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Structural and electronic origin of the magnetic structures in hexagonal LuFeO3
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Using combined theoretical and experimental approaches, we studied the structural and electronic origin of the
magnetic structure in hexagonal LuFeO3. Besides showing the strong exchange coupling that is consistent with
the high magnetic ordering temperature, the previously observed spin reorientation transition is explained by the
theoretically calculated magnetic phase diagram. The structural origin of this spin reorientation that is responsible
for the appearance of spontaneous magnetization, is identified by theory and verified by x-ray diffraction and
absorption experiments.
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I. INTRODUCTION

While the ferroelectricity in materials is naturally connected
to structural distortions that break the spatial inversion symme-
try [1,2], the relation between spontaneous magnetization and
structure is not obvious because no spatial symmetry is broken
by ferromagnetism (FM). Nevertheless, magnetic orderings in
a material are tied to the structure, and the ties are particularly
important in multiferroic materials [3] in which structural dis-
tortions may mediate couplings between ferroelectricity and
ferromagnetism or even generate ferroelectric ferromagnets,
which are extremely rare [4].

The recently discovered room temperature multiferroic,
i.e., hexagonal LuFeO3 (hLFO) [5], provides a rare case
of multiferroic material in which spontaneous electric and
magnetic polarizations coexist. On one hand, ferroelectricity
appears below TC = 1050 K resulting from a P 63/mmc →
P 63cm structure distortion, which can be decomposed in terms
of three phonon modes [Fig. 1(a)] [5,6]. On the other hand,
spin frustration in hLFO presents rich magnetic phases [7].
Intriguingly, below the Neél temperature TN = 440 K, mag-
netic order in hLFO transits again from B2 to A2 [Fig. 1(b)]
at TR = 130 K [5] by a spin reorientation (SR), resulting in a
weak ferromagnetism due to the Dzyaloshinskii-Moriya and
single-ion anisotropy mechanism [8–12]. Similar to hexagonal
YMnO3, the K3 phonon is believed to be the driving force
that induces the instability of �−

2 that is responsible for the
ferroelectricity [13–15]. However, the origin of the SR is
still elusive. Since the SR is the direct cause of spontaneous
magnetization, elucidating the origin may provide a way to
effectively tune TR, or even a novel route for realizing a
coexistence of spontaneous electric and magnetic polarizations
above room temperature [16–18].
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Previous studies in hexagonal manganites (h-RMO, isomor-
phic to hLFO) indicate rich magnetic phases due to the SR that
is strongly coupled to the crystal structure [3,19,20]. However,
the multiple degrees of freedom involved (spin and orbital
degrees of freedom of the electrons and the lattice) complicate
the problem in h-RMO [21]. The complexity may be reduced
in h-LFO, in which Fe3+ can be considered a spin-only ion
with nearly spherical 3d5 electronic configuration. Therefore, a
better understanding of the SR in hLFO is possible, particularly
in terms of the phonon modes [Fig. 1(b)]; it may also be
an important step in understanding the more complex SR in
h-RMO [21], in which the single-ion anisotropy is expected to
play a more important role.

To address the above issues, we perform combined theoret-
ical and experimental studies of the exchange interactions and
their couplings to the structural instabilities in hLFO. We apply
an extended Kugel-Khomskii (KK) model for superexchange
(SE) interactions [22] based on localized Wannier functions
(LWFs) [23,24]. While the antiferromagnetic (AFM) exchange
coupling is dominated by the intralayer superexchange, the
model clearly shows that the singly occupied dz2 orbital in
hLFO greatly increases the exchange coupling compared with
the empty dz2 in LuMnO3 (LMO). The interlayer exchange,
although much weaker in magnitude, is key to the SR. Our
first-principles calculations show that SR is strongly coupled to
the K1 phonon mode and only weakly dependent on K3 mode.
Our theory indicates that the atomic displacements of K1 mode
is responsible for the SR. This scenario is then confirmed by
our x-ray diffraction and x-ray absorption experiments.

II. COMPUTATIONAL METHODS AND EXPERIMENTAL
TECHNIQUES

Our extended KK model [22,25] is built on the basis of
LWFs generated from density functional theory (DFT) cal-
culations. The screened Coulomb interactions between LWFs
are computed in the constrained random-phase approximation
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FIG. 1. (Color online) (a) Displacement patterns of the FeO5

local environment (trigonal bipyramid) in the three phonon modes that
freeze in the P 63/mmc → P 63cm structural transition in hexagonal
ferrites (h-RFeO3). The arrows indicate the relative displacement of
the atoms. �K is the wave vector of the modes in the reciprocal space
of the P 63/mmc structure. (b) Four independent spin structures (A1,
A2, B1, and B2) of the 120-degree magnetic orders viewed along the
c axis. The arrows indicate the spins (�SZFe

i ) on the Fe sites. The Fe
sites shown in the polyhedra are in the ZFe = 0 layer while all the
other Fe sites are in the ZFe = c/2 layers. In the B (A) phase, �S0

1 is
parallel (antiparallel) to �Sc/2

1 .

[25–27]. The calculations of spin phonon coupling is per-
formed within DFT+U scheme [25,28]. We have adopted the
four-state method [29] in computing the exchange coupling
strengths. hLFO films (50 nm thick) were grown on Al2O3

(0001) substrates with and without a (30 nm) Pt buffer layer
using pulsed laser deposition. The x-ray diffraction (XRD)
and x-ray absorption spectroscopy (XAS) measurements were
carried out in the 6-ID-B beam line on the h-LuFeO3/Al2O3

film and in the 4-ID-C beam line on the h-LuFeO3/Pt/Al2O3

film at the Advanced Photon Source at various temperature.

