Classification of small unipotent quantum groups in positive characteristic and its applications

Xingting Wang

University of Southern California

Algebra Seminar Talk

September 22nd, 2014
Outlines

Part I Backgrounds and Motivations
Part II Unipotent Quantum Groups
Part III General Classification Results
Part IV Primitive Control Deformations
Part V Applications and Related Topics
Recall that affine group schemes are representable functors from commutative k-algebras to groups.

Alg: the category of all commutative k-algebras.

Grp: the category of all groups.

Let G be a functor from Alg to Grp. So there are natural transformations

- group multiplication: $\mu : G \times G \to G$,
- group identity: $i : e \to G$,
- group inverse: $s : G \to G$,

where the following diagram commutes:
Part I: Backgrounds and Motivations

Associativity:

Identity:

Inverse element:

Moreover, the group multiplication μ and the group identity i respect the diagonal map $\Gamma : G \to G \times G$.
Suppose G is representable, or $G = \text{Hom}_{\text{Alg}}(H, -)$ for some commutative k-algebra H. We say H is the coordinate ring of G and write $H = \mathcal{O}(G)$. By Yoneda’s Lemma, we have

- group mult. $\mu : G \times G \to G$ \begin{equation} \mu \end{equation}
- comult. $\Delta : H \to H \otimes_k H$

- group identity $i : e \to G$

- counit $\epsilon : H \to k$

- group inverse $s : G \to G$

- antipode $S : H \to H$

such that the following diagrams commute:
Part I: Backgrounds and Motivations

Coassociativity:

\[H \otimes H \otimes H \xrightarrow{\Delta \otimes id} H \otimes H \]

\[\xrightarrow{id \otimes \Delta} \]

\[H \otimes H \xleftarrow{\Delta} H \]

County:

\[H \otimes k \xleftarrow{id \otimes \epsilon} H \otimes H \xrightarrow{\epsilon \otimes id} k \otimes H \]

\[\xrightarrow{\otimes 1} \]

\[\xrightarrow{1 \otimes} \]

Antipode Axiom:

\[H \otimes H \xleftarrow{S \otimes id} H \otimes H \]

\[\xrightarrow{m} \]

\[\xrightarrow{\Delta} \]

\[H \xrightarrow{u} k \xleftarrow{\epsilon} H \]

\[\xrightarrow{m} \]

\[\xrightarrow{\Delta} \]

\[H \otimes H \xleftarrow{id \otimes S} H \otimes H \]

Moreover, comultiplication \(\Delta \) and counit \(\epsilon \) are algebra maps.
We call \((H, m, u, \Delta, \epsilon, S)\) a commutative Hopf \(k\)-algebra. As a consequence, the following two categories are equivalent:

\[
\text{Affine group schemes} \equiv (\text{comm. Hopf algebras})^{op}
\]

\[
G \mapsto \mathcal{O}(G)
\]

\[
G = \text{Hom}_{\text{Alg}}(H, -) \leftrightarrow H
\]

In Drienfeld’s philosophy, quantum groups are defined to be

\[
\text{Quantum groups} \equiv (\text{Hopf algebras})^{op}
\]

In a conclusion, quantum groups correspond to noncommutative Hopf algebras defined by maps and commutative diagrams as in the affine group schemes case.
Part I: Backgrounds and Motivations

We want to understand finite quantum groups (finite-dimensional Hopf algebras) in positive characteristic.

- representation theory in positive characteristic: irreducible representations, gauge equivalence, quiver algebras and Auslander-Reiten quivers, etc.
- cohomology theory: cohomology rings of finite-dimensional Hopf algebras.
- quantum group actions on AS-regular algebras in positive characteristic: invariant theory.
- Yetter-Drinfeld modules and Nichols algebras in positive characteristic.
An affine group scheme G is unipotent if its coordinate ring $\mathcal{O}(G)$ has a filtration $C_0 \subset C_1 \subset C_2 \subset \cdots$ such that

$$C_0 = k, \bigcup_{r \geq 0} C_r = \mathcal{O}(G), \quad \text{and} \quad \Delta(C_r) \subset \sum_{0 \leq i \leq r} C_i \otimes C_{r-i}.$$

We also say $\mathcal{O}(G)$ is a connected commutative Hopf algebra.

