A pleasant surprise of the cyclotomic character

Vasily Dolgushev

Temple University

Bar-Ilan, Algebra Seminar, 17 Kislev, 5785/December 18, 2024

Loosely based on a joint work with Ivan Bortnovskyi, Borys Holikov and Vadym Pashkovskyi

The absolute Galois group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

We denote by $G_{\mathbb{Q}}$ the absolute Galois group of the field \mathbb{Q} of rational numbers, i.e. $G_{\mathbb{Q}}$ is the group of all automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} .

One can show that $G_{\mathbb{Q}}$ is the limit of the functor that sends a finite Galois extension $E \supset \mathbb{Q}$ to the corresponding finite group $\text{Gal}(E/\mathbb{Q})$. Thus $G_{\mathbb{Q}}$ is a profinite group. It is uncountable and $G_{\mathbb{Q}}$ is *not* topologically finitely generated.

Only two elements of $G_{\mathbb{Q}}$ are known explicitly: the identity element and the complex conjugation $c^*(a + bi) := a - bi$.

Using the action of $G_{\mathbb{Q}}$ on all roots unity, we get the natural group homomorphism

$$\chi: \mathcal{G}_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times}$$

called the *cyclotomic character*. It is not hard to show that the homomorphism χ is surjective.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The (gentle version of) the group \widehat{GT}

Let $F_2 := \langle x, y \rangle$ be the free group on two generators and \widehat{F}_2 be its profinite completion.

In 1990, V. Drinfeld introduced a rather mysterious group \widehat{GT} (the Grothendieck-Teichmuelller group). As a set, \widehat{GT} consists of pairs (\hat{m}, \hat{f}) in $\widehat{\mathbb{Z}} \times \widehat{F}_2$ satisfying

$$\hat{f}\theta(\hat{f}) = \mathbf{1}_{\widehat{\mathsf{F}}_2}, \qquad \tau^2(\boldsymbol{y}^{\hat{m}}\hat{f})\tau(\boldsymbol{y}^{\hat{m}}\hat{f})\boldsymbol{y}^{\hat{m}}\hat{f} = \mathbf{1}_{\widehat{\mathsf{F}}_2},$$

 $\hat{f} \in [\hat{F}_2, \hat{F}_2]^{top.clos.}$ and the invertibility condition.

Here θ and τ are the automorphisms of F₂ (and of \hat{F}_2) defined by the formulas $\theta(x) := y$, $\theta(y) := x$, $\tau(x) := y$, $\tau(y) := y^{-1}x^{-1}$.

The multiplication on \widehat{GT} is defined using a monoid structure on $\widehat{\mathbb{Z}} \times \widehat{F}_2$ that is inspired by the action of $G_{\mathbb{Q}}$ on $\widehat{F}_2 \cong \pi_1^{alg}(\mathbb{P}^1_{\overline{\mathbb{Q}}} - \{0, 1, \infty\})$. The pair $(0_{\widehat{\mathbb{Z}}}, 1_{\widehat{F}_2})$ is the identity element of \widehat{GT} .

く 伺 とう きょう く き とう

The operad PaB of parenthesized braid

Let B_n be the Artin braid group on *n* strands and PB_n be the kernel of the standard homomorphism $B_n \rightarrow S_n$. PB_n is called the pure braid group on *n* strands.

One can "assemble" the family $(B_n)_{n\geq 1}$ into an operad PaB in the category of groupoids. PaB is called the operad of parenthesized braids.

Due to MacLane's coherence theorem, PaB is generated by these two morphisms:

Thus every $\varphi \in Aut(PaB)$ is uniquely determined by $\varphi(\beta)$ and $\varphi(\alpha)$.

★ E ► ★ E ► _ E

In his 1990 paper, V. Drinfeld showed that $\text{Aut}(\text{PaB})\cong \mathcal{Z}_2$:-(

If we replace PaB by its profinite completion \widehat{PaB} then the story is much more interesting!

