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Molecular-scale insights into the electrical
double layer at oxide-electrolyte interfaces

Chunyi Zhang 1, Marcos F. Calegari Andrade 2, Zachary K. Goldsmith1,
AbhinavS.Raman1, Yifan Li1, PabloM. Piaggi1,3,4, XifanWu 5,RobertoCar 1 &
Annabella Selloni 1

The electrical double layer (EDL) atmetal oxide-electrolyte interfaces critically
affects fundamental processes in water splitting, batteries, and corrosion.
However, limitations in the microscopic-level understanding of the EDL have
been a major bottleneck in controlling these interfacial processes. Herein, we
use ab initio-basedmachine learning potential simulations incorporating long-
range electrostatics to unravel the molecular-scale picture of the EDL at the
prototypical anatase TiO2-electrolyte interface under various pH conditions.
Our large-scale simulations, capable of capturing interfacial water dissocia-
tion/recombination reactions and electrolytic proton transport, provide
unprecedented insights into the detailed structure of the EDL. Moreover, the
larger capacitance of the EDL under basic relative to acidic conditions, origi-
nating from the higher affinity of the cations for the oxide surface, is found to
give rise to distinct charging mechanisms on negative and positive surfaces.
Our results are validated by the agreement between the computed EDL
capacitance and experimental data.

When ametal oxide is interfaced with an aqueous electrolyte with a pH
different from its pH point of zero proton charge (pHPZC), a net charge
forms on the surface1–3: at pH <pHPZC, the surface adsorbs protons from
the electrolyte and becomes positively charged, while at pH > pHPZC it
adsorbs hydroxide ions and becomes negatively charged. Electrolyte
ions of opposite charges are then drawn closer to the interface to
balance the surface charge. This electrostatic attraction, competing
with thermal fluctuations and (de)solvation thermochemistry, leads to
inhomogeneous ion distributions near the interface. Additionally,
adjacent water molecules reorient in response to the surface and ionic
charges. The combination of the charged surface, adjacent ions, and
neighboring water molecules constitutes what is known as the elec-
trical double layer (EDL)1–3. The EDL governs the chemical reactivity and
physical properties of the interface and is crucial in diverse environ-
mental, biological, colloidal, and electrochemical processes4–7.

The EDL has often been described based on the Gouy-Chapman-
Stern (GCS) model, which assumes a uniformly charged, laterally

homogeneous surface and treats water as a homogeneous dielectric
continuum3,8. However, as the understanding of solid-electrolyte
interfaces has advanced through theory and experiment, it has
become apparent that the properties of the first few interfacial water
layers depend on the surface structure and deviate considerably from
those of bulk water9, a clear indication of the limitations of the GCS
mean-field description3–5. To overcome these limitations, GCS has
been combined with surface complexation models that account for
discrete active surface sites10–13. These approaches have been useful for
the interpretation of several experimental data but could not explicitly
dealwith key features suchas thewater ions originating from thepHof
the solution. Moreover, growing experimental evidence underscores
the inadequacy of classical mean-field descriptions in the presence of
dynamic events such as proton/electron transfer and chemical
reactions3,4,6,14. There is thus an urgent need for a microscopic under-
standing of the EDL that goes beyond mean-field theory and semi-
empirical descriptions.
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Investigations of the EDL at oxide-electrolyte interfaces are
notoriously challenging. Experimentally, although surface-sensitive
techniques are becoming increasingly available to investigate the
structure and dynamics of solid-liquid interfaces3,15,16, the EDL’s
microscopic properties are still difficult to probe. Theoretically, force
field simulations and multiscale modeling have been widely used and
provided important insights8,15,17,18, but are generally not accurate
enough for describing reactive processes such as water dissociation
and proton transfer at aqueous interfaces19–21. In contrast, density
functional theory (DFT)-based ab initio molecular dynamics (AIMD)
can in principle provide more accurate information on both atomistic
details of the EDL and on macroscopic observables19–22. However, the
computational cost of AIMD simulationsmakes thempractical only for
system sizes (hundreds of atoms) and simulation times (tens of pico-
seconds) that are often insufficient to characterize the EDL and pH-
dependent surface chemistry21–23. For example, AIMD provided esti-
mates of Helmholtz capacitances at oxide-electrolyte interfaces19,24,25,
but could not predict equilibrium ion distributions in the EDL, for
which longer simulation times and larger cells would be needed.

In the past few years, machine-learned potentials (MLPs)26–30 have
emerged as a viable approach to enable large-scale ab initio-level
simulations of bulk systems, interfaces and reactive processes21,23,31–34.
Of such MLP methods, the Deep Potential (DP) scheme27,28 has been
successfully applied to model bulk aqueous electrolytes31 and water-
oxide interfaces21,23,32–34. Moreover, this scheme has recently been
extended to include long-range electrostatic interactions35, a compo-
nent missing in standard MLPs but found to be important for simu-
lating the acid-base chemistry in water36.