III. RESULTS AND DISCUSSION

In hexagonal ferrites, the exchange interaction between the
Fe sites can be written as

Hex = Ha−b
ex + Hc

ex (1)

where Ha−b
ex is the intralayer exchange interaction and Hc

ex

is the interlayer exchange interaction considering only the
nearest neighbors.

As shown in Fig. 2, the intralayer SE interaction Ha−b
ex =∑

i,j,ZFe
J a−b

i,j
�SZFe
i · �SZFe

j between two nearest neighbor (NN)
Fe atoms at site i and j are mediated by corner sharing oxygen
atoms. In order to elucidate the electronic structural origin, we
employ the extended KK model, and the SE coupling can be
expressed as

J a−b
i,j =

∑

α,α′
J AFM

α,α′ +
∑

α,β

J FM
α,β . (2)

The first term in Eq. (2) describes the AFM-type coupling
resulting from virtual hopping processes between two half-
filled d bands; while the second term depicts the competing
FM-type coupling from hoppings from a half-filled d orbital
(α) to empty ones (β) [25]. The computed individual exchange
interaction as well as the overall SE coupling J a−b

MOD for both

c/2

c/2

c/2

0

FIG. 2. (Color online) (a) Representative dxy , dz2 , and dxz-like
LWFs viewed from [001] direction. (b) Illustrations of two inde-
pendent SSE paths J c

1 and J c
2 between Fe0 at z/c = 0 and three

neighboring iron ions Fe1, Fe2, and Fe3 at z/c = 1/2 (c) Atomic
displacements of the K1 phonon mode. (d) Atomic displacements of
the K3 phonon mode, viewed from [001] direction.

hLFO and hLMO are presented in Table I. The total exchange
couplings J a−b

DFT from the direct fit of the total DFT energies
are also shown.

According to the local environment (Fig. 1), the 3d orbitals
in Fe and Mn are split into e′′(xz,yz), e′(x2 − y2,xy), and
a′

1(z2) levels by the crystal field, with increasing energy
respectively [30,31]. It can be seen that the largest SE
interactions are contributed by the diagonal hopping processes
involving d orbitals of e′ symmetry. This is consistent with
the physical expectation that SE is of intralayer nature while
dxy and dx2−y2 are the only d orbitals lying mostly inside
the ab plane. Centered on the magnetic ions, these d-like
LWFs are also connected with the first neighboring magnetic
atoms through hybridization with the shared oxygen atoms on
the bipyramids. As a result, a strong oxygen p character is
found on the lobe of the LWFs, pointing to each of the three
neighboring oxygen atoms. Considering such d-like LWFs on
the hexagonal lattices, a large AFM hopping integral is thus
expected along the path of Fe(Mn)-O-Fe(Mn) [32]. Based on
the same orbital symmetry argument, it can be easily seen that
the diagonal hopping is relatively smaller for a′

1(z2) character
and almost zero for e′′ character. This is because dz2 and dxz

TABLE I. Individual and total intralayer exchange interaction
(meV) in both hLFO and hLMO [25].

Jα,α′(β) dxy dx2−y2 dz2 dxz dyz J ab
MOD J ab

DFT

hLFO dxy 9.49 3.65 3.20 1.14 0.47 45.2 49.7
dx2−y2 0.68 9.90 0.88 1.04 0.05
dz2 1.25 5.05 3.58 1.25 0.27
dxz 0.56 0.09 0.14 0.01 0.06
dyz 0.32 1.00 0.65 0.37 0.06

hLMO dxy 10.15 5.81 −0.64 1.17 0.78 29.3 30.7
dx2−y2 1.28 10.9 −2.71 0.85 0.12
dz2

dxz 0.41 0.17 −0.43 0.01 0.08
dyz 0.39 0.85 −0.19 0.31 0.04
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FIG. 3. (Color online) (a) �J (δQ) = J (Q) − J (Q0) for each individual K1, K3, and �−
2 phonon mode, where δQ = Q − Q0 and Q0 is

the value at 300 K, while the other two phonon displacements are kept as zero. Inset: theoretical phase diagram as functions of mode amplitudes
of K1 and K3. (b) J c

1 and J c
2 as functions of QK1 , while QK3 and Q�−

2
are fixed at the experimental values [25].

(dyz) require that the main orbital lobe be located along z or
within the xz (yz) plane, which makes the hopping integrals
much smaller.

Strikingly, the SE interactions also show fundamental dif-
ferences between the two materials. In hLFO (Fe3+:3d54s0),
the dz2 orbital of a′

1 symmetry is singly occupied, and SE
interactions can only be of AFM types. However, dz2 is empty
in hLMO (Mn3+:3d44s0), SE interactions are thus composed
of competing AFM and FM types, and the coupling strength
is further reduced by the forbidden hopping involving the
empty dz2 . Thus, a significantly larger AFM coupling energy
is observed in hLFO. This is consistent with the higher Neél
temperature in hLFO observed in experiment in addition to the
larger spin on the Fe site.

Having established the electronic origin of the large
intralayer exchange coupling, we now focus on the interlayer

exchange coupling Hc
ex=

∑
i,j,ZFe

J c
i,j

�SZFe
i · �SZFe+ c

2
j in hLFO.

