A pleasant surprise of the cyclotomic character

Vasily Dolgushev

Temple University

Bar-Ilan, Algebra Seminar, 17 Kislev, 5785/December 18, 2024

Loosely based on a joint work with Ivan Bortnovskyi, Borys Holikov and Vadym Pashkovskyi

4 ロト 4 何 ト 4 ヨ ト

The absolute Galois group $G_0 := Gal(O/O)$

We denote by $G_{\mathbb{Q}}$ the absolute Galois group of the field \mathbb{Q} of rational numbers, i.e. G_{\odot} is the group of all automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} .

One can show that $G_{\mathbb{Q}}$ is the limit of the functor that sends a finite Galois extension $E \supset \mathbb{Q}$ to the corresponding finite group Gal(E/\mathbb{Q}). Thus $G_{\mathbb{Q}}$ is a profinite group. It is uncountable and $G_{\mathbb{Q}}$ is *not* topologically finitely generated.

Only two elements of $G_{\mathbb{Q}}$ *are known explicitly:* the identity element and i the complex conjugation $c^*(a + bi) := a - bi$.

Using the action of $G_{\mathbb{Q}}$ on all roots unity, we get the natural group homomorphism

$$
\chi: \mathbf{G}_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times}
$$

called the *cyclotomic character*. It is not hard to show that the homomorphism χ is surjective.

イロト 不優 トメ 差 トメ 差 トー

The (gentle version of) the group GT

Let $F_2 := \langle x, y \rangle$ be the free group on two generators and F_2 be its profinite completion.

In 1990, V. Drinfeld introduced a rather mysterious group \widehat{GT} (the Grothendieck-Teichmuelller group). As a set, GT consists of pairs c (\hat{m}, \hat{f}) in $\widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$ satisfying

$$
\hat{f}\theta(\hat{f})=1_{\widehat{F}_2},\qquad \tau^2(y^{\hat{m}}\hat{f})\tau(y^{\hat{m}}\hat{f})y^{\hat{m}}\hat{f}=1_{\widehat{F}_2},
$$

 $\hat{f} \in [\hat{F}_2, \hat{F}_2]^{top.close.}$ and the invertibility condition.

Here θ and τ are the automorphisms of F_2 (and of F_2) defined by the ${\sf formulas}\; \theta(x) := y,\, \theta(y) := x,\, \tau(x) := y,\, \tau(y) := y^{-1} x^{-1}.$

The multiplication on GT is defined using a monoid structure on $\mathbb{Z} \times F_2$ that is inspired by the action of $G_{\mathbb{Q}}$ on $\widehat{\mathsf{F}}_2 \cong \pi_1^\textit{alg}$ 1 (**P** 1 $\frac{1}{\mathbb{Q}} - \{0, 1, \infty\}$). The pair $(0_{\widehat{{\mathbb Z}}}, 1_{\widehat{\mathsf{F}}_2})$ is the identity element of GT.

イロト イ団 トイ ヨ トイ ヨ トー

The operad PaB of parenthesized braid

Let B*ⁿ* be the Artin braid group on *n* strands and PB*ⁿ* be the kernel of the standard homomorphism $B_n \rightarrow S_n$. PB_n is called the pure braid group on *n* strands.

One can "assemble" the family (B*n*)*n*≥¹ into an operad PaB in the category of groupoids. PaB is called the operad of parenthesized braids.

Due to MacLane's coherence theorem, PaB is generated by these two morphisms:

Thus every $\varphi \in$ Aut(PaB) is uniquely determined by $\varphi(\beta)$ and $\varphi(\alpha)$.

In his 1990 paper, V. Drinfeld showed that Aut(PaB) $\cong \mathcal{Z}_2$:-(

If we replace PaB by its profinite completion PaB then the story is much more interesting!