In this work, we use the deep potential long-range (DPLR)method35

to conduct large-scale molecular dynamics simulations of the anatase
TiO2 (101) surface in contact with electrolyte solutions at various pHs.
TiO2 is a typical functional oxide and one of the most widely used
materials in (photo-)electrochemistry37–39. Our simulations provide a
comprehensive molecular-scale picture of the EDL at TiO2 interfaces
including the occurrence of distinct microscopic surface charging
mechanisms at low and high pHs. We also developed a method to
calculate the electrostatic potential profile with ab initio DFT accuracy
that enabled us to evaluate the interfacial capacitance due to the
adsorption of protons or hydroxide ions and the corresponding coun-
terions, a macroscopic property measurable from experiments that is
highly reflective of the EDL’s nature19,24,25,40. The computed capacitances
agree with experimental results40, underscoring the reliability of our ab
initio-based, machine-learned description of the EDL.

Results and discussion
Structure of the EDL
To characterize the EDL, we performed DPLR molecular dynamics
simulations on periodically repeated systems consisting of a five-layer
anatase (101) slab with a (30:7Å×33:9Å) surface cell in contact with a
67 Å thick aqueous electrolyte (Fig. 1a). In the following discussion we
focus on three experimentally relevant solutions40, namely neutral
0.4M NaCl (NaCl(aq), composed of 2376 H2O molecules and 18 NaCl),
acidic 0.4M NaCl + 0.2M HCl (with 10 HCl added to the neutral
solution), and basic 0.4MNaCl + 0.2M NaOH (with 10 NaOH added to
the neutral solution). In the electrolyte, NaCl serves as a background
salt, and adding 0.2M NaOH or HCl changes the pH of the initial
configuration from a nominal value of 7 to 13.3 or 0.7. Additional
results for TiO2 interfaces with electrolytes containing higher con-
centrations of NaOH and HCl are reported in Supplementary Sec-
tion 10 and Fig. 3c. The magnified view of the interface (Fig. 1b) shows
that the TiO2 surface exposes five-fold coordinated titanium (Ti5c) and
two-fold coordinated oxygen (O2c) atoms (108 Ti5c and 108 O2c sites in
total, considering the two surfaces of the slab). The undercoordinated
Ti5c atoms act as (Lewis) acid sites for the adsorption of water or OH−

ions, while the O2c atoms act as Brønsted bases which can accept a
hydrogen bond or a H+ from water. Water dissociation thus results in
protons on O2c sites (bridging hydroxyls) and OH− groups on Ti5c sites
(terminal hydroxyls), as depicted in Fig. 1b.

For the TiO2-NaCl(aq) interface, the simulations show an equal
number of adsorbed H+ (NH+ ) and OH– (NOH�) species, originating
from the dissociation of adsorbed water molecules. Consequently, the
surface charge density (black line in Fig. 1c) is close to zero. This sug-
gests that the pH of the neutral NaCl(aq) is approximately equal to the
pHPZC of anatase, a result consistent with the experimental pHPZC of
anatase being around 6 ( ± 1)13,41,42. To support this inference, we per-
formed enhanced samplingDPLR simulations to explicitly evaluate the
pHPZC of the anatase (101)-neat water interface (Supplementary Sec-
tion 4). We focused on neat water in this simulation because pHpzc is
defined to reflect only the protonation reactions43, unaffected by the
presence of salt ions. We obtained a pHPZC of 7.0±0:1, a value within
the experimental range.

Interfaces of TiO2 with acidic and basic solutions were generated
starting from an equilibrated configuration of TiO2-NaCl(aq), and
subsequently adding 0.2M HCl or NaOH at random positions within
the electrolyte solution. All additional H+ (or OH−) ions were gradu-
ally adsorbed on the surface within 3 ns, leading to a positively (or
negatively) charged surface (Fig. 1c). Averaging over 3-10 ns, we
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Fig. 1 | Surface charging. a Supercell of the anatase (101)-electrolyte interface
employed in the DPLR simulations. The TiO2 regions are shaded in gray, while the
electrolyte region is shaded in blue. b Magnified view of the interface showing
surface undercoordinatedTi5c andO2c sites and adsorbedH2O,H+ andOH− at these
sites. For visual clarity, only relevant atoms are shown. c Surface charge density

σ = eðNH+ � NOH�Þ=S, where S is the surface area, as a function of simulation time
for anatase (101) in contact with three different types of electrolytes. All results and
error bars (shaded areas) were derived from simulations using two independent
DPLR models. Source data are provided as a Source Data file.
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obtained surface charge densities σa = 7:69±0:04μC=cm2

andσb = � 7:54±0:13μC=cm2 at the interfaces with the acidic and
basic electrolyte, respectively. In experiments13, such values of σa and
σb equilibrate with bulk solutions that have pHs of ≈ 4.4 and 7.4,
respectively. For our simulation cell size (2376 water molecules), a
pH value of 4.4 (or 7.4) corresponds to a negligible amount of
~2 × 10�3 H+ (or 1 × 10�5 OH−) ions in the electrolyte solution. This is
consistent with the fact that there are no H+ or OH− ions left in the
bulk region of our electrolyte solution.