This is the key to understanding the mechanism of SR and
weak FM moment below TR [5]. In contrast to the SE nature
of intralayer exchange, the interlayer Fe ions are coupled by
the super-super-exchange (SSE) interaction [33], in which
one Fe atom at ZFe = 0 is in exchange interaction with three
first neighbor Fe atoms at ZFe = c/2 mediated by two apical
oxygen atoms (Oap). Due to the P 63cm structure in Fig. 3
(b), the three SSE paths can be further simplified by two
independent SSE coupling strengths: J c

1 through Fe0
1-O- · · ·

-O-Fe
c
2
1 and J c

2 through Fe0
1-O- · · · -O-Fe

c
2
2 . As a result,

the Hc
ex spin Hamiltonian in Eq. (1) can be rewritten as

Hc
ex = ∑

i,ZFe
(J1

c − J2
c)�SZFe

i · �SZFe+ c
2

i . Obviously, the sign of
�J = J c

1 − J c
2 determines the preferred alignment between

�SZFe
i and �SZFe+ c

2
i : parallel (B phase) if �J < 0; antiparallel (A

phase) if �J > 0; no alignment if �J = 0, which is the case
for P 63/mmc structure.

Since the nonzero �J comes from the structural distortion
(P 63/mmc → P 63cm), the low temperature spin reorienta-
tion must have a structural origin. Here we investigate the
dependence of �J on the three phonon modes K1, K3, and
�−

2 that are responsible for the structural distortion [25]. We
use DFT to calculate the �J as functions of phonon mode
displacements (Qp, where p = K1, K3, and �−

2 ) and the results

are shown in Fig. 3(a). It can be seen that �J depends on the
displacement of each phonon mode rather differently.

Clearly, the K1 phonon mode has the largest effect on SR.
This can be identified by the steepest slope of �J when
K1 is increased perturbatively, yielding a linear coefficient
δ�J
δQK1

∼ 1.9 meV/Å. This suggests a strong tendency of K1 in
driving hLFO from B phase (�J < 0) into A phase (�J > 0).
Indeed this is also consistent with the physical expectation of
atomic displacements under the K1 mode. The K1 phonon is
a Brillouin zone (BZ) boundary mode and is of pure in-plane
nature. The atomic displacements of the K1 phonon mostly
involve the Oap of FeO5 (Fig. 1). As shown in Fig. 2(c), the
effects of the K1 are as follows: Oap of Fe0

1 moves away from

that of Fe
c
2
1 , causing J c

1 to decrease; and Oap of Fe0
1 moves

closer to that of Fe
c
2
2 and Fe

c
2
3 , causing J c

2 to increase. As a
result, K1 is strongly coupled to the �J .

The K3 phonon mode can be described by the rotation of
FeO5 [Fig. 1(a)] also located at BZ boundary. The atomic
displacements of the K3 mode include all the Oap of the FeO5.
However, due to its rotational nature, the atomic displacement
of the Oap alternate their directions along c as shown in
Fig. 2(d). As a result, the overall lengths of J c

1 and J c
2 paths

are barely changed except that the Fe atom is slightly moved
away from its equilibrium positions in P 63/mmc symmetry.
Compared with the direct tunability of �J by the K1 mode,
the K3 phonon is expected to be a second-order effect in SR.
Indeed, our DFT calculation predicts a much weaker variation
of �J with increased K3 phonon mode amplitude, in which
the linear coefficient δ�J

δQK3
∼ 0.3 meV/Å is about one order of

magnitude smaller than that of K1. Similar to that of K1 mode,
the slope is also positive, favoring the SR from B to A phase.

Finally, we focus on the coupling between �−
2 and �J . �−

2
is the ferroelectric phonon mode at zone center. The atomic
displacements of this mode involve all the Lu, O, and Fe atoms
moving along c. However, the displacements of the two Oap

of one bipyramid are exactly the same. As a result, the SSE
paths in J c

1 and J c
2 are changed uniformly. Not surprisingly,

our theory predicts a zero dependence of �J on �−
2 mode

amplitude. It indicates that this ferroelectric distortion alone
does not play any role in SR.
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FIG. 4. (Color online) Structural changes indicated by the XRD and XAS. (a) The XRD intensity ratio between the (104) and (004)
peaks (normalized to the 30 K value) and the change of lattice constant c (with respect to the 30 K value) as functions of the temperature (the
representative error bars are shown). Inset: the simulated intensity ratio between the (104) and (004) peaks as functions of phonon displacements.
(b) The change of Fe-3d crystal field levels (relative to the 300 K values) as functions of the temperature (the error bars for e′ levels are shown
as examples); the bold line is a guide to the eye to highlight the common peak-like feature. (c) Simulated change of Fe-3d levels as functions
of phonon displacements [25].

The significantly different coupling strengths of �J with
the phonon modes suggests the primary role of the K1 phonon
mode in SR of hLFO. Indeed, when the K1 mode is frozen
into the experimental structural coordinates at T = 300 K
perturbatively, J c

1 and J c
2 rapidly increase and decrease

respectively, and SR occurs at the crossing point as shown
in Fig. 3(b) separating the B from A phases. Below, we show
that QK3 saturates close to TR, while QK1 changes significantly
from 300 to 20 K using XRD and XAS measurements.

