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Abstract

The variability of a child’s voice onset time (VOT) decreases during development as they

learn to coordinate upper vocal tract and laryngeal articulatory gestures. Yet, little is known

about the relationship between VOT and other early motor tasks. The aims of this study

were to evaluate the relationship between infant vocalization and another early oromotor

task, non-nutritive suck (NNS). Twenty-five full-term infants (11 male, 14 female) completed

this study. NNS was measured with a customized pacifier at 3 months to evaluate this early

reflex. Measures of mean VOT and variability of VOT (measured via coefficient of variation)

were collected from 12-month-old infants using a Language Environmental Analysis device.

Variability of VOTs at 12 months was significantly related to NNS measures at 3-months.

Increased VOT variability was primarily driven by increased NNS intraburst frequency and

increased NNS burst duration. There were no relationships between average VOT or range

of VOT and NNS measures. Findings from this pilot study indicate a relationship between

NNS measures of intraburst frequency and burst duration and VOT variability. Infants with

increased NNS intraburst frequency and NNS burst duration had increased VOT variability,

suggesting a relationship between the development of VOT and NNS in the first year of life.

Future work is needed to continue to examine the relationship between these early oromotor

actions and to evaluate how this may impact later speech development.

Introduction

The infant suck reflex is one of the earliest motor reflexes to develop, emerging in utero around

15 weeks’ gestational age [1] and stabilizing around 34 weeks’ gestational age [2]. Infants have

two types of suck: a nutritive suck used for feeding and a non-nutritive suck (NNS) character-

ized by the absence of nutrient delivery [1,3]. Infant non-nutritive suck is less complex than

nutritive suck as it does not involve swallowing and given that it develops early, provides an

early metric into the infants developing oromotor system. NNS is characterized by bursts of

suck cycles, occurring at approximately 2 hertz, separated by pause periods for respiration, see

Fig 1 [3]. NNS provides a window into central nervous system function, with disordered NNS

patterns noted in infants who are preterm or who have neurological impairments [4–7].
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Furthermore, NNS changes throughout the first year of life [8], and these changes are likely

due to experience, anatomical growth, and a neurological system that are shifting from reflex-

ive to more cortically driven [9]. In addition to providing information about current neuromo-

tor development, evaluation of infant NNS can also provide information on future functional

outcomes. Relationships have been found between infant suck and later oral feeding difficul-

ties [10], language impairment [11–13], intelligence quotient [13], and other cognitive, devel-

opmental, and motor delays [14–18]. As infant suck is present at birth, understanding the

relationship between the early infant suck measures and later developing speech, language, or

cognitive skills will provide valuable information on neurodevelopment in both typical and

vulnerable populations.

During this time-period of infant NNS development, changes can also be seen in another

motor action that uses overlapping musculature, speech production [19]. Although speech and

non-speech tasks have distinct motor activation patterns [20–24], the similarity in the cyclical

and rhythmic movements, musculature, and neural processes suggests that understanding the

relationship between speech and infant suck can provide valuable information about develop-

ment. One theoretical model that proposes this relationship is the Frame Content Theory of the
Evolution of Speech Production [25]. This theory states that the frame is the continual mouth

open-close rhythmic movement, seen in the jaw and tongue movement in feeding and suck-

ing. As the infant develops and interacts with the environment, the content (e.g., vocalizations,

verbal output) are superimposed on the frame [25]. Thus, this theory suggests early motor

action of NNS (frame) will be related to the development of speech production (content).
Babbling, one of the earliest stages of speech production in which infant produce speech-

like oromotor movements, begins around six months of age [26], and typically consists of stop

consonant-vowel productions (e.g., /dada/). The timing between the release of the stop conso-

nant and start of the subsequent vowel, called voice onset time (VOT) can be measured in an

acoustic signal, providing information on an infant’s oromotor control and coordination

[27,28]. There are four proposed stages of VOT development, first described by Macken and

Barton (1980) and later expanded by Hitchcock and Koenig (2013). During the first stage,

Fig 1. Example Non-nutritive suck (NNS) bursts: Infant NNS is arranged in bursts of sucking with pause periods

for respiration. Each burst contains cycles within it, which are depicted as black dots in this image. The frequency

(Hz) within a burst is measured by the number of cycles per second. The strength of the suck cycle, or amplitude

(cmH20), is measured by examining the top of each cycle where the black dot is located. This image depicts 50s of NNS

data with 3 NNS bursts. Burst 1 has 27 cycles/burst (burst duration of 16 sec), Burst 2 has 15 cycles/burst (burst

duration 8 seconds) and Burst 3 with 19 cycles/burst (burst duration 11 seconds). Amplitude of each cycle (black dot)

can be determined looking at the y-axis.

https://doi.org/10.1371/journal.pone.0250529.g001
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infants’ VOTs range from 0 to 20 milliseconds (ms). This stage requires minimal coordination,

as the vowel phonation begins almost immediately after the stop consonant closure is released.