Upon surface charging, an EDL forms to compensate for the sur-
face charge1–3. In the GCS model, the electrolyte ions form discrete
(Helmholtz) planes, with the outer Helmholtz plane (OHP) separating
the Stern layer from a diffuse layer where the ions follow the Poisson-
Boltzmann distribution (Fig. 2a). The counter-ion and co-ion densities
converge to an equal value in the EDL’s tail, indicating that the elec-
trolyte recovers its bulk-like behavior. Within the Stern layer, the inner
Helmholtz plane (IHP) is formed by ions that are specifically adsorbed
at the surface and lack a complete hydration shell (Fig. 2a).

The electrolyte ion distributions obtained from our simulations
are shown in Fig. 2b. The structure of the diffuse layer agrees with
that given by the GCS model, i.e., the Cl⁻/Na⁺ density decreases/
increases with increasing distance from the OHP until the two den-
sities become identical within the error bars of the simulation.
However, the ion distribution within the Stern layer is more complex
than suggested by the GCS model and by previous force field
simulations15,18. Specifically, within the Stern layer, we identify not
just a single ionic peak, but three distinct peaks: a first Na⁺ peak at
1.5 Å from the surface, followed by a Cl⁻ peak at 3.4 Å of low intensity
due to the repulsion between the Cl⁻ and the electronegative O2c

atoms, and another Na⁺ peak at 4.2 Å. The Na⁺ ions forming the first
peak are, on average, coordinated to two surface O2C atoms (Fig. 2c),
consistent with previous DFT results13. The distance, rNa�O2c, between
Na⁺ and O2C fluctuates around 2.3 Å (Supplementary Fig. 17), a value
similar to the distance between Na+ ions and water molecules in their
first hydration shell in bulk solution. With the O2C atoms substituting

hydration water molecules, these Na⁺ ions exhibit incomplete
hydration shells (Fig. 2c) and can thus be identified as inner-sphere
surface complexes15,18 and the corresponding peak as the IHP.
Instead, the Cl⁻ ions forming the second peak (Fig. 2 d) and the Na⁺
ions contributing to the third peak (Fig. 2e) exhibit complete
hydration shells. While this characteristic is consistent with the
definition of outer-sphere surface complexes44, these ions do not
satisfy the OHP criterion that their interactions with the surface
involve only long-range electrostatic forces45. As shown in Fig. 2d and
Fig. 2e, some water molecules in the hydration shell of these ions are
either adsorbed on Ti5c atoms or form strong hydrogen bonds with
surface O2c atoms. Since these surface water molecules have a dif-
fusion coefficient 1~2 orders of magnitude smaller than that of bulk
water46, these ions can be considered as semi-adsorbed on the sur-
face via surface water molecules. Consequently, these two ionic
peaks cannot be classified as either IHP or OHP. In this work, we
designate the corresponding layers as intermediate Helmholtz
planes (IMHPs), since their peaks fall between the IHP and the OHP.
We also find that the ions within the Stern layer are not fixed but can
exchange with other ions of the same type in the electrolyte. Speci-
fically, Na+ ions in the IHP have a residence time on the order of
nanoseconds, while ions in IMHPs have a residence time of tens to
hundreds of picoseconds (Supplementary Information Section 5).

In contrast to the GCS prediction that the EDL only forms when a
net (electronic or protonic) surface charge is present, our results show
that the charge-neutral TiO2-NaCl(aq) interface also exhibits an EDL
(Fig. 2b). This occurs because, even when the overall surface charge is
zero, local charges remain imbalanced. Specifically, the outermost
oxide surface layer is composed of electronegative O2c atoms, which
favor the adsorption of Na+ ions and, in combination with the water
molecules adsorbed or hydrogen bonded to the surface, determine
the ionic peak positions (Fig. 2c-e). Therefore, altering the surface
charge density modifies the peak intensities of the ion distribution but
does not appreciably change their relative positions (Fig. 2b). In par-
ticular, regardless of the surface charge, anions dominate at the OHP