Theorem

Let G be an affine algebraic group over an algebraic closed field k of characteristic zero. Then the following are equivalent:

1. G is unipotent group.
2. G is torsion-free nilpotent group.
3. G is a closed subgroup of $T(n, k)$ for some $n \geq 1$.
4. $\mathcal{O}(G)$ is a polynomial algebra over k.
5. $\mathcal{O}(G)$ is a connected Hopf algebra over k.

Part II: Unipotent Quantum Groups
Therefore, unipotent quantum groups correspond to connected Hopf algebras defined as in the unipotent affine group schemes case. For finite-dimensional connected Hopf algebras, facts are:

- They only appear in positive characteristic (let char \(k = p > 0 \)).
- They all have dimension \(p^n \) for some integer \(n > 0 \).
- They can be constructed from \(p \)-groups, finite unipotent group schemes and finite restricted Lie algebras.
- They are in one-to-one correspondence with finite-dimensional local Hopf algebras by Cartier duality.
Throughout, let \((H, m, u, \Delta, \epsilon, S)\) be a finite-dimensional connected Hopf algebra over an algebraic closed field \(k\) of characteristic \(p > 0\). Regarding the coalgebra structure of \((H, \Delta, \epsilon)\), we have

- the coradical of \(H\) is the sum of all simple subcoalgebras denoted by \(H_0\) (\(H\) is connected iff \(\dim H_0 = 1\)).
- the coradical filtration of \(H\): \(H_0 \subseteq H_1 \subseteq \ldots H_n \subseteq \ldots \subseteq H\).
- the primitive space \(P(H) = \{x \in H | \Delta(x) = x \otimes 1 + 1 \otimes x\}\) (It is a restricted Lie algebra, where the Lie bracket is given by the commutator and the restricted map is given by the \(p\)-th power in \(H\)).
Part III: General Classification Results

We will provide new examples of finite unipotent quantum groups by classifying all connected Hopf algebras of dimension p, p^2 and p^3 over k.
A list of isomorphism classes is obtained with explicit generators and relations.

- dimension p, there are two isomorphism classes.
- dimension p^2, there are eight isomorphism classes.
- dimension p^3.
 - $\heartsuit \dim P(H) = 1$, there are four isomorphism classes and one infinite parametric family.
 - ♠ $\dim P(H) = 2$ and nonabelian, there are three isomorphism classes.
 - ♣ (suppose $p > 2$). $\dim P(H) = 2$ and abelian, there are thirty three isomorphism classes, one finite parametric family and eight infinite parametric families.
 - ♦ $\dim P(H) = 3$, there are fifteen isomorphism classes and one finite parametric family.
Part III: General Classification Results

This classification involves:

- groups of order p, p^2 and p^3 (Hölder 1893 and Burnside 1897)
 - order p: C_p
 - order p^2: $C_p \times C_p$ and C_{p^2}
 - order p^3: Abelian C_{p^3}, $C_{p^2} \times C_p$ and $C_p \times C_p \times C_p$; Nonabelian D_4, Q_8 for $p = 2$ and $(C_p \times C_p) \times C_p$ and $C_{p^2} \times C_p$ for $p > 2$
- finite unipotent group schemes of dimension p, p^2 and p^3
- restricted Lie algebras of dimension 1, 2 and 3 (simple Lie algebras over an algebraically closed field of characteristic $p \geq 5$ is recently classified by Premet, Strade and others)
Part III: General Classification Results

Techniques used in classification:

- Dimension p: choose $0 \neq x \in P(H)$. Since $x^p \in P(H)$, we have $x^p = \lambda x$ for some $\lambda \in k$. By rescaling, we can take $\lambda = 0$ or 1.
- Dimension p^2: restricted Lie algebra theory and Hochschild cohomology of coalgebras (cobar construction).
- Dimension p^3: ♠ Primitive control deformations (PCDs) of restricted universal enveloping algebras.
Part III: General Classification Results

Infinite family in ♦: let $\lambda \in k$, and $A(\lambda)$ the k-algebra generated by elements x, y, z, subject to the following relations

\[
[x, y] = 0, [x, z] = 0, [y, z] = x, x^p = 0, y^p = 0, z^p + x^{p-1} y = \lambda x.
\]

