \langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z], x^p - x, y^p, z^p)$;
- $k \langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z] - yf(x), x^p - x, y^p, z^p - z)$ with $f(x) = \sum_{1 \leq i \leq p-1} (-1)^{i-1}(p - i)^{-1}x^i$;
- $k \langle x, y, z \rangle / ([x, y] - y, [x, z], [y, z] - y^2, x^p - x, y^p, z^p)$.

For the coalgebra structures, x and y are always primitive and the comultiplication of z is given by

- $\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(y)$;
- $\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(x)$;
- $\Delta(z) = z \otimes 1 + 1 \otimes z - 2x \otimes y$, for $p > 2$.
Further Projects

2) We want to compute the cohomology rings for those connected Hopf algebras (and their duals) of dimension p, p^2 and p^3 we have classified.

It is conjectured that the cohomology ring of a finite-dimensional Hopf algebra is always finitely generated. It is a special case of a conjecture about finite tensor categories by Etingof and Ostrik.

Recently, Witherspoon and Nguyen showed that a series of finite-dimensional Hopf algebras, $A\# kG$ for some Nichols algebra A in positive characteristic, have finitely generated cohomology rings.
3) We like to classify all semismiple connected Hopf algebras. By Masuoka’s result, \(H \) is semisimple if and only if \(H = (k[G])^\ast \) for some \(p \)-group \(G \). Let \(p = 2 \). Then the following are in 1-1 correspondence with each other.

- The isomorphism classes of semisimple connected Hopf algebras of dimension \(p^{d+1} \) with \(\dim P(H) = d \).
- The isomorphism classes of quadratic curves in \(\mathbb{P}^{d-1}_{\mathbb{F}_p} \) up to the automorphisms of the projective space.
- The isomorphism classes of \(p \)-groups of order \(p^{d+1} \), whose Frattini group is isomorphic to \(C_p \).

The Frattini group of a \(p \)-group \(G \) is the smallest normal subgroup \(N \), where \(G/N \) is an elementary abelian \(p \)-group.
References

X. Wang1,
Connected Hopf algebras of dimension p^2,

X. Wang2,
Local Criteria for cocommutative Hopf algebras,

X. Wang3,
Connected Hopf algebras with large abelian primitive space,
in preparation.

X. Wang4,
Another proof of Masuoka’s Theorem for semisimple irreducible Hopf algebras,

L. Wang and X. Wang1,
Classification of pointed Hopf algebras of dimension p^2 over any algebraically closed field,

L. Wang and X. Wang2,
Classification of Connected Hopf algebras of dimension p^3 I,

L. Wang and X. Wang3,
Classification of Connected Hopf algebras of dimension p^3 II,
in preparation.