Fig. 2 | Ion distribution. a Schematic of the Gouy-Chapman-Stern (GCS) model of
the electric double layer (EDL): the outer Helmholtz plane (OHP) separates the EDL
into Stern anddiffuse layers.Within the Stern layer, the innerHelmholtz plane (IHP)
is defined by the distance at which ions specifically adsorb. b Ion density dis-
tributions as functions of distance Δz = z � zsurface from the solid surface, obtained
from DPLR simulations of anatase (101) in contact with different electrolytes; the
position of the solid surface, zsurface, corresponds to the average position of the O2c

sites. Besides the IHP predicted by the GCS model, these simulations reveal two
additional ionic density peaks within the Stern layer, which we define as the
intermediate Helmholtz planes (IMHPs). The inset in b amplifies the small IMHP1

peak in the neutral system. The computed ion densities are averaged over the two
interfaces in the supercell. All results and error bars were derived from simulations
using two independent DPLRmodels. c–e Illustrative snapshots of themicroscopic
structures of IHP, IMHP1, and IMHP2. Color code: purple (Na+), green (Cl-), white
(H), light red (O in water or water ions), dark red (O in TiO2), and gray (Ti). Lines
between ions and neighboring oxygens indicate distances smaller than the ionic
hydration shell radius. Dashed blue lines indicate hydrogen bonds between water
and surface O2c. For visualization purposes, only the most relevant atoms are
shown. Source data are provided as a Source Data file.
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and in the diffuse layer to compensate the Na+ ions in the IMHP2 −
another important feature missed by the GCS model.

The water molecules within the EDL exhibit distribution and
orientation patterns which, as the ion distributions, are mostly deter-
mined by the surface structure. Our DPLR simulations show that the
water distribution and orientationundergo subtle changes in response
to both the surface charge and the adjacent ions (Supplementary
Section 6).

Differential capacitance
The microscopic structure of the EDL determines the differential capa-
citance C of the interface, which is composed of contributions from the
capacitance of the Stern layer (CH , also called Helmholtz capacitance)
and the diffuse layer (CD)

47, with 1
C = 1

CH
+ 1

CD
. While CH has been studied

previously by AIMD simulations19,24,25, the calculation of C with ab initio
accuracy has been a long-standing challenge due to the long simulation
times and large simulation cells needed to equilibrate the EDL. Inter-
estingly, experiments found that, at equivalent magnitudes of charge
densities, negatively charged oxide interfaces have a higher capacitance
than their positively charged counterparts for metal oxides such as
anatase40, rutile40, and zinc oxide48. This is in contrast to the symmetric
capacitance predicted by the GCS model, suggesting that the EDL at
these oxide surfaces can screen negative surface charges more effec-
tively than positive ones. However, the underlying reason for this phe-
nomenon remains a topic of active debate. Some studies attributed the
larger capacitance under basic conditions to the high affinity of cations
to the oxide12,40. In contrast, recent AIMD studies proposed that the
difference is due to the distinct properties of water under basic and
acidic conditions24,25,49. For example, Ref 24. attributed it to the larger
interfacial water fluctuations under basic conditions, Ref 25. explained it
in terms of the orientation of chemisorbed water, and Ref 49. attributed
it to the water adsorption energy.

To obtain insight into the observed asymmetry of C, we calcu-
lated this quantity with ab initio accuracy using our DPLR method.
Specifically, starting from the definition of C as the first-order deri-
vative of the surface charge density σwith respect to the electrostatic
potential drop ψ, C = dσ

dψ, we used the finite difference expression
C � Δσ

Δψ, where Δ represents the deviation of a charged interface from
a neutral reference interface. While σ is readily available in simula-
tions (Fig. 1c), ψ depends not only on the distribution of the ions but
also on that of valence electrons, which is generally not available in
simulations based on force fields. In our DPLR approach35, however,
ψ can be explicitly calculated (see “Methods” for details). The aver-
age potential profile calculated in this way for the TiO2-NaCl(aq)

interface is displayed by the green line in Fig. 3a. Within the TiO2

region, the potential exhibits pronounced oscillations, while the
homogeneous and isotropic nature of the liquid electrolyte results in
a more uniform profile. Macroscopic averaging50 of ϕðzÞ yields the
black line in Fig. 3a, from which the potential drop ψ, defined as the
potential difference between solid and liquid phases, is extracted. At
this point, the capacitance can be calculated. Taking the neutral TiO2-
NaCl(aq) interface as the reference and using the results in Fig. 1c, we
have Δσb =�7:54±0:13μC=cm2 for the TiO2-NaCl+NaOH basic solu-
tion interface, and Δσa = 7:69±0:04μC=cm2 for the TiO2-NaCl+HCl
acidic solution interface. By comparing the macroscopically
averaged50 electrostatic potential at the acidic and basic solution
interfaces with the neutral reference (Fig. 3b), we determine the
potential drop differences Δψa = 131:6± 10:6mV and Δψb = �
78:3 ± 11:2mV , respectively. Consequently, the differential capaci-
tances are Ca = 58:4±4:7μF=cm2 and Cb =96:2 ± 13:8μF=cm