The group Aut(\widehat{PaB}) of continuous automorphisms of \widehat{PaB} is infinite and we have an injective homomorphism $G_{\mathbb{Q}} \to \operatorname{Aut}(\widehat{PaB})$. Aut(\widehat{PaB}) is (the original version of) the Grothendieck-Teichmueller group. For every $\varphi \in \operatorname{Aut}(\widehat{PaB})$, the value $\varphi(\beta)$ (resp. $\varphi(\alpha)$) is uniquely determined by an element $\widehat{m} \in \widehat{\mathbb{Z}} \cong \widehat{PB}_2$ (resp. an element $\widehat{f} \in \widehat{PB}_3$). Using the relations of PaB one can show that \widehat{f} belongs to a subgroup of \widehat{PB}_3 isomorphic to \widehat{F}_2 . Moreover, $2\widehat{m} + 1$ must be invertible in the ring $\widehat{\mathbb{Z}}$. This is how we get a bijection between pairs $(\widehat{m}, \widehat{f}) \in \widehat{\mathbb{Z}} \times \widehat{F}_2$ satisfying various conditions and automorphisms of \widehat{PaB} .

Another interpretation of the defining relations of $\widehat{\mathsf{GT}}$

Let C be a group acting on a nonabelian group G. One can define the sets

 $H^0(C,G)$ and $H^1(C,G)$.

 $H^0(C, G)$ is simply the set of *C*-invariant elements in *G* and $H^1(C, G)$ is the set of equivalence classes of splittings of the exact sequence

1
ightarrow G
ightarrow G
ightarrow C
ightarrow 1

In their 1997 paper, P. Lochak and L. Schneps suggested an interpretation of the defining relations of $\widehat{\text{GT}}$ in terms of $H^1(C, \widehat{F}_2)$ with $C = \mathbb{Z}_2$ and $C = \mathbb{Z}_3$.

They successfully used this idea to prove several interesting statements about $\widehat{\text{GT}}$ and about the image of $G_{\mathbb{Q}}$ in $\widehat{\text{GT}}$. In my opinion, natural version of this idea for GT-shadows is not fully explored.

イロト イヨト イヨト イヨト

The Ihara embedding

In his 1994 paper "On the embedding of Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) into \widehat{GT} " (+ the appendix by M. Emsalem and P. Lochak), Y. Ihara used the algebraic fundamental groups of $\mathbb{P}^1_{\mathbb{Q}} - \{0, 1, \infty\}$ and $\mathbb{P}^1_{\overline{\mathbb{Q}}} - \{0, 1, \infty\}$ to construct a map

$$\mathit{Ih}: \mathit{G}_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times} \times \widehat{\mathit{F}}_{2}$$

of the form $Ih(g) = (\chi(g), f_g)$, where χ denotes the cyclotomic character.

Using the appropriate versions of the fundamental groupoids of the moduli spaces $\mathcal{M}_{0,4}$, $\mathcal{M}_{0,5}$ of curves, Ihara proved (in ICM 1990) that, for every $g \in G_{\mathbb{Q}}$, the pair $((\chi(g) - 1)/2, f_g)$ is an element $\widehat{\text{GT}}$. In particular, $f_g \in [\widehat{\mathsf{F}}_2, \widehat{\mathsf{F}}_2]^{top. \ cl.}$.

Using famous Belyi's theorem, one can prove that the resulting group homomorphism $Ih: G_{\mathbb{Q}} \to \widehat{GT}$ is injective. We call *Ih* the *Ihara embedding*. It is known that the pair $(-1, 1) \in \widehat{\mathbb{Z}} \times \widehat{F}_2$ equals $Ih(c^*)$, where c^* denotes the complex conjugation.

The following question is probably very hard:

Is the homomorphism Ih : $G_{\mathbb{Q}} \to \widehat{GT}$ surjective?

In several remarkable papers, F. Pop gave positive answers to versions of the above question. In these versions, \widehat{GT} is replaced by subgroups of \widehat{GT} with infinitely many defining conditions.

For example, the birational version \widehat{GT}_{bir} of \widehat{GT} is defined using the etale fundamental group functor from the sub-category of concrete algebraic varieties obtained from $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$. In "*Finite tripod variants of I/OM: ...*", 2019, F. Pop proved that the homomorphism *Ih* lands in \widehat{GT}_{bir} and the group \widehat{GT}_{bir} is isomorphic to $G_{\mathbb{Q}}$ via *Ih*.

A bit more about (the gentle version of) $\widehat{\mathsf{GT}}$

For $(\hat{m}, \hat{f}) \in \widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$, the formulas

$$E_{\hat{m},\hat{f}}(x) := x^{2\hat{m}+1}, \qquad E_{\hat{m},\hat{f}}(y) := \hat{f}^{-1}y^{2\hat{m}+1}\hat{f}$$

define a continuous endomorphism $E_{\hat{m},\hat{f}}$ of \hat{F}_2 .