As shown in Fig. 4(a), the temperature dependence of the
normalized intensity ratio between (104) and (004) peaks
appears to saturate when temperature is lowered to TR. We
attribute the saturation to the slow variation of the K3 phonon
at low temperature, because K3 is expected to have a dominant
effect here, according to the simulated intensity ratio [Fig. 4(a)
inset] [34], while the zone center mode �2 is expected
to have no effect. The saturation of the K3 mode can be
further confirmed by the temperature dependence of the lattice
constant c which follows closely that of the intensity ratio, as
shown in Fig. 4(a). The displacement of the K3 mode includes
a rotation of the FeO5 trigonal bipyramid, which changes the
shape of the unit cell by enlarging a and reducing c [7]; the
change of c (�c) is proportional to �QK3 for small change
of QK3 . The matching temperature dependence in Fig. 4(a)
suggests that the change of c is indeed caused by the K3 mode
which saturates at low temperature.

XAS measurements suggest that the K1 mode under-
goes a gradual change at low temperature. Previously, we
assigned the Fe-3d crystal levels using the XAS at room
temperature [25,30]. As shown in Fig. 4(b), the temperature
dependences of the energy levels all show broad peak-like
features with the maxima close to TR. The crystal field levels
of Fe-3d are expected to be sensitive to the shape of FeO5. As
shown in Fig. 1(a), the K3 mode causes a rotation of the FeO5

while the K1 or �−
2 modes cause distortions of the FeO5, so

the energy-level shifts observed in Fig. 4(c) are most likely
generated by the change of QK1 or Q�−

2
. Figure 4(c) shows a

simulation [25] of the energy-level change of the crystal field
levels as functions of QK1 or Q�−

2
with respect to the value

when all the mode displacements are zero. According to the

simulation, the K1 mode generates a maximum at QK1 = 0
while Q�−

2
generates a minimum at Q�−

2
= 0; this is because

the K1 mode moves both Oap atoms away from the Fe sites
and makes the FeO5 larger while the �−

2 mode pushes one
Oap atom close to the Fe site. Comparing the simulation and
the observation, we infer that the K1 mode changes gradually
when the temperature is lowered, in order to generate the
maximum [25]; this is consistent with the theoretical prediction
in which QK1 changes when the temperature is lowered and
causes the transition from antiferromagnetism in the B2 phase
to weak ferromagnetism in the A2 phase.

IV. CONCLUSION

The roles of all three structural distortions are elucidated in
hLFO: the instability of the K3 mode is the driving force of
the P 63/mmc → P 63cm structural transition; the improper
ferroelectricity of the �−

2 mode is induced by the frozen
K3 mode [13,15]; and the competing effect between K1 and
K3 modes determines the magnetic ordering and drives the
magnetic phase transition. If the K1 mode can be tuned
by interface engineering [35–37], the TR can be increased,
achieving the spontaneous electric and magnetic polarizations
and their couplings at room temperature.
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I. DENSITY FUNCTIONAL THEORY (DFT) FITTED MODEL HAMILTONIAN

The model Hamiltonian,

Ĥ =
∑

ij

∑

αβ

tαβij ĉ
†
iαĉjβ +

1

2

∑

i

∑

αβγδ

U i
αβγδ ĉ

†
iαĉ

†
iγ ĉiβ ĉiδ, (1)

is formulated in the basis of Wannier orbitals {φiα}, which are constructed for the magnet-

ically active bands near the Fermi level. Here, each Greek symbol (α, β, γ, or δ) stands

for the combination of spin (σ= + or −) and orbital (a, b, c, or d) indices: for instance,

α ≡ (σα, a), etc. The orbital indices for the 3d orbitals are xy, yz, 3z2−r2, zx, and x2−y2.

The model is constructed for the magnetically active 3d bands of LuFeO3 and LuMnO3,

located near the Fermi level, and starting from the electronic band structure obtained in

the local-density approximation (LDA). This calculations have been performed using linear

muffin-tin orbital (LMTO) method.[1] The first step is the construction of localized Wannier

basis for these low-energy bands. Each basis orbital φiα(r) is labeled by the combined

index α and centered around some lattice point i. In our case, the Wannier function have

been generated using the projector-operator method (Refs. 2–4) and pseudo-atomic 3d basis

orbitals of the LMTO method as the trial wave functions. As the LMTO basis functions are

already well localized, typically such procedure allows us to generate well localized Wannier

functions. This property will be discussed below. Then, the one-electron part of the model

is identified with the matrix elements of LDA Hamiltonian (HLDA) in the Wannier basis:

tαβij = 〈φiα(r)|HLDA|φjβ(r)〉. Since the Wannier basis is complete in the low-energy part of

the spectrum, the construction is exact in a sense that the band structure, obtained from tαβij ,

coincides with the one of LDA. Without relativistic spin-orbit interaction, matrix elements

tαβij do not depend on the spin indices: tαβij ≡ tabij δσα,σβ
. Then, the site-diagonal elements

≡ tabii describe effects of the crystal-field splitting and off-diagonal elements tabij (i 6= j) stand

for the transfer integrals (or hoppings).

Matrix elements of screened Coulomb interactions at some atomic site i can be also

calculated in the Wannier basis as

U i
αβγδ =

∫

dr

∫

dr′φ∗
iα(r)φiβ(r)vscr(r, r

′)φ∗
iγ(r

′)φiδ(r
′). (2)

The screened Coulomb interaction vscr(r, r
′) can be calculated by employing the constrained

random-phase approximation (RPA) technique.[5] Then, vscr(r, r
′) does not depend on spin



variables and, therefore, U i
αβγδ has the following spin structure: U i

αβγδ = U i
abcd δσασβ

δσγσδ
.