2 under
acidic and basic conditions, respectively. As shown in Fig. 3c, our
results (which include the computed capacitances at higher HCl and
NaOH concentrations reported in Supplementary Section 10)
reproduce the experimental trends40,51 quite satisfactorily. In parti-
cular, our calculated ratio of Cb=Ca = 1:6±0:3 agrees well with pre-
vious DFT19,24 and experimental40 results showing Cb=Ca � 1:5 at
similar oxide/electrolyte interfaces.

Based on our simulations, the larger capacitance observed under
basic conditions in comparison to acidic ones can be understood as
follows. For the negative (positive) surface, the positive Na+ (negative
Cl−) ions are drawn towards the surface to screen the surface charge.
However, the abilities of Na+ andCl− to screen the surface charge differ.
Figure 2b shows that Na+ can approach the surface more closely than
Cl− ions because the outermost layer of TiO2 surface is composed of
electronegativeO2c atoms.This allowsNa+ to screen the surface charge
more effectively than Cl–. Inmore detail, when the system is negatively
charged under basic conditions, the affinity of Na+ ions to the elec-
tronegative surface O2c atoms draws them close to the surface, effec-
tively screening the surface OH− ions. This effect is evidenced by
Fig. 2b, which shows a significant amplification of the Na+ peak inten-
sity when transitioning from a neutral to a basic system. In contrast,
when the system is positively charged under acidic conditions, a sub-
stantial proportion ofO2c atoms (82% inour acidic system) donot bind
H+ ions (Fig. 2d). These electronegative O2c atoms repel Cl- ions, pre-
venting them frommoving close to the surface to screen the surfaceH+

ions. Consequently, the transition from a neutral to an acidic system
induces amodest increase in the Cl− peak intensity as shown in Fig. 2b.
This leads to a smaller absolute value of Δψb than Δψa, and

Fig. 3 | Potential drop at interfaces. a Representative snapshot from our DPLR
simulation of the anatase TiO2-NaCl solution interface (top) and plane-averaged
electrostatic potential ϕ along the z-direction, before and after macroscopic
(macro-) average (bottom). The potential drop ψ is determined from the macro-
averaged potential difference between the bulk solid and bulk liquid regions.
bMacro-averaged electrostatic potential at the TiO2 interfaces with three different
types of electrolytes. All curves are aligned to zero z =0. The magnified view in the
inset shows the potential drop differences between the negatively (positively)

charged surface and the neutral surface, denoted as Δψb (Δψa), which is obtained
by further averaging the macro-averaged electrostatic potentials over 31.8 A < z <
51.8 A. All results and error bars were derived from simulations using two inde-
pendent DPLR models. c Comparison between our computed interfacial capaci-
tance (star symbols) and experiments for rutile TiO2-aqueous NaNO3 interfaces
(solid lines)40[,51. Different colors of the experimental curves represent different
concentrations of the backgroundNaNO3 salt. Source data are provided as a Source
Data file.
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consequently a largerCb than Ca. Compared to the significant changes
of ion distributions at different pHs, the water distribution and
orientation undergo smaller changes (Supplementary Section 6).
Therefore, our simulations agree with the suggestion that the larger
capacitance under basic conditions is primarily due to the higher
affinity of cations to the oxide. Differences between our findings and
previous AIMD simulations19,24 are likely related to the higher ion
concentrations used in the latter, their short equilibration times, and
their focus on the Helmholtz part only of the differential capacitance.

Microscopic surface charging mechanism
The distinct interfacial capacitances resulting from the higher affinity
of cations to the oxide surface, compared to anions, are found to give
rise to distinct microscopic charging mechanisms on negative and
positive surfaces. As shown in Fig. 4a, for the charge-neutral TiO2-
NaCl(aq) interface, 14 ± 2% water molecules adsorbed at Ti5c sites are
dissociated into adsorbed H+ at O2c and OH− at Ti5c, with zero net
surface charge. Starting with an equilibrated TiO2-NaCl(aq) configura-
tion, when we add bases or acids into the electrolyte, the OH− or H3O