At this stage, articulatory accuracy of voiced bilabial /b/ and alveolar /d/ productions is more

accurate than their unvoiced cognates (/p t/). The second stage involves the beginning of the

development of the voicing contrast seen in adults, and infants begin producing voiceless

stops with longer VOTs. During the third stage there is the continued elongation of VOTs for

voiceless stops. This stage often involves an “overshoot” phase, in which VOTs for voiceless

productions are significantly longer than adult productions. The fourth stage emerges around

two to three years of age. During this stage, average VOTs are comparable to adults, yet, con-

siderable variability continues to be present until around seven years of age [26,29–32].

The purpose of the current study was to examine if there was a relationship between the

early oromotor movements of NNS and babbling, a later developing movement that requires

oromotor control. Based on the aforementioned frame/content model of speech production

evolution [25], we hypothesized that aspects of infant NNS pertaining to cyclical jaw move-

ments, such as NNS cycles/bursts, burst duration and intraburst frequency, at 3-months will

be more related to advanced productions VOT productions at 12 months as they are building

their content on a more mature frame. Consistent with previous work examining VOT in chil-

dren [31], both average and variability metrics will be examined to elucidate information

about the infant’s VOT developmental stage as well as the variability of their productions.

Understanding the relationship between typical development of infant NNS and its relation-

ship to the early motoric gesture of babbling can reveal important information about overall

oromotor coordination abilities and provide a more comprehensive basis for understanding

future neurodevelopmental outcomes.

Methods

Participants

Twenty-five total infants (11 male, 14 female) participated in this study. NNS measurements

from eleven of these infants were reported in an earlier paper [8]. Infants were evaluated at 3

months (average age = 3.04 months, range = 2.56–3.76 months) and at 12 months (average

age = 11.97 months, range = 11.53–12.33 months). Participants were all born full-term and

had an average birthweight of 122.53 ounces (standard deviation (SD) = 18.34 ounces). All

infants passed their neonatal auditory screening; by 12 months 57.2% of the infants had a his-

tory of ear infections. Hollingshead four-factor index (raw score of 8–66) of socioeconomic

status based on marital status, employment status, educational attainment and occupational

prestige was on average 57.26 (range = 30–66), and therefore in the mid-to-high SES range. All

participants in this study were involved in a larger study examining the relation between early

sucking, oral feeding, and vocal development across preterm and full-term infants. Infants

were included in the current study if they were: (1) born full-term without congenital or chro-

mosomal anomalies, (2) had usable suck samples at 3 and 12 months, and (3) produced a mini-

mum of ten stop consonants within 20 minutes during their 12-month appointment. This

study was approved by the institutional review board at Northeastern University. Participants

were recruited by word of mouth, Facebook groups, and flyer distribution. All caregivers pro-

vided written consent for the study and were compensated for their participation.

Data collection

Data collection was completed in the infant’s home approximately one hour before a sched-

uled feed; NNS measurements were collected at the 3-month visit to capture this reflexive

motor action, and babbling samples used for VOT analysis were collected at the 12-month
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visit. Measurements of the infant’s NNS were collected at 3-months with a custom-made

research device that consisted of a 0-3-month Soothie pacifier (Philips, Avent) attached to a

pressure transducer. The pressure transducer was attached to a data acquisition system (Power

Lab, ADInstruments), allowing for real-time visualization of NNS using the LabChart software

(ADInstruments). The pressure transducer in the custom-made research device was calibrated

with an external pressure calibrator Meriam M1 Series Digital Manometer Calibrator; a range

of pressure measurements from the NNS system were recorded simultaneously with both pres-

sure transducers and used to produce a linear calibration curve for the NNS system. Following

calibration, parents/caregivers were instructed on how to offer the infant the pacifier, which

consisted of demonstration by the research assistant to cradle the infants and offer the infants

the pacifier. Researchers encouraged a quiet environment for data collection; however, since

the study was completed in the home this was not always possible. Ideally, infants were in a

quiet-alert state; however, data collection was discontinued if the infant began to cry, appeared

distressed, or rejected the pacifier. Average time infants NNS suck was recorded was 3.09

minutes.