Since the constrained RPA technique is very time consuming (and still not affordable for

hexagonal LuFeO3 and LuMnO3, containing up to 30 atoms in the unit cell), we apply

additional approximations, which were discussed in Ref. 4. Namely, first we evaluate the

screened Coulomb and exchange interactions between atomic 3d orbitals, using fast and more

suitable for these purposes constrained LDA technique. After that, we consider additional

channel of screening caused by the 3d → 3d transitions involving these atomic orbitals in

the framework of constrained RPA technique. The so obtained parameters of Coulomb

interactions are well consistent with results of full-scale constrained RPA calculations.[6]

In order to illustrate how well our Wannier functions are localized in space we plot in

Fig. 1 averaged transfer integrals, t̄ij =
√

∑

ab(t
ab
ij )

2, obtained for the P63cp structure of

LuFeO3 as the function of distance from the central Fe site. One can clearly see that the

transfer integrals are limited mainly by the nearest neighbors (in the hexagonal plane), while

the next-nearest neighbor transfer integrals are already considerably smaller, and all other

parameters are negligible. This guarantees that the Wannier functions are well localized and

our construction of the model Hamiltonian is very physical.
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FIG. 1: (Color online) Distance-dependence of averaged transfer integrals t̄ij =
√

∑

ab(t
ab
ij )

2, ob-

tained for the P63cp structure of LuFeO3. Two largest values at around d ∼ 3.4 Å correspond to

the nearest neighbors in the hexagonal plane. The next two group of values at around d ∼ 6 and 7

Åcorrespond to the nearest neighbors between the planes and the next-nearest neighbors both in

and between the planes.

Other examples can be found in the review article (Ref. 4) and in the previous publication



(Ref. 13).

II. DETAILS OF EXCHANGE INTERACTIONS CALCULATION BASED ON

EXTENDED KUGEL-KHOMSKII MODEL

As shown in Fig. 1 of main text, the intra-layer superexchange (SE) interaction Ha−b
ex =

∑

i,j,ZFe

J a−b
i,j

~SZFe

i · ~SZFe

j between two nearest neighbor (NN) Fe atoms at site i and j are

mediated by corner sharing oxygen atoms. In order to elucidate the electronic structural

origin, we employ the extended Kugel-Khomskii model and the SE coupling can be expressed

as

J a−b
i,j =

∑

α,α′

JAFM

α,α′ +
∑

α,β

JFM

α,β =
∑

α,α′

4t2α→α′

∑

α′′ Uα′α′′ +∆αα′ +
∑

α′′ 6=α(J
H

αα′′ − Uαα′′)
−

∑

α,β

4t2α→β

∑

α′′ JH

βα′′

[
∑

α′′ Uβα′′ +∆αβ +
∑

α′′ 6=α(J
H

αα′′ − Uαα′′)][
∑

α′′ 6=α(J
H

αα′′−U
αα

′′
) + ∆αβ −

∑

α′′(JH

βα′′ − Uβα′′)]
.(3)

In the above, α, α′, α′′ run over all the half-filled d states and β runs over only the empty

d levels. tα→α′ are NN hopping integrals between half-filled d states and tα→β describes

the NN hopping integrals from half-filled to an empty d orbital. The hopping integrals are

evaluated based on the localized Wannier functions.[7] generated from the energy window

including ten 3d bands around the Fermi level of the DFT band structure. The matrix

of Coulomb interactions of 3d bands are computed by applying the constrained DFT and

the constrained random phase approximation.[8] considering the electronic screening. JH
αβ

is the intra-atomic Hund’s coupling matrix, and ∆αα′(β) is the crystal field splitting energies

between α and α′ or (β) states. The first term in Equ. (3) describes the AFM-type coupling

resulting from virtual hopping processes between two half-filled d bands; while the second

term depicts the competing FM-type coupling from hoppings from half-filled d orbital (α)

to empty ones (β).

The matrices of screened Coulomb interactions Uα,α′(β′) based on localized Wannier func-

tions and the intra-atomic Hund’s coupling matrices JH
αα′(β) for both hexagonal LuFeO3

(hLFO) and hexagonal LuMnO3 (hLMO) are presented in Table I, Table II, Table III, and

Table IV respectively. One can easily see that the screened Coulomb interactions are at the

same order of magnitude for both hLFO and hLMO.

According to the orbital symmetry on the hexagonal lattice sites, the hopping matrices

have too independent super exchange paths Path1 and Path2 as shown in Fig. 2. In the



above, we have taken the e′(x2 − y2, xy) as an example. In high symmetry structure with

space group P63/mmc, the super exchange interactions in the two paths are equivalent.

As a result, the two iron atom in both path1 and path2 have exact the same magnitude

of exchange coupling energies. However, when the symmetry is lowed to P63cm below the

Curié temperature, path1 and path2 will break the symmetry and generate slightly different

super exchange energies. In Table V, VI ,VII, VIII, we present the detailed information of

the hopping matrices tα,α′β of both path1 and path2 in hLFO and hLMO. For simplicity, in

the main text we only present the averaged super exchange coupling energies. The discussion

of anisotropy in super exchange is beyond the scope of the current work.

The above calculations are based on the DFT ground state structure as shown in Ta-

ble refStructures with space group P63cm. A plane wave cutoff of 500 eV is used with

a 6 × 6 × ×3 k-point mesh centered at Gamma point. For transition metals, we choose

U = 4.5eV and JH = 0.95eV for hLFO and U=4,J=1 for hLMO.[9]. The criterion of

residual Hellman-Feynman forces for geometry optimization is 0.001eV/Å.