+

ions have two potential pathways to be adsorbed at the surface. For an
electrolyteOH– (Fig. 4b), onepathway is to recombinewith a surfaceH+

ion at the O2c site to form a water molecule in the liquid, which
decreases the surface’s H+ population. Another pathway is to recom-
bine with an H+ from an adsorbed H2O, which results in an additional
OH− ion adsorbed at the surface Ti5c site. Similarly, an electrolyte H+

can either recombine with a surface terminal OH− into a water mole-
cule or occupy an empty O2c site (Fig. 4c). Although both pathways
result in the same net surface charge σ, the total number of surface
charges, NSC =NH

+ +NOH
−, is different. The first pathway reduces NSC,

whereas the second increases it.
The averaged ion coverages in Fig. 4 suggest that OH– ions prefer

the second pathway (increasing NSC), whereas protons slightly prefer
thefirst (decreasingNSC). As a result, if wedefine thewater dissociation
fraction as the smaller value between the fraction of surface H⁺ ions
and the fraction of surface OH⁻ ions, the average water dissociation
fraction decreases significantly (to ~9%) with the acidic electrolyte
whereas it remains approximately the same as that of the neutral
interface under basic conditions, consistent with the increase of water
dissociation fraction with the pH reported in a previous AIMD study25.
These trends can be related to the different capacitances under basic

and acidic conditions. The large capacitance under basic conditions
indicates a strong ability of the EDL to screen the OH− surface charge.
This is evidenced by the high number density of Na+ ions surrounding
an OH− surface ion, as shown in Fig. 5a. Consequently, the surface can
accommodate more OH− ions in-plane, making the second pathway
favorable under basic condition. In contrast, the small capacitance
under acidic conditions reflects a weak ability of the EDL to screen the
H+ surface charge. This is demonstrated by the low probability of Cl-

ions surrounding an H+ surface ion, as shown in Fig. 5b. As a result, the
surface cannot accommodate more H+ ions in-plane, making the first
pathway favorable under acidic conditions. The fact that negatively
charged surfaces allow a larger density of surface hydroxyl groups is
important in photocatalysis because these groups can trap photo-
generated holes and form hydroxyl radicals38,52, which are key inter-
mediates of many photo-oxidation reactions. The photooxidation of
water is indeed known to be faster at high pH53.

The ab initio-level molecular-scale picture of the EDL at the TiO2-
electrolyte interface provided by our simulations exhibits Stern layer
features that are not included in the GCS model, particularly inter-
mediate Helmholtz planes associated with outer-sphere complexes of
electrolyte ions. The shorter adsorption distance of positive vs. nega-
tive ions results in a larger capacitance at high pH, in good agreement
with experiment. The different capacitances at low and high pHs are
associated with distinct microscopic surface charging mechanisms, a
feature that can help optimize photo(electro)catalytic processes.
These results underscore the utility of machine learning-enabled, ab
initio-quality simulations to characterize the specific chemistry and
inhomogeneity of (photo)electrochemical interfaces and pave the way
to further studies including the presence of external fields.

Methods
DFT calculations
Static DFT calculations were conducted using the strongly constrained
and appropriately normed (SCAN)54 exchange-correlation functional
as implemented in the Quantum ESPRESSO55 package. The SCAN
functional54 has been found to well describe TiO2 interfaces56 and
electrolyte solutions31,57,58 in previous studies. Valence electron-ion
interactions were described by Optimized Norm-Conserving Vander-
bilt (ONCV)59 pseudopotentials. Electron wavefunctions were expan-
ded in plane waves using a cutoff energy of 150Ry. A total energy

Fig. 4 | Surface charging mechanisms. Time evolution of the surface H+ and OH−

coverage on TiO2 interfaces with (a) neutral, (b) basic, and (c) acidic solutions. The
legends list the surface ion coverages averaged between 3-10 ns. Schematics in (a)
showmolecularly absorbed H2O at Ti5C sites and an H2O dissociated into adsorbed
H+ at O2c and OH− at Ti5C sites. Schematics in (b and c) illustrate two potential
pathways an additional water ion might take upon adsorption to the surface.

Specifically, in b, a solvated OH− can either recombine with an adsorbed H+ to form
an H2O molecule (pathway 1) or replace an adsorbed H2O molecule (pathway 2).
Similarly, in (c) a solvatedH+ can either recombinewith an adsorbedOH− to forman
H2O molecule (pathway 1) or get adsorbed at a O2c site (pathway 2). Pathway 2 is
preferred in (b) while pathway 1 is preferred in (c) as discussed in the text. Source
data are provided as a Source Data file.
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convergence threshold of 1 × 10 Ry was adopted. Because of the large
size of our supercells, the Brillouin zone sampling was restricted to the
Gamma point. Following each self-consistent calculation, maximally
localized Wannier functions (MLWFs)60 were determined using the
Wannier90 code61. EachMLWFwas associatedwith its closest Ti, O, Na,
or Cl atom, resulting in each of these atoms carrying four doubly
occupied MLWFs. From the MLWFs, the coordinates of the Wannier
Centroids (WCs) relative to their corresponding atoms were obtained
by computing the average position of the Wannier centers associated
with each given atom35.