During the 12 month visit, each infant was fitted with a Language Environment Analysis

(LENA), a wearable recording device that is widely used in research to analyze early speech

vocalizations in young infants [e.g., 33,34]. The LENA device is a small piece of hardware (3-3/

8” x 2-3/16” x 1/2”) that houses an omnidirectional microphone with a flat 20 hertz (Hz)–

20,000 Hz frequency response and records acoustic data at 16,000 Hz [35]. For each child, the

LENA recorder was placed in a dedicated LENA vest; the vest keeps the microphone a consis-

tent distance from the infant and is designed with fabric that has minimal impact on the acous-

tic recordings [36]. Parents were instructed to leave the vest on their infant for the remainder

of the day (with the exception of bath and nap times), continue with their typical routines, and

document all activities done while the infant was wearing the vest.

Measures

Non-Nutritive Suck (NNS). Trained experimenters identified NNS burst manually using

the LabChart software. We created a study settings file in the LabChart software that consisted

of a NNS sample rate of 1000 samples per second with a low-pass filter with a cut off frequency

of 50 Hz. NNS physiology has a stereotypical burst-pause pattern, with an intraburst frequency

of 2 Hz and each burst containing 6–12 suck cycles [3]. Bursts were defined two or more suck

cycles in a row, with the cycles less than one second apart and each cycle’s amplitude at least

one cmH20 (see example in Fig 1). This definition of burst is consistent with previous studies

examining NNS in young infants [8,37–40]. Following manual selection of all bursts, the best

two minutes of NNS data were selected based on cycle number, which is a common procedure

used across studies [8,37–39] in an effort to examine the infant’s most active NNS sample.

NNS measures were calculated with a custom-made NNS burst macro in LabChart. Then, the

average of the two minute samples was taken to determine the following NNS minute rates: (1)

burst amount, the number of NNS bursts in a minute, (2) burst duration in seconds (sec), the

average length of the burst (3) cycle amount, the number of cycles per minute, (4) cycles/burst,
average number of cycles in each burst per minute, (5) amplitude (cmH20), average amplitude

of the pressure of the cycles, measured as peak-height minus peak-trough in cmH20, and (6)

Frequency (Hz), the intraburst frequency between cycles.

Voice onset time (VOT). Algorithms in the LENA Pro software were used to identify

continuous speech spoken by the infant. The most voluble hour (i.e., the hour with the most

infant vocalizations) was found for each infant and the activity log was examined to verify the

infant was awake during the selected hour. The most voluble 20 minutes from each infant’s
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most voluble hour was exported to Praat [41] for acoustic analysis. An initial rater identified

all stop consonants from the acoustic waveforms and spectrograms. Default spectrogram Praat

settings were used, with a view range of 0–5000 Hz, dynamic range of 70 dB, and a window

length of 0.005 seconds. VOT, defined as the time between the burst of the stop consonant and

the start of the subsequent vowel, was measured for each stop consonant-vowel pair identified

(Fig 2). To control for differences in the amount of stop consonant-vowel productions between

infants, only the first ten stop consonant-vowel productions were selected for evaluation. Each

stop consonant selected was identified based on both the rater’s auditory-perception of the

production and the presence/absence of features in the spectrogram (e.g., voicing bar). The

majority of productions were perceived as a voiced /d/ production, with voiced phonemes

identified more frequently than voiceless consonants (Table 1). Stop consonants were identi-

fied from segments of reduplicated (e.g., baba) and variegated (e.g., baga) babbling. No identi-

fiable words were noted with stop consonants. A second rater (one of the senior authors)

reviewed all VOTs and adjusted when needed. Each rater repeated analysis on 20% of the par-

ticipants, for a total of 50 VOTs repeated. The average absolute difference in VOT ratings were

calculated to assess intra-rater reliability (rater 1: average VOT difference = 0.97 ms, standard

deviation = 2.0 ms; rater 2: average VOT difference = 0.91 ms, standard deviation = 1.3 ms).