Take the expression $\omega(t) = \sum_{1 \leq i \leq p-1} \binom{p}{i} \frac{t^{i}}{pt^i} \otimes t^{p-i}$. Therefore $A(\lambda)$ becomes a connected Hopf algebra via

\[
\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \Delta(y) = y \otimes 1 + 1 \otimes y + \omega(x),
\]

\[
\Delta(z) = z \otimes 1 + 1 \otimes z + \omega(x) (y \otimes 1 + 1 \otimes y)^{p-1} + \omega(y),
\]

\[
\epsilon(x) = \epsilon(y) = \epsilon(z) = 0, \quad S(x) = -x, \quad S(y) = -y, \quad S(z) = -z.
\]

When $p > 2$, $A(\lambda) \cong A(\lambda') \iff \lambda = \gamma \lambda'$ for some $\gamma \in p^{2+p-1} \sqrt{1}$, or the isomorphism classes of $A(\lambda)$ are parametrized by $k/ p^{2+p-1} \sqrt{1}$.
Suppose k is of characteristic $p > 2$. Consider the restricted Lie algebra $\mathfrak{sl}_2(k)$: all trace zero 2×2 matrices. As a k-vector space, $\mathfrak{sl}_2(k)$ is generated by:

$$
e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- The Lie bracket is given by the commutators in $M_2(k)$:
 $$[h, e] = 2f, \quad [h, f] = -2f, \quad [e, f] = h.$$

- The restricted map is given by the p-th power map in $M_2(k)$:
 $$e^p = f^p = 0, \quad h^p = h.$$
Consider an extension of two restricted Lie algebras \mathfrak{g} (abelian) and \mathfrak{h}:

\[0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} \times \mathfrak{h} \rightarrow \mathfrak{h} \rightarrow 0 \]

The semi-product $\mathfrak{g} \times \mathfrak{h}$ is given by an algebraic representation $\rho : \mathfrak{h} \rightarrow \text{End}_k(\mathfrak{g})$ such that

- the Lie bracket is $\left[(x, y), (x', y') \right] = (\rho_y(x') - \rho_{y'}(x), [y, y'])$,
- the restricted map is $(x, y)[p] = (x[x], y[p])$,

for any $x, x' \in \mathfrak{g}$ and $y, y' \in \mathfrak{h}$.

Part IV: Extension of restricted Lie algebras
Part IV: Algebraic representation

An algebraic representation of \mathfrak{h} on \mathfrak{g} is a linear map

$$\rho : \mathfrak{h} \to \text{End}_k(\mathfrak{g})$$

such that

1. $\rho_{[x,y]} = \rho_x \rho_y - \rho_y \rho_x$,
2. $\rho_{(xp)} = (\rho_x)^p$,
3. $\rho_x([a,b]) = [\rho_x(a), b] + [a, \rho_x(b)]$,
4. $\rho_x(a^p) = \rho_x(a) (\text{ad } a)^{p-1}$,

for any $x, y \in \mathfrak{h}$ and $a, b \in \mathfrak{g}$.
Part IV: A concrete example of PCDs

The extension \mathcal{T} of restricted Lie algebras are described by

- Let $\dim \mathfrak{g} = 2$ and $\dim \mathfrak{h} = 1$. So we fix basis x, y for \mathfrak{g} and z for \mathfrak{h}.

- By Strade and Farnsteiner's terminology, suppose \mathfrak{g} and \mathfrak{h} are tori such that $x^p = x$, $y^p = y$ and $z^p = z$.

- Let ρ be an algebraic representation of \mathfrak{h} on \mathfrak{g}. Note that

$$\rho_z(x^p) = \rho_z(x)(\text{ad} x)^{p-1} = 0, \quad \rho_z(y^p) = \rho_z(y)(\text{ad} y)^{p-1} = 0.$$

Hence $\rho = 0$.