The group $Aut(\overline{PaB})$ of continuous automorphisms of \overline{PaB} is infinite and we have an injective homomorphism $G_{\mathbb{O}} \to$ Aut(PaB). Aut(PaB) is (the original version of) the Grothendieck-Teichmueller group. For every $\varphi \in$ Aut(PaB), the value $\varphi(\beta)$ (resp. $\varphi(\alpha)$) is uniquely determined by an element $\hat{m}\in \widehat{\mathbb{Z}}\cong \widehat{\mathsf{PB}}_2$ (resp. an element $\hat{f}\in \hat{\mathsf{PB}}_3).$ Using the relations of PaB one can show that \hat{f} belongs to a subgroup of PB₃ isomorphic to \widehat{F}_2 . Moreover, $2m + 1$ must be invertible in the ring $\widehat{\mathbb{Z}}$. This is how we get a bijection between pairs $(\widehat{m},\widehat{f})\in \widehat{\mathbb{Z}}\times \widehat{\mathsf{F}}_2$

satisfying various conditions and automorphisms of PaB.

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Another interpretation of the defining relations of GT

Let *C* be a group acting on a nonabelian group *G*. One can define the sets

 $H^0(C, G)$ and $H^1(C, G)$.

 $H^0(C, G)$ is simply the set of *C*-invariant elements in *G* and $H^1(C, G)$ is the set of equivalence classes of splittings of the exact sequence

 $1 \rightarrow G \rightarrow G \rtimes C \rightarrow C \rightarrow 1$

In their 1997 paper, P. Lochak and L. Schneps suggested an interpretation of the defining relations of GT in terms of $H^1(C, \tilde{F}_2)$ with $C = \mathcal{Z}_2$ and $C = \mathcal{Z}_3$.

They successfully used this idea to prove several interesting statements about \widehat{GT} and about the image of G_0 in GT . In my opinion, natural version of this idea for GT-shadows is not fully explored.

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

The Ihara embedding

In his 1994 paper "On the embedding of Gal(\overline{Q}/Q) into \overline{GT} " (+ the appendix by M. Emsalem and P. Lochak), Y. Ihara used the algebraic fundamental groups of $\mathbb{P}^1_\mathbb{Q}-\{0,1,\infty\}$ and $\mathbb{P}^1_{\overline{\mathbb{Q}}}$ $\frac{1}{\mathbb{Q}} - \{0, 1, \infty\}$ to construct a map

$$
Ih: G_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times} \times \widehat{F}_2
$$

of the form $lh(g)=(\chi(g),f_g)$, where χ denotes the cyclotomic character.

Using the appropriate versions of the fundamental groupoids of the moduli spaces $\mathcal{M}_{0,4}$, $\mathcal{M}_{0,5}$ of curves, lhara proved (in ICM 1990) that, for every $g \in G_{\mathbb{Q}}$, the pair $((\chi(g)-1)/2, f_{\mathbb{Q}})$ is an element \widehat{GT} . In $\mathsf{particular}, f_g \in [\mathsf{F}_2, \mathsf{F}_2]^{top. cl.}.$

Using famous Belyi's theorem, one can prove that the resulting group homomorphism *Ih* : $G_{\odot} \rightarrow GT$ is injective. We call *Ih* the *Ihara embedding*. It is known that the pair $(-1, 1) \in \mathbb{Z} \times \widehat{F}_2$ equals *Ih*(c^*), where *c* [∗] denotes the complex conjugation. K ロ ト K 御 ト K 差 ト K 差 ト … 差 Ω The following question is probably *very hard:*

Is the homomorphism Ih : $G_0 \rightarrow \widehat{GT}$ *surjective?*

In several remarkable papers, F. Pop gave positive answers to versions of the above question. In these versions, GT is replaced by subgroups c of $G\bar{T}$ with infinitely many defining conditions.

For example, the birational version \widehat{ST}_{bir} of \widehat{GT} is defined using the etale fundamental group functor from the sub-category of concrete algebraic varieties obtained from $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$. In "*Finite tripod variants of I/OM: ...*", 2019, F. Pop proved that the homomorphism *Ih* lands in $\widehat{\text{GT}}_{\text{bir}}$ and the group $\widehat{\text{GT}}_{\text{bir}}$ is isomorphic to $G_{\mathbb{Q}}$ via *lh*.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

A bit more about (the gentle version of) GT

For $(\hat{m}, \hat{f}) \in \widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$, the formulas

$$
E_{\hat{m},\hat{f}}(x) := x^{2\hat{m}+1}, \qquad E_{\hat{m},\hat{f}}(y) := \hat{f}^{-1} y^{2\hat{m}+1} \hat{f}
$$

define a continuous endomorphism $E_{\hat m, \hat l}$ of $\,$ F $_2.$

 $\mathbb{Z} \times F_2$ is a monoid with the binary operation

$$
(\hat{m}_1,\hat{f}_1)\bullet(\hat{m}_2,\hat{f}_2):=\big(\,2\hat{m}_1\hat{m}_2+\hat{m}_1+\hat{m}_2,\,\hat{f}_1E_{\hat{m}_1,\hat{f}_1}(\hat{f}_2)\,\big)
$$

and the identity element (0, 1).