Three measures were used to evaluate VOT productions. Average VOT and VOT range

(maximum VOT–minimum VOT) were calculated to provide information on the infant’s

stage of VOT development. Longer VOTs and larger VOT ranges were interpreted as

Fig 2. LENA vest (left) and Voice onset time example (Right). Left: An infant wearing the LENAvest during recording (The parent of the infant pictured in this

manuscript has given written informed consent (as outlined in PLOS consent form) to publish these case details). Right: Praat window with waveform and spectrogram

from a stop consonant-vowel production. Voice onset time is measured from the burst to the start of the subsequent vowel, indicated by the highlighted portion.

https://doi.org/10.1371/journal.pone.0250529.g002

Table 1. Perception of stop consonants during initial calculation of voice onset time.

Phoneme Phoneme Count Infant Count

Voiced b 46 15

d 138 23

g 26 6

Total Voiced 210 25

Voiceless p 2 2

t 32 16

k 2 2

Total Voiceless 36 16

Ambiguous d/t 4 2

Total (Voiced and Voiceless) 250 25

https://doi.org/10.1371/journal.pone.0250529.t001
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advanced development as the infants were prolonging VOT productions. To evaluate the vari-

ability of the infants’ productions, the coefficient of variation (CoV) of VOT was calculated for

each infant. CoV, that is the standard deviation VOT divided by the mean VOT, providing a

metric of infant variability of productions around their mean production. Therefore, using

CoV allows for evaluation of infant VOT variability, while adjusting for individual differences

in average VOT.

Data analyses

Descriptive statistics on NNS measures at 3 months and VOT measures at 12 months were

completed. All measures were converted to rank order for the subsequent analyses to account

for the lack of normality in the measures. Correlations examined the relationships among

NNS measures; a Bonferroni corrected alpha level of 0.0033 (0.05/15 correlations = 0.0033)

was used to correct for multiple comparisons. Three multiple linear regressions examined

whether NNS measures at 3 months predicted either average VOT, range of VOT, or CoV of

VOT at 12 months. All analyses were completed in JMP Pro [42].

Results

Analysis of individual measures

Average VOT at 12 months was 7.82 ms across all infants, with individual infant averages

ranging from 0 ms to 33.87 ms. Examination of individual productions indicated infants pro-

duced a large range of VOT values (Fig 3), with average CoV of VOT measured at 1.22.

Infants at 3 months produced NNS an average of 4.10 bursts (range: 1.50–9.50) per minute,

with an intraburst frequency average of 2.06 Hz (range: 1.36–2.75), average burst duration of

4.93 seconds (range: .94–11.97). Infants produced an average of 10.02 cycles per burst (range:

2.25–27.17), 42.24 cycles per minute (range: 3.5–109.50), and an average cycle amplitude of

12.32 cmH20 (range: 1.19–28.03).

Relationships between NNS measures at 3 months and VOT measures at 12

months

The NNS measure of burst duration was highly correlated with NNS measures of cycle amount

(r = .84, p<0.001) and cycles/burst (r = .97, p<0.001). The NNS measure of cycles amount

was highly correlated with burst amount (r = .71, p<0.001) and cycles/burst (r = .87, p
<0.001, Table 2). Based on the high association between cycle amount and cycles/burst with

other NNS measures, only the NNS measures of burst duration, frequency, amplitude, and

burst amount were included in the regression model. There was no significant effect of NNS

measures of burst duration, frequency, amplitude, burst amount on either average VOT or

range of VOT (all p> 0.05). A regression model including the NNS measures of burst dura-

tion, frequency, amplitude, and burst amount significantly predicted CoV of VOT (F(4,18) =

3.613, p = 0.02), with an R2 = 0.45 (Fig 4). Increased variability of VOT was driven by increased

NNS burst duration (β = 0.53, p = 0.008) and increased NNS intraburst frequency (β = 0.50,

p = 0.01). Measures of NNS height (β = 0.21, p = 0.32) and decreased NNS burst amount (β =

-0.34, p = 0.10) did not reach significance in this model.

Discussion

This study provided a novel look into the relationships between two early oromotor actions,

NNS and babbling. Findings from the current study indicated a relationship between NNS at

3-months and VOT variability at 12-months. The metric of variability used in the current
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work was coefficient of variation (CoV), a measure that examines variability while controlling

for average VOT. Previous work examining VOT productions suggests that VOT variability

decreases during maturation [26,43,44]; however, this reduction in VOT variability occurs

after two years of age [45]. Although the decrease in variability in older children has been asso-

ciated with improved accuracy of productions [44,46,47], it is unlikely that differences in

Fig 3. Infant voice onset times. Voice onset time medians (blue dots) and ranges for each infant.

https://doi.org/10.1371/journal.pone.0250529.g003

Table 2. Correlation matrix of non-nutritive suck (NNS) measures.