FIG. 2: Two nonequivalent in-plane exchange paths; Fe 3d dxy orbits have the most contribution

to path one and Fe 3d dx2−y2 have the most contribution to path two. (isovalue is chose to 0.02)



TABLE I: The matrices of screened Coulomb interactions Uα,α′(β) (eV) based on localized Wannier

functions in hLFO.

dxy dyz dzx dx2−y2 dz2

dxy 3.494 2.193 2.192 2.686 1.859

dyz 2.193 3.665 2.241 2.192 2.445

dzx 2.192 2.241 3.666 2.192 2.445

dx2−y2 2.686 2.192 2.192 3.492 1.859

dz2 1.859 2.445 2.445 1.859 3.214

TABLE II: The matrices of screened Coulomb interactions Uα,α′(β) (eV) based on localized Wannier

functions in hLMO.

dxy dyz dzx dx2−y2 dz2

dxy 3.619 2.254 2.286 2.828 1.988

dyz 2.254 3.580 2.261 2.253 2.500

dzx 2.286 2.261 3.662 2.286 2.534

dx2−y2 2.828 2.253 2.286 3.618 1.988

dz2 1.988 2.500 2.534 1.988 3.342

TABLE III: Intra-atomic Hund’s coupling matrices JH
αα′(β) (eV) in hLFO.

dxy dyz dzx dx2−y2 dz2

dxy 0.000 0.699 0.699 0.403 0.754

dyz 0.699 0.000 0.713 0.699 0.499

dzx 0.699 0.713 0.000 0.699 0.499

dx2−y2 0.403 0.699 0.699 0.000 0.753

dz2 0.754 0.499 0.499 0.753 0.000



TABLE IV: Intra-atomic Hund’s coupling matrices JH
αα′(β) (eV) in hLMO.

dxy dyz dzx dx2−y2 dz2

dxy 0.000 0.676 0.676 0.395 0.738

dyz 0.676 0.000 0.680 0.676 0.476

dzx 0.676 0.680 0.000 0.675 0.476

dx2−y2 0.395 0.676 0.675 0.000 0.738

dz2 0.738 0.476 0.476 0.738 0.000

TABLE V: Hopping matrix values tα,α′(β) (meV) of path1 in hLFO.

dxy dyz dzx dx2−y2 dz2

dxy 304.7 -69.0 -90.3 -100.4 -131.9

dyz 69.0 -3.1 26.3 -9.6 -62.2

dzx -90.3 -26.3 -15.6 39.9 52.6

dx2−y2 100.4 -9.6 -39.9 143.2 -88.4

dz2 131.9 -62.2 -52.6 -88.4 -137.4

TABLE VI: Hopping matrix values tα,α′(β) (meV) of path2 in hLFO.

dxy dyz dzx dx2−y2 dz2

dxy 199.3 -43.8 80.1 -167.4 158.8

dyz -24.6 -24.3 55.9 96.0 -71.7

dzx -33.0 -17.5 -0.1 1.3 -12.0

dx2−y2 33.9 21.3 -93.7 282.1 -73.5

dz2 9.2 0.6 -86.9 177.8 -145.7



TABLE VII: Hopping matrix values tα,α′(β) (meV) of path1 in hLMO.

dxy dyz dzx dx2−y2 dz2

dxy 301.3 -81.3 -81.0 -130.8 -101.7

dyz 81.3 -11.5 17.5 -8.3 -73.7

dzx -81.0 -17.5 -10.1 54.4 57.8

dx2−y2 130.8 -8.3 -54.4 148.2 -89.0

dz2 101.7 -73.7 -57.8 -89.0 -196.4

TABLE VIII: Hopping matrix values tα,α′(β) (meV) of path2 in hLMO.

dxy dyz dzx dx2−y2 dz2

dxy 190.5 -51.6 76.4 -195.4 124.5

dyz -11.8 -15.3 49.8 86.4 -63.1

dzx -19.1 -22.4 2.3 -6.7 4.8

dx2−y2 41.5 29.2 -71.5 276.3 -64.7

dz2 2.1 3.6 -64.6 134.0 -190.8



TABLE IX: Structure parameters of P63cm hLMO and hLFO relaxed at DFT ground state.

.

hLMO Exp. hLMO Theo. hLFO Exp. hLFO Theo.

Lattice vectors a(Å) 6.0268 6.0136 5.9652 5.9483

c(Å) 11.3646 11.4149 11.7022 11.6943

Lu1 2a(0 0 z) z 0.2788 0.2813 0.2721 0.2726

Lu2 4b(1/3 2/3 z) z 0.2319 0.2343 0.2332 0.2276

Fe 6c(x 0 z) x 0.3299 0.3334 0.3330 0.3340

z 0.0000 0.0046 0.0000 -0.0039

O1 6c(x 0 z) x 0.3012 0.3032 0.3030 0.3034

z 0.1632 0.1694 0.1542 0.1614

O2 6c(x 0 z) x 0.6409 0.6369 0.6490 0.6371

z 0.3363 0.3403 0.3320 0.3323

O3 2a(0 0 z) z 0.4774 0.4783 0.4720 0.4716

O4 4b(1/3 2/3 z) z 0.0211 0.0274 0.0170 0.0170



III. TECHNICAL DETAILS OF DFT+U METHOD

In the calculations of spin phonon coupling, we perform DFT+U calculations using projec-

tor augmented-wave potentials with spin-orbit coupling using the spin-polarized generalized

gradient approximation revised for solid (PBEsol) [15] as implemented in the Vienna Ab Ini-

tio Simulation Package (VASP) [14]. A plane wave cutoff of 500 eV is used with a 6×6××3

k-point mesh centered at Gamma point. For transition metals, we choose U = 4.5eV and

JH = 0.95eV. The choice of effect U and J has been established in Ref. [16] based on

the careful comparison of lattice constants, band gap between experiment and theory. The

criterion of residual Hellman-Feynman forces for geometry optimization is 0.001eV/Å. We

have adopted the four-state method[17] in computing the intralayer and interlayer exchange

coupling constants, in which the total energies from DFT are used as inputs. In the DFT

calculations of intra-layer exchange coupling, PBEsol is used without the on-site Coulomb

U [13].