 $\widehat{\mathbb{Z}}\times \widehat{F}_2$ is a monoid with the binary operation

$$(\hat{m}_1, \hat{f}_1) \bullet (\hat{m}_2, \hat{f}_2) := (2\hat{m}_1\hat{m}_2 + \hat{m}_1 + \hat{m}_2, \hat{f}_1 E_{\hat{m}_1, \hat{f}_1}(\hat{f}_2))$$

and the identity element (0, 1).

Let $\widehat{\mathsf{GT}}_{mon}$ be the submonoid of $\widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$ that consists of pairs (\hat{m}, \hat{f}) satisfying the cocycle conditions:

$$\hat{f}\theta(\hat{f}) = \mathbf{1}_{\widehat{\mathsf{F}}_2}, \qquad \tau^2(\boldsymbol{y}^{\hat{m}}\hat{f})\tau(\boldsymbol{y}^{\hat{m}}\hat{f})\boldsymbol{y}^{\hat{m}}\hat{f} = \mathbf{1}_{\widehat{\mathsf{F}}_2},$$

and $\hat{f} \in [\widehat{\mathsf{F}}_2, \widehat{\mathsf{F}}_2]^{\textit{top.clos.}}$.

The groups $\widehat{\mathsf{GT}}_{\mathit{gen}}$ is \ldots

 $\widehat{\operatorname{GT}}_{gen}$ is the group of invertible elements of the monoid $\widehat{\operatorname{GT}}_{mon}$. The formula $\chi_{vir}(\hat{m}, \hat{f}) := 2\hat{m} + 1$ defines a (continuous) group homomorphism $\chi_{vir} : \widehat{\operatorname{GT}}_{gen} \to \widehat{\mathbb{Z}}^{\times}$. Since the diagram

commutes, we call χ_{vir} the virtual cyclotomic character.

For every $(\hat{m}, \hat{f}) \in \widehat{\operatorname{GT}}_{gen}$, the endomorphism $E_{\hat{m},\hat{f}}$ of $\widehat{\mathsf{F}}_2$ is invertible and the assignment

$$(\hat{m},\hat{f})\mapsto E_{\hat{m},\hat{f}}$$

defines a group homomorphism from \widehat{GT}_{gen} to the group $Aut(\widehat{F}_2)$ of continuous automorphisms of \widehat{F}_2 .

The Artin braid group B₃ and PB₃

B₃ (resp. PB₃) denotes the Artin braid group (resp. the pure braid group) on 3 strands. σ_1, σ_2 are the standard generators of B₃

We set $\Delta := \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$. PB₃ is generated by

$$x_{12} := \sigma_1^2, \qquad x_{23} := \sigma_2^2, \qquad c := \Delta^2.$$

It is known that $\mathcal{Z}(B_3) = \mathcal{Z}(PB_3) = \langle c \rangle \cong \mathbb{Z}$, the subgroup $\langle x_{12}, x_{23} \rangle$ is isomorphic to F_2 . In fact, $PB_3 \cong F_2 \times \langle c \rangle$.

A bit more about F₂, PB₃ and B₃

It is natural to identify F₂ with the quotient group $PB_3/\mathcal{Z}(PB_3)$ and set

$$x := x_{12} \mathcal{Z}(\mathsf{PB}_3), \qquad y := x_{23} \mathcal{Z}(\mathsf{PB}_3).$$

Since $\mathcal{Z}(B_3) = \mathcal{Z}(PB_3)$, the group B_3 acts on $F_2 \cong PB_3/\mathcal{Z}(PB_3)$ by conjugation. We denote by θ (resp. τ) the automorphism of F_2 corresponding to $\Delta := \sigma_1 \sigma_2 \sigma_1$ (resp. to $\sigma_1 \sigma_2$).