Let $\widehat{\textsf{GT}}_{mon}$ be the submonoid of $\widehat{\mathbb{Z}}\times \widehat{\mathsf{F}}_2$ that consists of pairs (\hat{m}, \hat{f}) satisfying the cocycle conditions:

$$
\hat{f}\theta(\hat{f})=1_{\widehat{F}_2},\qquad \tau^2(y^{\hat{m}}\hat{f})\tau(y^{\hat{m}}\hat{f})y^{\hat{m}}\hat{f}=1_{\widehat{F}_2},
$$

and $\hat{f} \in [\widehat{F}_2, \widehat{F}_2]^{top.close}$.

The groups $\widehat{\text{GT}}_{\textit{gen}}$ is \ldots

 GT_{gen} is the group of invertible elements of the monoid \widehat{GT}_{mon} . The formula χ*vir*(*m*ˆ , ˆ*f*) := 2*m*ˆ + 1 defines a (continuous) group homomorphism $\chi_{\textit{vir}}$: $\widehat{\text{GT}}_{\textit{gen}} \to \widehat{\mathbb{Z}}^{\times}$. Since the diagram

commutes, we call χ*vir* the *virtual cyclotomic character*.

For every $(\hat{m}, \hat{f}) \in \widehat{\text{GT}}_{gen},$ the endomorphism $E_{\hat{m},\hat{f}}$ of $\widehat{\textsf{F}}_2$ is invertible and the assignment

$$
(\hat{m},\hat{f})\mapsto \mathsf{E}_{\hat{m},\hat{f}}
$$

defines a group homomorphism from GT $_{gen}$ to the group Aut(F₂) of continuous automorphisms of F_2 .

The Artin braid group B_3 and PB_3

 B_3 (resp. PB₃) denotes the Artin braid group (resp. the pure braid group) on 3 strands. σ_1 , σ_2 are the standard generators of B₃

We set $\Delta := \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$. $PB₃$ is generated by

$$
x_{12}:=\sigma_1^2, \qquad x_{23}:=\sigma_2^2, \qquad c:=\Delta^2\,.
$$

It is known that $\mathcal{Z}(B_3) = \mathcal{Z}(PB_3) = \langle c \rangle \cong \mathbb{Z}$, the subgroup $\langle x_{12}, x_{23} \rangle$ is isomorphic to F₂. In fact, PB₃ \cong F₂ \times $\langle c \rangle$.

A bit more about F_2 , PB₃ and B₃

It is natural to identify F_2 with the quotient group $PB_3/Z(PB_3)$ and set

$$
x := x_{12} \mathcal{Z}(PB_3), \qquad y := x_{23} \mathcal{Z}(PB_3).
$$

Since $\mathcal{Z}(\mathsf{B}_3) = \mathcal{Z}(\mathsf{PB}_3)$, the group B_3 acts on $\mathsf{F}_2 \cong \mathsf{PB}_3/\mathcal{Z}(\mathsf{PB}_3)$ by conjugation. We denote by θ (resp. τ) the automorphism of F₂ corresponding to $\Delta := \sigma_1 \sigma_2 \sigma_1$ (resp. to $\sigma_1 \sigma_2$).

It is easy to see that

$$
\theta(x) := y
$$
, $\theta(y) := x$, $\tau(x) := y$, $\tau(y) := y^{-1}x^{-1}$.