Deep neural network (DNN) models
The training dataset for the DNN models was collected through an
active machine-learning approach28. This dataset comprehensively
spans the configurational space of bulk anatase TiO2, water, and var-
ious aqueous electrolyte solutions (NaCl, NaOH, HCl, NaCl + NaOH,
and NaCl + HCl solutions), as well as anatase (101) interfaces with each
of these liquids (see Supplementary Table 1). The exploration spanned
temperatures of 200−800K (systems 1–11) or 300−400K (systems 12-
15), under conditions of either a pressure of 1 bar or a constant volume
corresponding to experimental densities. The final dataset comprises
30,103 configurations in total. The DPLR and Deep Wannier (DW)62

DNN models were trained on this training dataset using the DeePMD-
kit package63. For both DPLR and DW, two independent models were
generated using different initial random parameters. The two models
were used to run independent simulations from which average prop-
erties and corresponding error bars were derived.

To evaluate the performance of our DNNmodels, we generated a
testing dataset of configurations not included in the training. This was
achieved by conducting deep potential long-range (DPLR) molecular
dynamics (MD) simulations on the following four representative
systems.

• The anatase (101)-liquid water interface, comprising 60 TiO2 units
and 82 H2O molecules.

• The anatase (101)-NaCl(aq) solution interface, comprising 60 TiO2

units, 82 H2O molecules, and 1 NaCl ion pair.
• The anatase (101) -NaCl(aq)+NaOH(aq) solution interface, compris-
ing 60 TiO2 units, 80 H2O molecules, 1 NaCl ion pair, and 1 NaOH
ion pair.

• The anatase (101)-NaCl(aq)+ HCl(aq) solution interface, comprising
60 TiO2 units, 81 H2O, 1 NaCl ion pair, and 1 HCl ion pair.

In the above, the 60 TiO2 units correspond to a five-layer (1 × 3)
anatase (101) slab. For each system, we conducted 5 ns DPLR MD
simulations within the canonical ensemble at 330K. The initial 1 ns of
each simulation was discarded for equilibration purposes. From the
subsequent 4 ns, 50 configurations were uniformly extracted from

each trajectory, resulting in a total of 200configurations for the testing
dataset.

DPLR method
The DPLR method35 assumes that the potential energy surface has
short- and long-range contributions. The short-range contribution is
represented as in the standard deep potential model64, while the long-
range contribution is approximated by the electrostatic energy of a
systemof spherical Gaussian charges associatedwith the ions (nuclei +
core electrons) and the valence electrons. We calculate the electro-
static energy of the Gaussians via the particle-particle-particle-mesh
method65 for evaluating Ewald sums. The location, charge magnitude,
and spatial spread of the Gaussians are determined as follows.

• Location: Ionic Gaussians are centered at the atomic sites, and
electronic Gaussians are centered at the maximally localized
Wannier centers66. For computational simplicity, Wannier centers
associated with the same atom are combined into a single Wan-
nier Centroid (WC)35, located at the instantaneous average posi-
tion of theseWannier centers. The locations ofWCs are predicted
by the DW DNN model62.

• Charge magnitude: The magnitudes of the ionic charges are
+ZVe, with ZV being the number of their valence electrons. The
pseudopotential applied in this work treats the 3 s23p6 3d24s2

electrons of Ti, 1 s electron of H, 2 s22p4 electrons of O, 2 s22p6 3 s1

electrons of Na, and 3s23p5 electrons of Cl as valence electrons
explicitly. Consequently, ZV equals 12, 1, 6, 9, and 7 forTi, H,O,Na,
and Cl, respectively. For electrons, each Wannier center carries a
charge of �2e. Given that each Ti, O, Na, and Cl ion has four
Wannier centers, their WCs carry a charge of �8e. The DFT cal-
culations show that the average distance of Ti’s WCs from the Ti
ions is significantly smaller (0.002 Å, averaged over x, y, and z
directions) compared to that of O’s WCs from O ions (0.026 Å,
averaged over x, y, and z directions). This suggests a negligible
contribution of the polarization of Ti’s WCs to the overall elec-
trostatic energy. Therefore, for computational efficiency, our
DPLR model further simplifies the representation of Ti ions:
instead of accounting for a + 12e charge on the Ti ion counter-
balanced by a �8e charge from its WCs, we simplify our DPLR
model by omitting theWCs of Ti and treating each Ti ion as a +4e
charge. The WCs of O, Na+, and Cl- are all treated explicitly.