It is easy to see that

$$\theta(x) := y, \quad \theta(y) := x, \qquad \tau(x) := y, \quad \tau(y) := y^{-1}x^{-1}.$$

Although the elements Δ and $\sigma_1 \sigma_2$ are of infinite order, the automorphisms θ and τ have finite orders: $\operatorname{ord}(\theta) = 2$, $\operatorname{ord}(\tau) = 3$. We set

$$\mathsf{NFI}^{\mathsf{B}_3}(\mathsf{F}_2) := \{ \, \mathsf{N} \trianglelefteq \mathsf{F}_2 \mid g(\mathsf{N}) = \mathsf{N}, \ \forall \ g \in \mathsf{B}_3 \ |\mathsf{F}_2 : \mathsf{N}| < \infty \, \}$$

and we often abbreviate NFI := $NFI^{B_3}(F_2)$.

・ロン・(部)とくほどくほどう ほ

For $N\in NFI,$ we set

 $N_{\text{ord}} := \text{Icm} (\text{ord}(xN), \text{ord}(yN)).$

We say that $(m, f) \in \mathbb{Z} \times F_2$ satisfies the *cocycle conditions* modulo N if

 $f\theta(f) \in \mathbb{N}, \qquad \tau^2(y^m f)\tau(y^m f)y^m f \in \mathbb{N}.$

For $(m, f) \in \mathbb{Z} \times F_2$ and $N \in NFI$, we denote by $T_{m, f}$ the following homomorphism

 $T_{m,f}: F_2 \rightarrow F_2/N$

If the pair $(m, f) \in \mathbb{Z} \times F_2$ satisfies the cocycle conditions modulo N, then ker $(T_{m,f})$ is also B₃-invariant, hence

 $\operatorname{ker}(T_{m,f}) \in \operatorname{NFI}$.

Definition

Let $N \in NFI$. A GT-shadow with the target N is a pair

 $[m, f] := (m + N_{\text{ord}}\mathbb{Z}, fN) \in \mathbb{Z}/N_{\text{ord}}\mathbb{Z} \times F_2/N$

satisfying the cocycle conditions (modulo N) and such that

- 2m + 1 represents a unit in the ring $\mathbb{Z}/N_{\text{ord}}\mathbb{Z}$,
- $fN \in [F_2/N, F_2/N]$, and
- the homomorphism $T_{m,f}: F_2 \rightarrow F_2/N$ is surjective.

GT(N) is the set of GT-shadows with the target N.

< ロ > < 同 > < 回 > < 回 >

Guess what?!.... GT-shadows form a groupoid GTSh.

Ob(GTSh) := NFI; for $K, N \in NFI$,

$$\operatorname{GTSh}(\mathsf{K},\mathsf{N}) := \Big\{ [m,f] \in \operatorname{GT}(\mathsf{N}) \mid \operatorname{ker}(T_{m,f}) = \mathsf{K} \Big\}.$$

Let $N^{(1)}, N^{(2)}, N^{(3)} \in \mathsf{NFI}$ and

$$\mathsf{N}^{(3)} \xrightarrow{[m_2, f_2]} \mathsf{N}^{(2)} \xrightarrow{[m_1, f_1]} \mathsf{N}^{(1)}.$$

The composition of morphisms is defined by the formula:

$$[m_1, f_1] \circ [m_2, f_2] := [2m_1m_2 + m_1 + m_2, f_1E_{m_1, f_1}(f_2)]$$

N \in NFI, $[0, 1_{F_2}]$ is the identity morphism in GTSh(N, N).

A

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A comment

For $(m, f) \in \mathbb{Z} \times F_2$, the formulas

$$E_{m,f}(x) := x^{2m+1}, \qquad E_{m,f}(y) := f^{-1}y^{2m+1}f$$

define an endomorphism of F₂.

Moreover, for all $(m_1, f_1), (m_2, f_2) \in \mathbb{Z} \times F_2$,

$$E_{m_1,f_1} \circ E_{m_2,f_2} = E_{m,f},$$

where $m := 2m_1m_2 + m_1 + m_2$ and $f := f_1 E_{m_1, f_1}(f_2)$.

One can show that the set $\mathbb{Z}\times F_2$ is a monoid with respect to the binary operation

$$(m_1, f_1) \bullet (m_2, f_2) := (2m_1m_2 + m_1 + m_2, f_1E_{m_1, f_1}(f_2))$$

with $(0, 1_{F_2})$ being the identity element.