Although the elements Δ and $\sigma_1\sigma_2$ are of infinite order, the automorphisms θ and τ have finite orders: ord(θ) = 2, ord(τ) = 3. We set

$$
NFI^{B_3}(F_2) := \{ N \trianglelefteq F_2 \mid g(N) = N, \ \forall \ g \in B_3 \ |F_2:N| < \infty \}
$$

and we often abbreviate NFI := $\text{NFI}^{\text{B}_3}(\mathsf{F}_2)$.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重

For $N \in$ NFI, we set

 $N_{\text{ord}} := \text{lcm} \left(\text{ord}(xN), \text{ord}(yN) \right).$

We say that $(m, f) \in \mathbb{Z} \times F_2$ satisfies the *cocycle conditions* modulo N if

 $f\theta(f) \in \mathbb{N}, \qquad \tau^2(y^m f) \tau(y^m f) y^m f \in \mathbb{N}.$

For $(m, f) \in \mathbb{Z} \times \mathsf{F}_2$ and $\mathsf{N} \in \mathsf{N}\mathsf{FI}$, we denote by $\mathcal{T}_{m, f}$ the following homomorphism

$$
\mathcal{T}_{m,f}: \mathsf{F}_2 \to \mathsf{F}_2/N
$$

If the pair $(m, f) \in \mathbb{Z} \times F_2$ satisfies the cocycle conditions modulo N, then ker($T_{m,f}$) is also B₃-invariant, hence

 $ker(T_{m,f}) \in \mathsf{NFI}$.

K ロ > K 何 > K 君 > K 君 > 「君」 のなで

Definition

Let N ∈ NFI*. A* GT*-shadow with the target* N *is a pair*

 $[m, f] := (m + N_{\text{ord}}\mathbb{Z}, f\mathbb{N}) \in \mathbb{Z}/N_{\text{ord}}\mathbb{Z} \times F_2/\mathbb{N}$

satisfying the cocycle conditions (modulo N*) and such that*

- \bullet 2*m* + 1 *represents a unit in the ring* $\mathbb{Z}/N_{\text{ord}}\mathbb{Z}$,
- \bullet *f*N \in [F₂/N, F₂/N]*, and*
- *the homomorphism* $T_{m,f}$ *:* $\mathsf{F}_2 \rightarrow \mathsf{F}_2/\mathsf{N}$ *is surjective.*

GT(N) is the set of GT-shadows with the target N.

←ロト ←部 ト ←語 ト ←語

Guess what?!.... GT-shadows form a groupoid GTSh.

 $Ob(GTSh) := NFI;$ for $K, N \in NFI$,

$$
GTSh(K,N):=\Big\{\,[m,f]\in GT(N)\mid\, ker(\,T_{m,f})=K\,\Big\}.
$$

Let $N^{(1)}, N^{(2)}, N^{(3)} \in {\sf NFI}$ and

$$
N^{(3)} \xrightarrow{\ [m_2,f_2] } N^{(2)} \xrightarrow{\ [m_1,f_1] } N^{(1)}.
$$

The composition of morphisms is defined by the formula:

$$
[m_1, f_1] \circ [m_2, f_2] := [2m_1m_2 + m_1 + m_2, f_1E_{m_1, f_1}(f_2)]
$$

∀ N ∈ NFI, $[0, 1_{\mathsf{F}_2}]$ is the identity morphism in GTSh(N, N).

押 トラミト マミトー

A comment

For $(m, f) \in \mathbb{Z} \times F_2$, the formulas

$$
E_{m,f}(x) := x^{2m+1}, \qquad E_{m,f}(y) := f^{-1} y^{2m+1} f
$$

define an endomorphism of F_2 .

Moreover, for all $(m_1, f_1), (m_2, f_2) \in \mathbb{Z} \times \mathsf{F}_2$,

$$
E_{m_1,f_1}\circ E_{m_2,f_2}=E_{m,f},
$$

where $m := 2m_1m_2 + m_1 + m_2$ and $f := f_1E_{m_1, f_1}(f_2)$.

One can show that the set $\mathbb{Z} \times F_2$ is a monoid with respect to the binary operation

$$
(m_1,f_1)\bullet(m_2,f_2):=\big(2m_1m_2+m_1+m_2\,,\,f_1E_{m_1,f_1}(f_2)\big)
$$

with $(0,1_{\mathsf{F}_2})$ being the identity element.

- **GTSh has infinitely many objects. (NFI is infinite because** F_2 **is** residually finite.)
- \bullet GTSh is highly disconnected. However, for every N ∈ NFI, the connected component $GTSh_{conn}(N)$ of N is a finite groupoid.
- **If GTSh_{conn}**(N) has only one object, then $GT(N) = GTSh(N, N)$, i.e. GT(N) is a (finite) group. In this case, we say that N is an *isolated* object of GTSh.
- For every $N \in NFI$, the object

$$
N^\diamond\ :=\ \bigcap_{K\in Ob(GTSh_{conn}(N))}K
$$

is isolated. In particular, the subposet NFI*isol*. ⊂ NFI of isolated objects is coinitial.