• Spatial spread: The long-range electrostatic contribution up to
dipole terms is independent of the spread parameter, which can
then be chosen to ensure charge neutrality in the bulk of the
solution as well as good numerical representability by a DNN of
the short-range contribution. In our DPLR, the spatial spread of
the Gaussians for both ions and electrons is (2βÞ�1, where β is an
adjustable parameter. In the limit of β ! 0, the Gaussian width is
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infinite and the DPLR model reduces to the standard short-range
DP (hereafter denoted asDPSR)model. Conversely, asβ ! 1, the
Gaussian chargesbecomepoint-like, leading to singular potentials
incompatible with DNN representations35. To determine an
optimal β for our system, we conducted systematic training of
DPLRmodels across a range of β values: 0.0, 0.1, 0.2, 0.3, and 0.4
Å
�1
. The performance analysis, depicted in Supplementary Fig. 1,

reveals that, for both the training and testing datasets, β=0:1Å
�1

minimizes the rootmean square error (RMSE) in the prediction of
energies and forces in comparison to the DFT calculations. We
thus adopted β=0:1Å

�1
for our DPLR simulations.

Supplementary Fig. 1 also shows that the RMSE for the testing
dataset is lower than that for the training dataset. This is because the
training dataset includes higher temperature (up to 800K) config-
urations compared to the 330K temperature used for the testing
dataset. At higher temperatures, the magnitudes of forces and ener-
gies are larger, resulting in larger absolute errors. Given that the pro-
duction runs of our work were conducted at 330K, the errors at 330K
are more representative and indicative of the model’s performance
under our specific conditions of interest.

DPSR fails to properly describe oxide-electrolyte interfaces,
because, in the absence of long-range interactions, charge accumula-
tion at the interface due to surface charging and/or EDL formationmay
result in charge neutrality violation in the bulk of an electrolytic
solution. DPLR remedies this deficiency because the electrostatic
energy penalizes bulk charging (Supplementary Section 3). In the
absence of dissolved ions, as in the case of the anatase (101) interface
with neat water, DPLR gives results that agree with DPSR (Supple-
mentary Section 2).

DPLR MD simulations
The large-scale DPLR MD simulations presented in the main manu-
script were conducted on model systems consisting of a five-layer
(3 ×9) anatase (101) slab (540 TiO2 units) in contact with a 67 Å thick
layer of aqueous electrolyte within a periodically repeated supercell of
size 30:7Å× 33:9Å×83:4Å along the three orthogonal directions
½�101�, ½010�and½101� of the anatase crystal lattice. All simulations were
conducted in the canonical ensemble for 10 ns with a temperature of
330K. The 30K elevation is to partially compensate for the over-
estimation of the melting temperature of ice by the SCAN functional
and describe a liquid with diffusivity close to that of water at standard
conditions67. The TiO2 interfaces with the acidic and basic solutions
were initially simulated at 400K for 0.9 ns to accelerate equilibration
and subsequently cooled to the target temperature of 330K. In all
simulations, hydrogen was replaced by deuterium to allow the use of a
larger simulation time step of 0.5 fs. The ion and water densities pre-
sented in this work were averaged over the period from 3 to 10 ns. To
check the convergence of ion and water densities with respect to
simulation time, we plotted the ion and water density averaged over
the periods from 3 to 6.5 ns and from 6.5 to 10 ns, respectively, in
Supplementary Figs. 2 and 3. The results averaged over 3 to 6.5 ns
agree well with those averaged over 6.5 to 10 ns, indicating the 10 ns
simulation is well converged.

Electrostatic potential calculation
The electrostatic potential drop, ψ, is an average property that
requires knowledge of the plane-averaged density profile of the elec-
trons along z, which can be estimated accurately from the positions of
the Wannier centroids, provided by the DW31 neural network model,
and from the average spread of the associated electron distributions,
provided by DFT calculations on smaller systems. The density profile
of the total charge (ions + valence electrons) is obtained by adding the
plane-averaged ion density profile to the valence electron density
profile. Then, ϕðzÞ, the electrostatic potential profile, is calculated by

solving a one-dimensional Poisson’s equation. As shown in Supple-
mentary Section 7, this procedure is remarkably accurate when com-
pared to DFT calculations on reference systems.

Data availability
The complete DFT training datasets and the deep potential models
generated in this study have been deposited in the Figshare database
(https://figshare.com/s/3c4e7eb02ee64fd8b3bf)68. Source data are
provided as a Source Data file. Source data are provided with
this paper.

Code availability
Deep potential long-range molecular dynamics simulations were con-
ducted using the DeePMD-kit package (https://github.com/
deepmodeling/deepmd-kit) in conjunction with LAMMPS. The code
used to generate the plots shown in the main text is available from the
corresponding author upon request.
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