The only possible extension \mathcal{T} of restricted Lie algebras is

$$\mathcal{T} : 0 \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{g} \oplus \mathfrak{h} \longrightarrow \mathfrak{h} \longrightarrow 0$$

And

$$u(\mathfrak{g} \oplus \mathfrak{h}) = \frac{\mathbb{k}\langle x, y, z \rangle}{\langle [x, y], [y, z], [x, z], x^p - x, y^p - y, z^p - z \rangle}.$$
Part IV: A concrete example of PCDs

Any PCD of the extension T is given by

$$\left[u(g \oplus h) , \chi , \Theta \right] := k[x, y, z]/J$$

where the relation J is generated by

$$x^p - x, y^p - y, z^p - z + \Theta.$$

and

$$\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \Delta(y) = y \otimes 1 + 1 \otimes y,$$

$$\Delta(z) = z \otimes 1 + 1 \otimes z + \chi.$$
Part IV: A concrete example of PCDs

Let $B = u(g)$. The parametric space of $A := [u(g \otimes h), \chi, \Theta]$ is

$$\mathcal{P} = Z^2(\Omega B) \times B^+.$$

where $Z^2(\Omega B)$ is the set of all cocycles in the cobar construction on B:

$$\begin{array}{cccc}
\mathbf{k} & \rightarrow & B^+ & \mathbf{d}^1 \rightarrow & B^+ \otimes B^+ & \mathbf{d}^2 \rightarrow & B^+ \otimes B^+ \otimes B^+ & \rightarrow & \cdots
\end{array}$$

The size of the parametric space is $\dim \mathcal{P} = 2p^2 - 1$. Now all PCDs of the extension T correspond to the subset of \mathcal{P} satisfying

(1) $\text{gr}A = k[X, Y, Z]/(X^p, Y^p, Z^p)$ with respect to the coradical filtration.

(2) $\text{P}(A) = g$.
Part IV: A concrete example of PCDs

Moreover in order to classify all PCDs of the extension T, we construct a subset quotient $\mathcal{H}^2(T)$ by requiring

1. $\text{gr} A = k[X, Y, Z]/(X^p, Y^p, Z^p)$ with respect to the coradical filtration.
2. $\text{P}(A) = g$.
3. equivalence relation for extensions

$$1 \rightarrow u(g) \rightarrow A \rightarrow u(h) \rightarrow 1.$$

We show that there is a bijection

$$\mathcal{H}^2(T) \leftrightarrow S = \mathbb{F}_p \times \mathbb{F}_p \times \mathbb{F}_p \setminus \{(0, 0, 0)\}$$

In details, any point $P = (a, b, c) \in S$ can be represented in the parametric space \mathcal{P} by

$$\chi_P = ax \otimes y + \sum_{i=1}^{p-1} \left(\begin{array}{c} p \\ i \end{array} \right) / p \ (bx + cy)^i \otimes (bx + cy)^{p-i},$$

$$\Theta_P = 0.$$
Part IV: A concrete example of PCDs

We define an automorphism group

\[\text{Aut}(T) = \text{Aut}(g) \times \text{Aut}(h) = \text{GL}(2, \mathbb{F}_p) \times \text{GL}(1, \mathbb{F}_p). \]

Choose any \(\phi = M \times \gamma \in \text{GL}(2, \mathbb{F}) \times \text{GL}(1, \mathbb{F}_p). \) There is an embedding \(\text{Aut}(T) \hookrightarrow \text{GL}(3, \mathbb{F}_p) \) via

\[\phi = M \times \gamma \mapsto \begin{pmatrix} \gamma^{-1} \det(M) & 0 \\ 0 & \gamma^{-1}M \end{pmatrix}. \]

Then \(\phi \) acts on any point \(P = (a, b, c) \in S \) as follows:

\[\phi[a, (b, c)] = [\gamma^{-1}(\det M)a, \gamma^{-1}(b, c)M]. \]

We show that \(\text{Aut}(T) \)-orbits in \(S \) are in 1-1 correspondence with isomorphism classes of all PCDs of the extension \(T \).
Part IV: A concrete example of PCDs

Consider the group action on $S = \mathbb{F}_p \times \mathbb{F}_p \times \mathbb{F}_p \setminus \{(0, 0, 0)\}$ by the following two normal subgroups.