IV. EFFECTS OF SECOND NEIGHBOR IN SUPER SUPER EXCHANGE (SSE)

AND PHONON COUPLINGS

In Fig. 3(a) of the main text, we have presented the ∆J as functions of three phonon

modes in hLFO, which are K3, K1, and Γ−
2 respectively. In the main text, only Fe atoms in

the first neighboring shell along the SSE paths are considered in the SSE energy fitting from

density functional theory calculations. As a convergence check, in Fig. 3, we present the same

dependences of ∆J on the three phonon modes in which the both first and second nearest

neighboring Fe atoms are considered. It can be seen that the K1 mode persists to be the

dominant role in tuning ∆J , which confirm our main conclusion that the spin reorientation

is driven mainly by K1 phonon mode. This results also confirm our argument in the main

text that the coupling between SSE and phonon modes are quantitatively converged and

qualitatively accurate when first shell of neighboring Fe atoms are considered along the SSE

paths.
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FIG. 3: (Color online) ∆J as functions of increasing K1, K3, and Γ−
2 phonon modes individually

frozen into the hLFO with P63/mmc symmetry, while the other two phonon modes are set to be

zero. The reference point of each phonon mode is chosen to be the experimental mode amplitude

at 300K [10]. In this case, the Fe atoms in both first and second neighboring shells are considered

in the SSE energies fittings. Due to the largely increased computational time in choosing a larger

supercell by including the Fe atoms in the second neighboring shell, we use sparser points of frozen

mode amplitudes than those presented in Fig.3(a) of main text.



V. PHONON MODE DECOMPOSITION

FIG. 4: (Color online) The illustration of the three phonon modes (Γ−
2 , K1 and K3) related to the

P63/mmc to P63cm structural transition. We use the coordinate system of P63cm structure here

(and throughout the paper) for the a, b and c axis. The rods connecting atoms are not to indicate

chemical bonds, but to highlight the structural symmetry.

Table X displays the positions of the atomic sites of the P63cm structure and the cor-

responding P63/mmc structure. All the atomic positions are displayed using the P63cm

coordinate system. For the P63cm structure, the experimental data at room temperature

from Ref. [10] is used here. The P63/mmc structure is generated by moving the atomic

sites of the P63cm structure to the symmetric position according to the P63/mmc symme-

try; the only coordinates that can not be determined by the P63/mmc symmetry are the

z-coordinates of the Oap(1) and Oap(2), as denoted by the variable zap.

To find the eigenvectors and displacements of the phonon modes, the following relations

are needed

Di,σ =
∑

p

qpξ
p
i,σ/aσ (4)

∑

i,σ

niξ
p1
i,σξ

p2
i,σ = δp1,p2, (5)

where Di,σ is the difference in coordinates of the atomic sites between the P63cm and



TABLE X: The atomic positions of the h-LuFeO3 in P63cm and P63/mmc structures. The Di,σ is

calculated from the difference between the atomic positions of the two structures, where i is the

index of the atomic sites (e.g. Lu1 and Fe), σ is the index of the displacement direction (e.g. [001]

and [100]). The coordinate system of P63cm is chosen for all the positions and displacements here.

So the numbers are in the unit of the lattice constants of the P63cm structure.

P63/mmc P63cm
Di,σ

σ = a σ = c

Lu1 (0,0,14 ) (0,0,0.2721) 0 0.0221

Lu2 (13 ,
2
3 ,

1
4 ) (13 ,

2
3 ,0.2332) 0 -0.0168

Fe (13 ,0,0) (0.333,0,0) -0.0003 0

Oap(1) (13 ,0,zap) (0.303,0,0.1542) -0.0303 0.1542-zap

Oap(2) (23 ,0,0.5-zap) (0.649,0,0.332) 0.0177 a -0.168+zap

Oeq(3) (0,0,12 ) (0,0,0.472) 0 -0.028

Oeq(4) (13 ,
2
3 ,0) (13 ,

2
3 ,0.017) 0 0.017

aThere is a sign reversal here because of the way that the representative Oap(2) is chosen.

P63/mmc structure, qp and ξpi,σ are the displacement and eigenvector of the phonon mode

p respectively, aσ is the length of the base a (lattice constant), and ni is the number of

atoms in atomic site i per unit cell. Eq. (4) provides the relation between the atomic

positions, eigenvectors of the modes and the mode displacements; Eq. (5) comes from the



orthonormality of the eigenvectors. The symmetry of the Γ−
2 , K1 and K3 modes requires

ξ
Γ−

2

i,a = 0

ξ
Γ−

2

Lu1,c
= ξ

Γ−

2

Lu2,c

ξ
Γ−

2

Oap(1),c
= ξ

Γ−

2

Oap(1),c

ξ
Γ−

2

Oeq(3),c
= ξ

Γ−

2

Oeq(4),c

ξK1

i,c = 0

ξK1

Oap(1),c
= ξK1

Oap(2),c

ξK3

Oap(1),a
= ξK1

Oap(2),a

ξK3

Lu1,c
= −2ξK3

Lu2,c

ξK3

Oeq(3),c
= −2ξK3

Oeq(4),c
. (6)

In addition, because the Γ−
2 mode has a zero wave vector, the center of the mass is not

supposed to move. Thus,
∑

i,σ

ξ
Γ−

2

i,σ nimi = 0, where mi is the mass of the atoms at the site i.