. **.** .

Let N, $H \in NFI$ with $N < H$. Then $H_{\text{ord}} \mid N_{\text{ord}}$.

If a pair $(m, f) \in \mathbb{Z} \times F_2$ represents a GT-shadow with the target N, then *the same pair* also represents a GT-shadow with the target H.

Hence we have a natural map

 $\mathcal{R}_{N,H}$: GT(N) \rightarrow GT(H)

If N, H are isolated (i.e. $GT(N)$, $GT(H)$ are groups) then $\mathcal{R}_{N,H}$ is a group homomorphism.

. **.** .

GT versus GTSh

For every $(\hat{m}, \hat{f}) \in \widehat{\text{GT}}$ and $\textsf{N} \in \textsf{NFI}$ the pair

$$
\text{PR}_N(\hat{m}, \hat{f}) := \big(\, \mathcal{P}_{N_{\text{ord}}}(\,\hat{m}\,),\, \mathcal{P}_N(\,\hat{f}\,) \,\big) \;\in\; \mathbb{Z}/N_{\text{ord}}\mathbb{Z} \times F_2/N_{F_2}
$$

is a GT-shadow with the target N. (For $K \in NF(G)$, \mathcal{P}_K denotes the standard continuous homomorphism $\widehat{G}\rightarrow G/K$.) PR $_{\mathsf{N}}(\widehat{m},\widehat{f})$ is an *approximation* of the element (\hat{m}, \hat{f}) .

A GT-shadow $[m, f] \in$ GT(N) is called *genuine* if ∃ $(\hat{m}, \hat{f}) \in$ GT such that $PR_N(\hat{m}, \hat{f}) = [m, f]$. Otherwise, it is called *fake*.

A GT-shadow $[m, f] \in GT(N)$ *survives into* $K \in NFI$ (with $K \leq N$) if $[m, f] \in \mathcal{R}_{\mathsf{K},\mathsf{N}}(\mathsf{GT}(\mathsf{K})).$

Proposition. A GT-shadow $[m, f] \in GT(N)$ is genuine $\iff [m, f]$ survives into K for every $K \in N$ FI such that $K \leq N$.

御きメモドメモ

If a GT-shadow $[m, f] \in$ GT(N) comes from an element $(\hat{m}, \hat{f}) \in \widehat{GT}$, then we denote by $\mathsf{N}^{(\hat{m},\hat{t})}$ the source of $[m,f].$ One can show that the assignment N \mapsto N^{(*m̂,î̂)* defines a *right action* of GT on the poset NFI.
…} We denote by

 $\widehat{\mathsf{GT}}_{\mathsf{NEI}}$

the corresponding transformation groupoid.

One can show that "passing from elements of \widehat{GT} to GT-shadows" gives us a functor

 $PR : \widehat{GT}_{NET} \rightarrow GTSh$.

Informally, we may call it the *approximation functor*.

Let K, N \in NFI be isolated objects of the groupoid GTSh and K \leq N. Since $\mathcal{R}_{K,N}$ is a group homomorphism

 $GT(K) \rightarrow GT(N)$,

the assignments

 $ML(N) := GT(N), \qquad ML(K \leq N) := \mathcal{R}_{KN}$

define a functor from the poset NFI*isol*. to the category of finite groups.

Theorem. (J. Guynee, V.D.) The limit of ML is isomorphic to (the gentle version of) GT.

Proposition. (I. Bortnovskyi) For every $N \in NFI$, there exists $K \in NFI$ such that K ≤ N with the following property: *if a* GT*-shadow* $[m, f] \in GT(N)$ *survives into* K *then* $[m, f]$ *is genuine.*

K ロ ト K 個 ト K 君 ト K 君 ト 一君

The version of *Ih* for GT-shadows

Let N be an isolated object of the groupoid GTSh, i.e. N is the only objects of its connected component in GTSh. In particular, GT(N) is naturally a group.