< 回 > < 三 > < 三 >

- GTSh has infinitely many objects. (NFI is infinite because F₂ is residually finite.)
- GTSh is highly disconnected. However, for every $N \in NFI$, the connected component $GTSh_{conn}(N)$ of N is a finite groupoid.
- If GTSh_{conn}(N) has only one object, then GT(N) = GTSh(N,N), i.e. GT(N) is a (finite) group. In this case, we say that N is an *isolated* object of GTSh.
- $\bullet~\mbox{For every N}\in\mbox{NFI},$ the object

$$N^\diamond \ := \ \bigcap_{K \in Ob(GTSh_{conn}(N))} K$$

is isolated. In particular, the subposet NFI^{isol.} \subset NFI of isolated objects is coinitial.

Let $N, H \in NFI$ with $N \leq H$. Then $H_{ord} \mid N_{ord}$.

If a pair $(m, f) \in \mathbb{Z} \times F_2$ represents a GT-shadow with the target N, then *the same pair* also represents a GT-shadow with the target H.

Hence we have a natural map

 $\mathcal{R}_{N,H}:GT(N)\to GT(H)$

If N, H are isolated (i.e. GT(N), GT(H) are groups) then $\mathcal{R}_{N,H}$ is a group homomorphism.

< ロ > < 同 > < 回 > < 回 >

For every $(\hat{m}, \hat{f}) \in \widehat{\mathsf{GT}}$ and $\mathsf{N} \in \mathsf{NFI}$ the pair

 $\mathsf{PR}_{\mathsf{N}}(\hat{m},\hat{f}) := \left(\mathcal{P}_{\mathsf{N}_{\mathsf{ord}}}(\,\hat{m}\,)\,,\,\mathcal{P}_{\mathsf{N}}(\,\hat{f}\,)\,\right) \;\in\; \mathbb{Z}/\mathsf{N}_{\mathsf{ord}}\mathbb{Z}\times\mathsf{F}_{\mathsf{2}}/\mathsf{N}_{\mathsf{F}_{\mathsf{2}}}$

is a GT-shadow with the target N. (For $K \in NFI(G)$, \mathcal{P}_K denotes the standard continuous homomorphism $\widehat{G} \to G/K$.) $PR_N(\hat{m}, \hat{f})$ is an *approximation* of the element (\hat{m}, \hat{f}) .

A GT-shadow $[m, f] \in GT(N)$ is called *genuine* if $\exists (\hat{m}, \hat{f}) \in \widehat{GT}$ such that $PR_N(\hat{m}, \hat{f}) = [m, f]$. Otherwise, it is called *fake*.

A GT-shadow $[m, f] \in GT(N)$ survives into $K \in NFI$ (with $K \leq N$) if $[m, f] \in \mathcal{R}_{K,N}(GT(K))$.

Proposition. A GT-shadow $[m, f] \in GT(N)$ is genuine $\iff [m, f]$ survives into K for every $K \in NFI$ such that $K \leq N$.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

If a GT-shadow $[m, f] \in GT(N)$ comes from an element $(\hat{m}, \hat{f}) \in \widehat{GT}$, then we denote by $N^{(\hat{m}, \hat{f})}$ the source of [m, f]. One can show that the assignment $N \mapsto N^{(\hat{m}, \hat{f})}$ defines a *right action* of \widehat{GT} on the poset NFI. We denote by \widehat{GT}_{NEL}

the corresponding transformation groupoid.

One can show that "passing from elements of $\widehat{\text{GT}}$ to GT-shadows" gives us a functor

 $\text{PR}: \widehat{\text{GT}}_{\text{NFI}} \to \text{GTSh}\,.$

Informally, we may call it the *approximation functor*.

Let $K,N\in NFI$ be isolated objects of the groupoid GTSh and $K\leq N.$ Since $\mathcal{R}_{K,N}$ is a group homomorphism

 $GT(K) \rightarrow GT(N),$

the assignments

 $ML(N) := GT(N), \qquad ML(\,K \leq N\,) := \mathcal{R}_{K,N}$

define a functor from the poset NFI^{isol.} to the category of finite groups.

Theorem. (J. Guynee, V.D.) The limit of ML is isomorphic to (the gentle version of) \widehat{GT} .

Proposition. (I. Bortnovskyi) For every $N \in NFI$, there exists $K \in NFI$ such that $K \leq N$ with the following property: *if a* GT*-shadow* $[m, f] \in GT(N)$ *survives into* K *then* [m, f] *is genuine.*

The version of Ih for GT-shadows

Let N be an isolated object of the groupoid GTSh, i.e. N is the only objects of its connected component in GTSh. In particular, GT(N) is naturally a group.