Burst Duration (sec) Frequency (Hz) Amplitude (CmH20) Burst Amount Cycles/Burst

Frequency (Hz) -.13 – – – –

Amplitude (CmH20) .18 -.26 – – –

Burst Amount .37 .001 .47 – –

Cycles/Burst .97� .06 .14 .38 –

Cycle amount .84� .09 .34 .71� .87�

� correlations significant at p < 0.0033.

Bolding indicates significant correlations.

https://doi.org/10.1371/journal.pone.0250529.t002
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variability of babbling in 12-month-old infants is due to refining movements in order to accu-

rately reach a target. Instead, we suggest that the increased variability evident during this

period may be due to increased exploration while infants are acquiring new articulatory move-

ments. This interpretation is based on Dynamic Systems Theory, which posits that learning a

new skill is preceded by increased variability of movement [48,49]. Therefore, we speculate

that increased VOT variability in the current study may be indicative of a more advanced stage

of speech production acquisition.

Findings from this study indicated that infants with increased VOT variability at 12 months

had increased NNS at 3 months, driven by increased NNS burst duration and increased NNS

intraburst frequency. Put simply, infants who produced longer bursts, which likely consisted

of more NNS cycles per burst, produced at a faster rate had increased VOT variability during

babbling. Both NNS and babbling involve jaw and tongue movements; the jaw and tongue

movements required to produce multiple, rapid cycles within a burst mirrors the jaw and ton-

gue movements during babbling [20,50–52]. Interpreted within the frame/content theory of

evolution of speech production [25], we postulate that ability to produce longer bursts at a

faster rate at 3-months may allow the infant’s frame to be primed for the development of the

content of babbling at 12-months. That is, infants are building this later content (babbling) on

the earlier frame (NNS). However, further work is needed to examine this relationship beyond

the scope of this pilot study. The current work used the measure of VOT, which allows infer-

ence about jaw movement, yet this temporal measure does not provide significant information

about tongue control. As multiple orofacial structures are involved in both infant sucking and

babbling (e.g., jaw, lip, tongue), future work measuring the kinematic movement of all struc-

tures involved in both NNS and speech production is needed to further evaluate how these

early motor actions are related.

Fig 4. Relationships between voice onset time variability and non-nutritive suck. Relationship between the actual

ranked coefficient of variation (CoV) of voice onset time and the CoV of voice onset time predicted by the regression

model that included NNS measures of burst duration, frequency, amplitude, and burst amount. NNS measures of

burst duration and intraburst frequency were significant predictors. Shaded area represents 95% confidence interval

around the regression line.

https://doi.org/10.1371/journal.pone.0250529.g004
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Although relationships were found between NNS and CoV of VOT, the current study did

not find any relationship between VOT average or range of VOT productions and NNS mea-

sures. Based on the proposed stages of VOT development [30,32], an average VOT value of

7.82 ms suggests infants are in stage one of VOT development, in which the vowel phonation

begins almost immediately after the stop consonant closure is released. One possible reason we

did not find a relationship between NNS measures and VOT averages is that the small differ-

ences in VOT averages at stage one may not provide a meaningful metric of development.

Thus, to evaluate the relationship between VOT development further, we examined whether

VOT range would relate to NNS measures. Consistent with previous studies, individual infant

averages ranging from 0 ms to 33.87 ms [32,45,53–56] indicating that infants were beginning

to lengthen the time between stop closure offset and vowel onset [30,32]. However, VOT range

did not meaningfully relate to NNS productions. A potential reason for the absence of findings

may be the lack of a clear target for babbling, thus making interpretation of VOT range more

complex. Previous work examining VOT in the first few years of life has mainly focused on

production of words [32,45,53,55], with the few articles that discussed VOTs of babbling focus-

ing primarily on cross-linguistic differences [54,56]. The evaluation of VOT in words allows

for judgements on accuracy of productions as the intended target is known, whereas babbling

does not have to have a clear target. Therefore, future work is needed to longitudinally examine

the relationship between the NNS reflex and more intentional early speech production pro-

duced at later time-points and across patient populations.