TABLE XI: The decomposition of the distortion of the 300 K P63cm structure of h-LuFeO3 from

the P63/mmc structure in terms of the phonon modes Γ−
2 , K1 and K3. The ξ

p
i,σ (dimensionless) in

the table are the eigenvectors of phonon mode p. The variable zap is determined as 0.161.

ξpi,σ

Γ−
2 K1 K3

σ = c σ = a σ = a σ = c

Lu1 -0.038 0 0 0.321

Lu2 -0.038 0 0 -0.161

Fe 0.156 0.002 0 0

Oap(1) -0.193 0.289 -0.152 0

Oap(2) -0.193 0.289 0.152 0

Oeq(3) 0.257 0 0 -0.372

Oeq(4) 0.257 0 0 0.186

qp (Å) 0.23 -0.13 0.94

Combining Eq. (4-6), one can solve the mode eigenvectors Di,σ, mode displacements qp

and the variable zap, as displayed in Table XI. The mode pattern of the Γ−
2 , K1 and K3



mode are illustrated in Fig. 4 according to the eigenvectors in Table XI. To point out

several observations: 1) K3 has the largest displacement, consistent with that of hexagonal

manganites. 2) Unlike YMnO3 or LuMnO3, the displacement of the K1 mode in h-LuFeO3

is negative at room temperature, i.e. both Fe and Oap move toward the nearest Lu along

the [100] direction.



VI. ANALYSIS OF EXPERIMENTAL X-RAY ABSORPTION SPECTROSCOPY
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FIG. 5: X-ray absorption spectra of h-LuFeO3 at 300 K, with the synchrotron x-ray in the s and

p polarizations, as illustrated in the inset. The incident angle is 30 degree.

As shown in Fig. 5, x-ray absorption spectra show clear linear dichroism. In the a previous

study [11], the peaks in the L3 edge were attributed to the crystal field splitting levels using

a symmetry analysis. In this study, temperature dependence of the x-ray absorption spectra

were characterized. By fitting the peaks in the x-ray absorption spectra, we can trace the

evolution of the crystal field levels with temperature.

Figure 6 shows the fit to the x-ray absorption spectra. By repeating the fit on spectra of

different temperature, the temperature dependence of the crystal field levels can be found,

as displayed in the Fig. 4(b) of the main text.

The two broad place-holding peaks are used here to account for features from other

interactions (e.g. many-body interactions that may generate many satellite peaks causing

broad features [18]) that may affect the shape of the x-ray absorption spectra. In principle

the additional features in the fitting may introduce additional uncertainty. On the other

hand, considering that the crystal field peaks are sharp and well-defined, this does not affect
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FIG. 6: Fit to the x-ray absorption spectra (200 K) for both s and p polarizations. Besides the

three crystal field levels (e′′, e′, and a′1), two place-holding peaks are included for the fitting.

our results significantly. As shown in Fig. 6, despite the significant difference between the

two spectra (with s and p polarized x-ray), the peak positions of the crystal field levels are

consistent.

A common trend (a broad, peak-like feature) is found in the temperature dependence of

all the crystal field levels (see Fig. 4(b) of the main text). This feature is checked as the

following: 1) By calculating the first moment of the spectra (< E >=
∑

E∗I∑
I
, where E is

the energy and I is the intensity) near a certain crystal field peak, a similar trend is found,

suggesting that the fit corresponds to the behavior of the spectra. 2) By repeating the fit on



both s and p polarized spectra, similar trends were found, which again suggests that the fit

corresponds to the behavior of the spectra. 3) By calculating the temperature dependence

of the x-ray dichroism, a similar trend is identified, suggesting that the trend can not be an

artifact caused by a drift of the energy calibration.



VII. SIMULATION OF X-RAY ABSORPTION SPECTROSCOPY
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FIG. 7: Simulated crystal field energy levels as functions of the displacements of the K1 (a) and

Γ−
2 (b) phonon modes while the displacement of K3 phone mode is set to 1 Å. The non-zero

displacement of the K1 (Γ−
2 ) mode decreases (increases) the crystal field energy levels.

From the x-ray absorption experiments, we found that the Fe 3d crystal field levels move

when the temperature is decreased. Since the crystal field levels are sensitive to the change

of the local environment of the Fe, i.e. FeO5 trigonal bipyramid, the phonon modes that

distorts FeO5 will affect the crystal field levels. Among the three phonon modes K1, K3

and Γ−
2 , K3 mode represents a rotation of the FeO5 along the [120] crystal axis passing Fe

atom, relative to the rest of the lattice; this is expected to have a minimum impact on the

crystal field levels because the displacement of the K3 mode does not change the FeO5 local

environment as it changes slowly at low temperature (indicated by the XRD experiment).

On the other hand, K1 and Γ−
2 modes distort the FeO5 local structure; they are expected

to cause significant change of the crystal field levels.

The effect of the displacement of K1 and Γ−
2 mode on the crystal field levels is simulated

by representing the Fe 3d levels using the atomic orbitals in the hydrogen-like atoms. The

crystal field levels are calculated by imposing the electrostatic potentials of point charges