- $\text{Aut}(\mathfrak{h}) = \mathbb{F}_p^\times$ acts on S by inverse multiplication

 $$\phi(a, b, c) = (\gamma^{-1} a, \gamma^{-1} b, \gamma^{-1} c).$$

- $\text{Aut}(\mathfrak{g}) = \text{GL}(2, \mathbb{F}_p)$ acts on S via the embedding

 $$M \mapsto \begin{pmatrix} \det(M) & 0 \\ 0 & M \end{pmatrix}.$$

Since $S/\mathbb{F}_p^\times = \mathbb{P}^2$,

$$\text{Aut}(\mathfrak{T})\text{-orbits in } S \longleftrightarrow \text{Aut}(\mathfrak{g})\text{-orbits in } \mathbb{P}^2$$

via the previous embedding $\text{GL}(2, \mathbb{F}_p) \hookrightarrow \text{PGL}(3, \mathbb{F}_p)$.

Part IV: A concrete example of PCD

The Aut(g)-orbits in \mathbb{P}^2 contain three points

$$A = [1 : 0 : 0], \quad B = [1 : 1 : 0], \quad C = [0 : 1 : 0]$$

The corresponding PCDs are

$$k[x, y, z] \quad \frac{(x^p - x, y^p - y, z^p - z)}{\sum_{i=1}^{p-1} \binom{p}{i}/p \cdot x^i \otimes x^{p-i}}$$

where x, y are primitive elements and

$$A : \Delta(z) = z \otimes 1 + 1 \otimes z + x \otimes y$$

$$B : \Delta(z) = z \otimes 1 + 1 \otimes z + x \otimes y + \sum_{i=1}^{p-1} \binom{p}{i}/p \cdot x^i \otimes x^{p-i}$$

$$C : \Delta(z) = z \otimes 1 + 1 \otimes z + \sum_{i=1}^{p-1} \binom{p}{i}/p \cdot x^i \otimes x^{p-i}$$
Part IV: A concrete example of PCD

By Masuoka’s result, A, B, C correspond to the dual of the group algebra kG, whose Frattini group is C_p. There are only three of them

$$A : \Delta(z) = z \otimes 1 + 1 \otimes z + x \otimes y \leftrightarrow (C_p \times C_p) \rtimes C_p$$

$$B : \Delta(z) = z \otimes 1 + 1 \otimes z + x \otimes y + \sum_{i=1}^{p-1} \frac{p}{p} x^i \otimes x^{p-i} \leftrightarrow C_p^2 \rtimes C_p$$

$$C : \Delta(z) = z \otimes 1 + 1 \otimes z + \sum_{i=1}^{p-1} \frac{p}{p} x^i \otimes x^{p-i} \leftrightarrow C_p^2 \times C_p$$
Part IV: Classification of ♠

♠ Suppose $p > 2$. When $\dim P(H) = 2$ and abelian, there are thirty three isomorphism classes, one finite parametric family and eight infinite parametric families.

All Hopf algebras in ♠ come from PCDs of $u(g \rtimes h)$ satisfying

- $\dim g = 2$ and g is abelian.
- $\dim h = 1$.
- The primitive space of the deformation is isomorphic to g.
Part IV: Classification of ♠

We first classify all possible extensions

\[T : 0 \rightarrow g \rightarrow g \times h \rightarrow h \rightarrow 0 \]

with data \(T = (g, h, \rho) \). There are sixteen isomorphism classes of such extensions.

Classification of \(g : \)

\[\begin{align*}
A : x^p &= 0, \quad y^p = 0, \\
B : x^p &= 0, \quad y^p = 0, \\
C : x^p &= y, \quad y^p = 0, \\
D : x^p &= x, \quad y^p = x.
\end{align*} \]

Classification of \(h : \)

\[\begin{align*}
N : z^p &= 0, \\
S : z^p &= z.
\end{align*} \]
Part IV: Classification of ♣