It should be noted that although we have discussed our results within the frame/content the-

ory, there are other potential explanations that require consideration. First, it is possible that

the measurements of NNS and VOTs are capturing development of a single skill, rather than

the building of the content (babbling) on the frame (NNS). Further work is needed to deter-

mine if the skill of babbling is built on the skill of NNS, or if these are purely two types of oro-

motor movement measurements captured at different points in time. Second, it is important

to acknowledge that in focusing on the oromotor relationships between NNS and VOT pro-

ductions, the current work does not address the impact of vocal fold movement on VOTs. As

VOT depends on the coordination of the articulatory and vocal fold movement, some of the

findings of the current work may be related to vocal fold changes. During the first few years,

the vocal folds are undergoing significant structural changes that may impact their flexibility

and movement [57,58]. Thus, further work is needed to clarify the potential impact of vocal

fold development on VOTs during babbling. This future work should also include an examina-

tion of vowel token as emerging work suggests that, unlike adults [59–61], the relationship

between VOTs and vowels in children is not clear [62]. As these differences in vowels may be

related to intrinsic fundamental frequency differences, as well as differences in vocal tract posi-

tioning (and subsequent formant measurements), understanding this relationship may pro-

vide valuable information about VOT development. Lastly, although the consonants were

labeled during the initial identification of VOT instances, they were not part of a larger percep-

tual study and therefore we considered them as preliminary labels for the consonants. Due to

the absence of a clear consonantal target and the sparsity of different consonants identified

during preliminary labeling, we did not pursue additional analysis of any potential relation-

ships between specific consonants and NNS measures. As there is evidence that VOT may vary

by place [e.g., 32,62–66], future work that includes methodology to confirm place of articula-

tion (e.g., electromagnetic articulography, video analysis) is needed to examine any potential

relationship between place of articulation and NNS measures.

Overall, findings from this pilot study suggests the relationship between NNS and VOT in

babbling and/or early words needs further exploration. Understanding this relationship could

provide valuable information on the development of the motor control system as a whole and
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provide a marker for children who may be at higher risk for later difficulty with speech motor

control. Previous work examining VOT in older children has shown differences in VOT con-

trol. For instance, evaluation of VOTs in children at high-risk for developing autism spectrum

disorder had deceased distinction in voice and voiceless productions [67]. In addition, chil-

dren who were later diagnosed with childhood apraxia of speech were found to use less voice-

less sounds in early productions [68]. Future work should evaluate whether these later

appearing differences in VOTs are related to variability in infant babbling, and thereby related

to NNS outcomes sampled soon after birth. In this way, NNS and early VOT metrics could

potentially serve as early biomarkers for subsequent speech development.

Limitations

Limitations in the study included a small sample size, as only 25 total infants were included in

the study. Due to this small sample size, this study did not examine potential differences in

other variables such as infant sex, feeding method, or birthweight on NNS and VOT produc-

tions. Further work on a larger sample size is needed to examine whether other relevant vari-

ables impact the relationship between early oromotor actions. The current study evaluated

NNS measures at 3-months and babbling productions at 12-months and thus, if the infant had

a difficult day (e.g., tired or fussy), their data may not be truly representative of their NNS and

VOT productions. Future work should also assess both NNS and VOT measures at multiple

time points to more comprehensively measure these early motor actions. Finally, infants were

recruited from the Northeast through flyers, online parent communities, and word of mouth.

This recruitment strategy resulted in only middle to high SES participants; future work is

needed with infants from a broader range of backgrounds to increase the generalizability of

these findings. Lastly, this study was completed in the home environment. Future work is

needed to examine babbling in a more controlled environment, allowing for examination of

other factors that may influence babbling measurements (e.g., rate of speech, use of infant

directed speech, number of people present in the room). While use of the LENA system in the

home provides a window into the infant’s natural environment, future work can examine situ-

ations where the babbling productions are elicited and more closely controlled.

Conclusion

The results of this pilot study reveal that there is a relationship between VOT and NNS mea-

sures in infants. Increased variability of VOT productions at 12 months was related to NNS

measures, with the relationship driven by increased NNS intraburst frequency and increased

NNS burst duration at 3-months. No relationships were found between the average or range of

VOT productions at 12 months and NNS measures at 3 months. Findings suggest a link

between infant vocal development and oromotor movements evident in NNS productions,

motivating the need for future work to continue to examine this relationship.
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