Using the approximation functor, we get a natural group homomorphism

 $PR_N : \widehat{GT} \rightarrow GT(N).$

Precomposing PR_N with the Ihara embedding $Ih: G_{\mathbb{Q}} \to \widehat{GT}$, we get the group homomorphism

$$
\textit{lh}_N:G_{\mathbb{Q}}\rightarrow GT(N)
$$

We say that a GT-shadow $[m, f] \in GT(N)$ is *arithmetical* if $[m, f]$ belongs to the image of *Ih*_N. Clearly, every arithmetical GT-shadow is genuine. If there are genuine GT-shadows that are not arithmetical, then the Ihara embedding $Ih: G_{\mathbb{Q}} \to \widehat{\mathsf{GT}}$ is not surjective.

GT-shadows for the dihedral poset Dih

Let $n \in \mathbb{Z}_{\geq 3}$ and $D_n := \langle\, r, s\mid r^n, s^2, \textit{rsrs}\,\rangle$ be the dihedral group of order 2*n*. Let ψ_n be the following homomorphism $\mathsf{F}_2 \to D^3_n$

$$
\psi_n(x) := (r, s, s), \qquad \psi_n(y) := (rs, r, rs)
$$

and

$$
K^{(n)} := \text{ker}(F_2 \xrightarrow{\psi_n} D_n^3).
$$

One can show that $\mathsf{K}^{(n)}$ is B₃-invariant, i.e. $\mathsf{K}^{(n)} \in \mathsf{NFI}.$ We call

$$
\{K^{(n)}: n \in \mathbb{Z}_{\geq 3}\} \subset \text{NFI}
$$

the *dihedral poset* of NFI. We denote this poset by Dih.

Jointly with I. Bortnovskyi, B. Holikov and V. Pashkovskyi, we proved the following:

Every $K \in$ Dih is an isolated object of GTSh, i.e. the connected component $GTSh_{conn}(K)$ is essentially the (finite) group $GT(K)$.

If K \subset H (for K, H \in Dih), then the reduction homomorphism

 $\mathcal{R}_{\mathsf{K}\,\mathsf{H}}$: GT(K) \rightarrow GT(H)

is *surjective*.

For every $K \in Dh$, we gave a description of the finite group $GT(K)$. For example, if $n = n_0 2^a$ (with n_0 odd and $a \ge 2$), then GT(K⁽ⁿ⁾) is isomorphism to a concrete index 2 subgroup of the group:

$$
\left(\mathbb{Z}/n_0\mathbb{Z}\rtimes (\mathbb{Z}/n_0\mathbb{Z})^\times\right)\times \left(\mathbb{Z}/2^{a-1}\mathbb{Z}\rtimes (\mathbb{Z}/2^{a+1}\mathbb{Z})^\times\right).
$$

す 御 メ オ 君 メ オ 君 メー

For every $K \in Dih$, we established a lower bound on the number of arithmetical GT-shadows with the target K. For $n=2^a n_0 \geq 3$ with n_0 being odd, the number of arithmetical elements in GT(K (*n*)) is greater or equal than

$$
\begin{cases} 2\phi(n_0) & \text{if } a = 0 \text{ or } a = 1, \\ 2^{2a-2}\phi(n_0) & \text{if } a \geq 2. \end{cases}
$$

In particular, for every $a \in \mathbb{Z}_{\geq 2}$, the group homomorphism $lh_{\mathsf{K}^{(2^{\mathsf{d}})}}:G_{\mathbb{Q}}\to \mathsf{GT}(\mathsf{K}^{(2^{\mathsf{d}})})$ is surjective.

We considered the subposet Dih $_2:=\{{\sf K}^{(2^a)}\mid a\geq 2\}\subset$ Dih and described the limit

$$
\text{ML}\big|_{\text{Dih}_2}
$$

as a concrete index 2 subgroup of $\mathbb{Z}_2 \rtimes \mathbb{Z}_2^\times$ $\frac{\times}{2}$. we proved that the composition

$$
G_{\mathbb{Q}}\stackrel{\textit{lh}}{\longrightarrow} \widehat{GT}\rightarrow\text{lim}\left(\left.M\right L\right|_{\text{Dih}_2}\right)
$$

is surjective. This way we produced the first example of a nonabelian (infinite) profinite quotient of \widehat{GT} that receives a surjective homomorphism from G_0 .