Using the approximation functor, we get a natural group homomorphism

 $\mathsf{PR}_N:\widehat{\mathsf{GT}}\to\mathsf{GT}(N).$

Precomposing PR_N with the Ihara embedding $\textit{Ih}: \textit{G}_\mathbb{Q} \to \widehat{GT},$ we get the group homomorphism

$$\mathit{Ih}_{\mathsf{N}}: \mathit{G}_{\mathbb{Q}} \to \mathsf{GT}(\mathsf{N})$$

We say that a GT-shadow $[m, f] \in GT(N)$ is *arithmetical* if [m, f] belongs to the image of Ih_N . Clearly, every arithmetical GT-shadow is genuine. If there are genuine GT-shadows that are not arithmetical, then the lhara embedding $Ih : G_{\mathbb{Q}} \to \widehat{GT}$ is not surjective.

æ

留 と く ヨ と く ヨ と …

GT-shadows for the dihedral poset Dih

Let $n \in \mathbb{Z}_{\geq 3}$ and $D_n := \langle r, s | r^n, s^2, rsrs \rangle$ be the dihedral group of order 2*n*. Let ψ_n be the following homomorphism $F_2 \rightarrow D_n^3$

$$\psi_n(\mathbf{x}) := (\mathbf{r}, \mathbf{s}, \mathbf{s}), \qquad \psi_n(\mathbf{y}) := (\mathbf{r}\mathbf{s}, \mathbf{r}, \mathbf{r}\mathbf{s})$$

and

$$\mathsf{K}^{(n)} := \ker(\mathsf{F}_2 \stackrel{\psi_n}{\longrightarrow} D_n^3).$$

One can show that $K^{(n)}$ is B₃-invariant, i.e. $K^{(n)} \in NFI$. We call

$$\left\{\mathsf{K}^{(n)} : n \in \mathbb{Z}_{\geq 3}\right\} \subset \mathsf{NFI}$$

the *dihedral poset* of NFI. We denote this poset by Dih.

Jointly with I. Bortnovskyi, B. Holikov and V. Pashkovskyi, we proved the following:

Every $K \in Dih$ is an isolated object of GTSh, i.e. the connected component $GTSh_{conn}(K)$ is essentially the (finite) group GT(K).

If $K \subset H$ (for $K, H \in Dih$), then the reduction homomorphism

 $\mathcal{R}_{K,H}:GT(K)\to GT(H)$

is surjective.

For every $K \in Dih$, we gave a description of the finite group GT(K). For example, if $n = n_0 2^a$ (with n_0 odd and $a \ge 2$), then $GT(K^{(n)})$ is isomorphism to a concrete index 2 subgroup of the group:

$$\big(\mathbb{Z}/n_0\mathbb{Z}\rtimes (\mathbb{Z}/n_0\mathbb{Z})^\times\big)\times \big(\mathbb{Z}/2^{a-1}\mathbb{Z}\rtimes (\mathbb{Z}/2^{a+1}\mathbb{Z})^\times\big).$$

For every $K \in Dih$, we established a lower bound on the number of arithmetical GT-shadows with the target K. For $n = 2^a n_0 \ge 3$ with n_0 being odd, the number of arithmetical elements in $GT(K^{(n)})$ is greater or equal than

$$\begin{cases} 2\phi(n_0) & \text{if } a = 0 \text{ or } a = 1, \\ 2^{2a-2}\phi(n_0) & \text{if } a \ge 2. \end{cases}$$

In particular, for every $a \in \mathbb{Z}_{\geq 2}$, the group homomorphism $Ih_{K^{(2^a)}} : G_{\mathbb{Q}} \to GT(K^{(2^a)})$ is surjective.

We considered the subposet $\mathsf{Dih}_2:=\{\mathsf{K}^{(2^a)}\mid a\geq 2\}\subset\mathsf{Dih}$ and described the limit

as a concrete index 2 subgroup of $\mathbb{Z}_2 \rtimes \mathbb{Z}_2^{\times}$.

