May 2020

To: Readers of the Cartoon Guide to Statistics

From: Larry Gonick and Woollcott Smith (wksmith@temple.edu)
Subject: Correction to the Old Edition of the Cartoon Guide. All changes have been made in the 2015 revised edition of the Cartoon Guide.

Page	Position	In text	Change to
37	Bubble at bottom	Avec tu Cherie?	Avec toi Cherie?
102	Top panel Last line	$.8397 \leq \hat{p} \leq .8613$	$.8387 \leq \hat{p} \leq .8613$
143	Top right box diagram	left-end of box appears to extend only to 130 .	left-end of box should extend to the first quartile, 125.
40	Bottom	faces sum to three?	faces sum to three (event A$)$?
47	Bottom	Bayes (1744-1809)	Bayes (1701-1761)
56	Bottom panel	Y axis tick labels: $1 / 16,2 / 16,3 / 16,4 / 16$, 5/16, 6/16	Y axis tick labels: $1 / 36,2 / 36,3 / 36,4 / 36,5 / 36$, 6/36
68	Center panel	$E[X]=0 \cdot p(0)=1 \cdot p(1)$	$E[X]=0 \cdot p(0)+1 \cdot p(1)$
82	Top	$\sigma=n p(1-p)$	$\sigma=\sqrt{n p(1-p)}$
86	Top	$\sigma=n p(1-p)=2.5$	$\sigma=\sqrt{n p(1-p)}=2.5$
87	Top	hideous	hideous-looking, but easy to use,
107	Middle	$s=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	$s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
110	Bottom	single observation	single sample
114	Bottom	this is a single observation	this is a single estimate
118	In four different lines	$\sigma(p)$	$\sigma(\hat{p})$
119	Bottom	3% margin of error.	3-percentage-point margin of error.
124	Middle	$\hat{p}+E$	$\hat{p} \pm E$
150	Top	Chapter 8	Chapter 7
168	Third line from bottom	Standard deviations S_{1} and S_{1}	Standard deviations S_{1} and s_{2}
171	Top right	$\sqrt{\frac{s_{p o o l}^{2}}{n_{1}}+\frac{s_{\text {pool }}^{2}}{n_{2}^{2}}}$	$\sqrt{\frac{s_{\text {pool }}^{2}}{n_{1}}+\frac{s_{\text {pool }}^{2}}{n_{2}}}$
171	Lower	$\sqrt{\frac{4 \cdot 229^{2}+6 \cdot 328^{2}}{10}}$	$\sqrt{\frac{4\left(229^{2}\right)+6\left(238^{2}\right)}{10}}$
171	Top right	$n_{1}-n_{2}-2$	$n_{1}+n_{2}-2$
205	Top	$\pm(2.365)(25.15)$	$\pm(2.365)(25.15) \sqrt{0.3777}$