Our proofs involve relatively elementary tools:

- basic properties of group homomorphisms;
- **•** the surjectivity of the cyclotomic character $\chi : G$ $\oplus \to \widehat{\mathbb{Z}}^{\times}$;
- the image of the complex conjugation in GT is $(-1_{\widehat{{\mathbb Z}}},\,1_{\widehat{{\mathsf F}}_2});$
- **the fundamental theorem of arithmetic.**

医单侧 医骨间的

It makes sense to explore other subposets J of the poset of isolated objects of GTSh. For $\mathcal{J}\subset\mathsf{NFI^{B_3}(F_2)}^{iso\prime}$, we could try to...

- Give an explicit description of finite groups $GT(N)$ for $N \in \mathcal{J}$.
- Give an explicit description of the profinite group lim (ML $|_{\cal J}).$
- Use the reduction maps or other tools (e.g. consequences of the Lochak-Schneps results from "A cohomological interpretation of ...", 1997) to find examples (if any) of fake GT-shadows.
- Find a lower bound on the number of arithmetical GT-shadows with a target N for $N \in \mathcal{J}$.

Let N ∈ NFI^{B₃ (F₂) such that F₂/N is metabelian. William Chen: *Is this*} *true that every* GT*-shadow with the target* N *is arithmetical?*

It also makes sense to write a software package (e.g. using SageMath) for working with GT-shadows and their action on child's drawings.

イロト イ押 トイラト イラトー

Selected References

- [1] G.V. Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. **43**, 2 (1979) 267–276.
- [2] I. Bortnovskyi, V.A. Dolgushev, B. Holikov, V. Pashkovskyi, First examples of nonabelian quotients of the Grothendieck-Teichmueller group that receive surjective homomorphisms from the absolute Galois group of rational numbers, <https://arxiv.org/abs/2405.11725>
- [3] V. A. Dolgushev, The Action of GT-shadows on child's drawings, <https://arxiv.org/abs/2106.06645>
- [4] V.A. Dolgushev and J.J. Guynee, GT-shadows for the gentle version GT_{aen} of the Grothendieck-Teichmueller group, <https://arxiv.org/abs/2401.06870>
- [5] V. A. Dolgushev, K.Q. Le and A. Lorenz, What are GT-shadows? <https://arxiv.org/abs/2008.00066> → 君 ▶ ④ 君 ▶ Ω

More References?!... Sure!

- [1] D. Bar-Natan, On associators and the Grothendieck-Teichmuller group. I, Selecta Math. (N.S.) (1998)
- [2] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(**Q**/**Q**), Algebra i Analiz **2**, 4 (1990) 149–181.
- [3] B. Fresse, Homotopy of operads and Grothendieck-Teichmueller groups. Part 1. The algebraic theory and its topological background, AMS, Providence, RI, 2017.
- [4] P. Guillot, The Grothendieck-Teichmueller group of a finite group and *G*-dessins d'enfants, <https://arxiv.org/abs/1407.3112>
- [5] A. Grothendieck, Esquisse d'un programme, London Math. Soc. Lecture Note Ser., **242**, Geometric Galois actions, 1, 5–48, Cambridge Univ. Press, Cambridge, 199[7.](#page-27-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君

What?!... Even more references?!

- [1] D. Harbater and L. Schneps, Approximating Galois orbits of dessins, *Geometric Galois actions,* Cambridge Univ. Press, Cambridge, 1997.
- [2] Y. Ihara, On the embedding of Gal(**Q**/**Q**) into GT, c *with an appendix by M. Emsalem and P. Lochak,* Cambridge Univ. Press, 1994.
- [3] P. Lochak and L. Schneps, A cohomological interpretation of the Grothendieck-Teichmueller group, *With an appendix by C. Scheiderer.* Invent. Math. (1997)
- [4] F. Pop, Little survey on I/OM and its variants and their relation to (variants of) GT- old & new, Topology Appl. 313 (2022)
- [5] F. Pop, Finite tripod variants of I/OM: on Ihara's question/Oda-Matsumoto conjecture, Invent. Math. (2019)
- [6] D.E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. (2003) イロト イ御 トイ君 トイ君 Ω

THANK YOU!

重

メロトメ 御 トメ 君 トメ 君 ト