< 回 > < 回 > < 回 > -

we proved that the composition

$$G_{\mathbb{Q}} \stackrel{lh}{\longrightarrow} \widehat{\operatorname{GT}} \rightarrow \operatorname{lim}\left(\left.\operatorname{ML}\right|_{\operatorname{Dih}_{2}}\right)$$

is surjective. This way we produced the first example of a nonabelian (infinite) profinite quotient of $\widehat{\text{GT}}$ that receives a surjective homomorphism from $G_{\mathbb{Q}}$.

Our proofs involve relatively elementary tools:

- basic properties of group homomorphisms;
- the surjectivity of the cyclotomic character $\chi: G_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times}$;
- the image of the complex conjugation in \widehat{GT} is $(-1_{\widehat{\mathbb{Z}}}, 1_{\widehat{F}_2})$;
- the fundamental theorem of arithmetic.

< 回 > < 回 > < 回 > -

Further questions for exploration

It makes sense to explore other subposets \mathcal{J} of the poset of isolated objects of GTSh. For $\mathcal{J} \subset \mathsf{NFI}^{\mathsf{B}_3}(\mathsf{F}_2)^{\textit{isol}}$, we could try to...

- Give an explicit description of finite groups GT(N) for $N \in \mathcal{J}$.
- Give an explicit description of the profinite group $\lim (ML \mid_{\tau})$.
- Use the reduction maps or other tools (e.g. consequences of the Lochak-Schneps results from "A cohomological interpretation of ...", 1997) to find examples (if any) of fake GT-shadows.
- Find a lower bound on the number of arithmetical GT-shadows with a target N for $N \in \mathcal{J}$.

Let $N \in NFI^{B_3}(F_2)$ such that F_2/N is metabelian. William Chen: Is this true that every GT-shadow with the target N is arithmetical?

It also makes sense to write a software package (e.g. using SageMath) for working with GT-shadows and their action on child's drawings.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Selected References

- [1] G.V. Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. **43**, 2 (1979) 267–276.
- [2] I. Bortnovskyi, V.A. Dolgushev, B. Holikov, V. Pashkovskyi, First examples of nonabelian quotients of the Grothendieck-Teichmueller group that receive surjective homomorphisms from the absolute Galois group of rational numbers, https://arxiv.org/abs/2405.11725
- [3] V. A. Dolgushev, The Action of GT-shadows on child's drawings, https://arxiv.org/abs/2106.06645
- [4] V.A. Dolgushev and J.J. Guynee, GT-shadows for the gentle version \widehat{GT}_{gen} of the Grothendieck-Teichmueller group, https://arxiv.org/abs/2401.06870
- [5] V. A. Dolgushev, K.Q. Le and A. Lorenz, What are GT-shadows? https://arxiv.org/abs/2008.00066

More References?!... Sure!

- [1] D. Bar-Natan, On associators and the Grothendieck-Teichmuller group. I, Selecta Math. (N.S.) (1998)
- [2] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Algebra i Analiz 2, 4 (1990) 149–181.
- [3] B. Fresse, Homotopy of operads and Grothendieck-Teichmueller groups. Part 1. The algebraic theory and its topological background, AMS, Providence, RI, 2017.
- [4] P. Guillot, The Grothendieck-Teichmueller group of a finite group and G-dessins d'enfants, https://arxiv.org/abs/1407.3112
- [5] A. Grothendieck, Esquisse d'un programme, London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 5–48, Cambridge Univ. Press, Cambridge, 1997.

・ロト ・回ト ・ ヨト ・ ヨ

What?!... Even more references?!

- D. Harbater and L. Schneps, Approximating Galois orbits of dessins, *Geometric Galois actions*, Cambridge Univ. Press, Cambridge, 1997.
- [2] Y. Ihara, On the embedding of Gal(Q/Q) into GT, with an appendix by M. Emsalem and P. Lochak, Cambridge Univ. Press, 1994.
- [3] P. Lochak and L. Schneps, A cohomological interpretation of the Grothendieck-Teichmueller group, *With an appendix by C. Scheiderer.* Invent. Math. (1997)
- [4] F. Pop, Little survey on I/OM and its variants and their relation to (variants of) GT- old & new, Topology Appl. 313 (2022)
- [5] F. Pop, Finite tripod variants of I/OM: on Ihara's question/Oda-Matsumoto conjecture, Invent. Math. (2019)
- [6] D.E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. (2003)

THANK YOU!

æ

イロト イヨト イヨト イヨト