<table>
<thead>
<tr>
<th>Type</th>
<th>g</th>
<th>h</th>
<th>Algebraic representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1)</td>
<td>A</td>
<td>N</td>
<td>$\rho_z = 0$</td>
</tr>
<tr>
<td>(T2)</td>
<td>A</td>
<td>N</td>
<td>$\rho_z(x) = y, \rho_z(y) = 0$</td>
</tr>
<tr>
<td>(T3)</td>
<td>A</td>
<td>S</td>
<td>$\rho_z = 0$</td>
</tr>
<tr>
<td>(T4)</td>
<td>A</td>
<td>S</td>
<td>$\rho_z(x) = x, \rho_z(y) = \lambda y$ for $\lambda \in \mathbb{F}_p$ and $\lambda \neq -1$</td>
</tr>
<tr>
<td>(T5)</td>
<td>B</td>
<td>N</td>
<td>$\rho_z = 0$</td>
</tr>
<tr>
<td>(T6)</td>
<td>B</td>
<td>N</td>
<td>$\rho_z(x) = 0, \rho_z(y) = x$</td>
</tr>
<tr>
<td>(T7)</td>
<td>B</td>
<td>S</td>
<td>$\rho_z = 0$</td>
</tr>
<tr>
<td>(T8)</td>
<td>B</td>
<td>S</td>
<td>$\rho_z(x) = 0, \rho_z(y) = y$</td>
</tr>
<tr>
<td>(T9)</td>
<td>B</td>
<td>S</td>
<td>$\rho_z(x) = 0, \rho_z(y) = x + y$</td>
</tr>
</tbody>
</table>
Part IV: Classification of ♠

<table>
<thead>
<tr>
<th>Type</th>
<th>g</th>
<th>h</th>
<th>Algebraic representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T10) C \mathcal{N}</td>
<td></td>
<td>$\rho_z = 0$</td>
<td></td>
</tr>
<tr>
<td>(T11) C \mathcal{N}</td>
<td></td>
<td>$\rho_z(x) = y, \rho_z(y) = 0$</td>
<td></td>
</tr>
<tr>
<td>(T12) C \mathcal{S}</td>
<td></td>
<td>$\rho_z = 0$</td>
<td></td>
</tr>
<tr>
<td>(T13) C \mathcal{S}</td>
<td></td>
<td>$\rho_z(x) = x, \rho_z(y) = 0$</td>
<td></td>
</tr>
<tr>
<td>(T14) C \mathcal{S}</td>
<td></td>
<td>$\rho_z(x) = x + y, \rho_z(y) = 0$</td>
<td></td>
</tr>
<tr>
<td>(T15) \mathcal{D} \mathcal{N}</td>
<td></td>
<td>$\rho_z = 0$</td>
<td></td>
</tr>
<tr>
<td>(T16) \mathcal{D} \mathcal{S}</td>
<td></td>
<td>$\rho_z = 0$</td>
<td></td>
</tr>
</tbody>
</table>
Part IV: Classification of ♣

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1)</td>
<td>eight points</td>
</tr>
<tr>
<td>(T2)</td>
<td>six points and $k/{\pm 1}, k$</td>
</tr>
<tr>
<td>(T3)</td>
<td>NONE</td>
</tr>
<tr>
<td>(T4)</td>
<td>one point for each $-1 \neq \lambda \in \mathbb{F}_p$, totally $\frac{p+1}{2}$ points</td>
</tr>
<tr>
<td>(T5)</td>
<td>four points and $k/\left(\frac{p-1}{2}\sqrt{1}\right)$</td>
</tr>
<tr>
<td>(T6)</td>
<td>one point and $k/\left(\frac{p^2-1}{2}\sqrt{1}\right)$</td>
</tr>
<tr>
<td>(T7)</td>
<td>one point</td>
</tr>
<tr>
<td>(T8)</td>
<td>three points</td>
</tr>
<tr>
<td>(T9)</td>
<td>$k/(\mathbb{F}_p^\times)^2$ and k</td>
</tr>
</tbody>
</table>
Part IV: Classification of ♣

<table>
<thead>
<tr>
<th>Type</th>
<th>$\text{Aut}(T)$-orbits in $\mathcal{H}^2(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T10)</td>
<td>four points and $k/\sqrt[p^2-p^1-1]{1}$</td>
</tr>
<tr>
<td>(T11)</td>
<td>one point and $k/\sqrt[p^2-p+1]{1}$</td>
</tr>
<tr>
<td>(T12)</td>
<td>NONE</td>
</tr>
<tr>
<td>(T13)</td>
<td>one point</td>
</tr>
<tr>
<td>(T14)</td>
<td>one point</td>
</tr>
<tr>
<td>(T15)</td>
<td>NONE</td>
</tr>
<tr>
<td>(T16)</td>
<td>three</td>
</tr>
</tbody>
</table>
In algebraically closed field of characteristic zero, we have the following facts about connected Hopf algebras:

- If a connected Hopf algebra A is cocommutative, then it is isomorphic to the universal enveloping algebra $\mathcal{U}(P(H))$.
- Only regarding algebra structure, up to GK-dimension four, connected Hopf algebras are all isomorphic to some universal enveloping algebras.
- It is proved that if $\dim P(A) = \text{GKdim} H - 1 < \infty$. Then A is isomorphic, only as algebras, to some $\mathcal{U}(L)$.
Part V: Algebra Structure of Finite Unipotent Quantum Groups

In positive characteristic, we want to know when a finite connected Hopf algebras is isomorphic, only as algebras, to some restricted universal enveloping algebra. In ♠ we an anti-example.

\[H := \frac{k\langle x, y, z \rangle}{([x, y] - y, [x, z], [y, z] - yf(x), x^p - x, y^p, z^p - z)} \]

with \(f(x) = \sum_{i=1}^{p-1} (-1)^{i-1} (p - i)^{-1} x^i \) and

\[\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \Delta(y) = y \otimes 1 + 1 \otimes y \]

\[\Delta(z) = z \otimes 1 + 1 \otimes z + \sum_{1 \leq i \leq p-1} \binom{p}{i} / p \ x^i \otimes x^{p-i} \]

We show that it has trivial center and furthermore it is not isomorphic to any one in ♠ as algebras.
Consider the following example:

\[A = \mathbb{k}[u, v] \]

\[H = \mathbb{k}[x]/(x^p - x) \text{ with } \Delta(x) = x \otimes 1 + 1 \otimes x. \]

Suppose \(H \) gradedly acts on \(A \) (graded \(H \)-module algebra). Then \(\mathbb{k}u \oplus \mathbb{k}v \) becomes a left \(H \)-module and there is an embedding \(x \leftrightarrow \text{GL}(2, \mathbb{k}) \). Since \(x^p - x = 0 \), we know that \(x \) is diagonalizable. After a linear transformation of \(u, v \) and rescaling of \(x \), we have

\[x \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \]

for some \(\lambda \in \mathbb{F}_p \).
Part V: Hopf Actions on AS-Regular Algebras in Positive Characteristic

Take $\lambda \in \{1, 2, \ldots, p - 1\}$. We use Hirzebruch-Jung’s continued fraction expansion

$$\frac{p}{p - \lambda} = a_1 - \frac{1}{a_2 - \frac{1}{a_3 - \cdots}} = [a_1, a_2, \ldots, a_k].$$

The invariant ring $A^H := \{a \in A | ha = \epsilon(h) a, \forall h \in H\}$ is generated by

$$f_0 = u^p, \quad f_1 = u^{p-\lambda}v, \quad f_2, \ldots, \quad f_{k+1} = v^p$$

where $f_{i-1}f_{i+1} = f_i^{a_i}$ for $i = 1, \ldots, k$. In complex case: $V = \mathbb{C}^2$ and G is the cyclic group of order p acting on \mathbb{C}^2 by diagonal matrixes; by a slight normalisation, we can assume that

$$G = \begin{pmatrix} \xi & 0 \\ 0 & \xi^\lambda \end{pmatrix}$$

where $\xi = \exp \frac{2\pi i}{p}$. We know V/G are surface cyclic quotient singularities of type $\frac{1}{p}(1, \lambda)$.
Part V: Questions

• How to tell a unipotent quantum group is isomorphic, only as algebras, to some restricted universal enveloping algebras?
• How to tell two semismiple unipotent quantum groups are gauge equivalent?
• What are the cohomology rings of these finite unipotent quantum groups?
• What kind of regular algebras can have finite unipotent quantum group actions and what are these invariant rings look like?
References

X. Wang1,
Connected Hopf algebras of dimension p^2,

X. Wang2,
Local Criteria for cocommutative Hopf algebras,

X. Wang3,
Isomorphism classes of finite dimensional connected Hopf algebras in positive characteristic,

X. Wang4,
Another proof of Masuoka’s Theorem for semisimple irreducible Hopf algebras,

L. Wang and X. Wang1,
Classification of pointed Hopf algebras of dimension p^2 over any algebraically closed field,

L. Wang and X. Wang2,
Classification of Connected Hopf algebras of dimension p^3 I,

L. Wang and X. Wang3,
Classification of Connected Hopf algebras of dimension p^3 II,
in preparation.