
The package for computing a quasi-isomorphism Ger∞ → Br

V. A. Dolgushev and G.E. Schneider

Abstract

In this short addendum to [2], we describe our package for computing MC sprouts in Conv(Ger∨,Br).

1 Brief Outline

This package allows us to compute MC-sprouts in

Conv⊕(Ger∨,Br) ∼=
⊕
n≥2

(
Br(n)⊗ Λ−2Ger(n)

)
Sn
. (1.1)

It consists of six Python files Bases.py, BTCirc.py, Conv.py, Ger.py, LinCombGraphs.py
and TwBT.py and several “storage” files such as al5bfile, al5cfile, ... This package requires
Python 3.5 (or a later version) and the library SymPy [5].

The file LinCombGraphs.py contains various functions for working with linear com-
binations, permutations, and graphs. Linear combinations are represented as nested lists
[[c1, T1], [c2, T2], . . .], where T1, T2, . . . are some Python objects and c1, c2, . . . are coefficients.
For example, the list [[−1, T1], [5, T2], [−3, T3]] represents the linear combination

−T1 + 5T2 − 3T3 .

The coefficients c1, c2, . . . are either Python integers or SymPy integers, or SymPy rationals.
The file LinCombGraphs.py also defines the function Solve whose input is a SymPy matrix

M viewed as the augmented matrix of a linear system. If the linear system is inconsistent,
the function Solve returns the tuple (False, (), ()). If the linear system is consistent, the
function Solve returns a tuple (True, x0, NullMtx), where x0 is a solution of this system
(presented as a SymPy matrix with one column) and NullMtx is the SymPy matrix whose
columns form a basis of the null space for the corresponding coefficient matrix.

The file Ger.py contains various functions for working with ΛLie-words and Ger-words1

ΛLie-words are represented as tuples. For example, the tuple (2, 3, 1) represents the ΛLie-
word {a2, {a3, a1}}. Ger-words are represented as lists of ΛLie-words. For example, the list
[(2, 3), (1,), (4, 6, 5)] represents the Ger-word

{a2, a3}a1{a4, {a6, a5}}.

Note that the ΛLie-word {{a1, a2}, {a3, a4}} cannot be written as a tuple because it is not
of the form {ai1 , {ai2 , {ai3 , ai4}}}. Due to the Jacobi identity,

{{a1, a2}, {a3, a4}} = −{a1, {a2, {a3, a4}}} − {a2, {a1, {a3, a4}}}.
1Notational conventions for vectors of Ger and Λ−2Ger are borrowed from [1, Sections 3.2.2 and 11].

1

So the ΛLie-word {{a1, a2}, {a3, a4}} can be represented as the “linear combination” of ΛLie-
words

[[−1, (1, 2, 3, 4)] , [−1, (2, 1, 3, 4)]]

or as the “linear combination” of Ger-words

[[−1, [(1, 2, 3, 4)]] , [−1, [(2, 1, 3, 4)]]].

The tuple (i1, i2, . . . , in) representing a ΛLie-word is called standard if in is maximal
among i1, i2, . . . , in. For example (3, 5, 1, 4) is not standard but (3, 2, 4) is2. It is easy to see
that every vector in ΛLie(n) is a linear combination of ΛLie-words represented by standard
tuples.

A list
[(i11, . . . , i1k1), (i21, . . . , i2k2), . . . , (ir1, . . . , irkr)] (1.2)

representing a Ger-word is called standard if

• itkt is the biggest element of the tuple (it1, . . . , itkt) for every t, and

• it is sorted according to the standard Python 3 order for numerical tuples.

It is known [1, Section 3.3.2] that Ger-words in Ger(n) corresponding to standard lists
form a basis of Ger(n). The function toStanGer (in the file Ger.py) takes a list representing
a Ger-word W and returns the corresponding linear combination of standard lists.

Another important function is InsGG. It computes an elementary insertion of Ger-words.
For example, after executing the file Ger.py, the command

In [2]: InsGG([(1, 4), (5, 2, 3)], 2, [(1,), (2,)])

produces

Out [2]: [[-1, [(1, 5), (2, 4, 6), (3,)]], [-1, [(1, 5), (3,), (4, 2, 6)]], [-1, [(1, 5), (2, 4), (3, 6)]],
[-1, [(1, 5), (2,), (3, 4, 6)]], [-1, [(1, 5), (2,), (4, 3, 6)]], [1, [(1, 5), (2, 6), (3, 4)]]]

The output in Out [2]: shows that3

{a1, a4}{a5, {a2, a3}} ◦2 a1a2 = − {a1, a5}{a2, {a4, a6}}a3 − {a1, a5}a3{a4, {a2, a6}}
−{a1, a5}{a2, a4}{a3, a6} − {a1, a5}a2{a3, {a4, a6}}
−{a1, a5}a2{a4, {a3, a6}}+ {a1, a5}{a2, a6}{a3, a4}.

Remark 1.1 Note that the degree of the monomial

{bi11 , bi12 , . . . bi1k1}{bi21 , bi22 , . . . bi2k2} . . . {bir1 , bir2 , . . . birkr} ∈ Λ−2Ger(n) (1.3)

differs from the degree of the monomial

{ai11 , ai12 , . . . ai1k1}{ai21 , ai22 , . . . ai2k2} . . . {air1 , air2 , . . . airkr} ∈ Ger(n) (1.4)

by an even integer. This allows us to use all the functions of Ger.py for working with vectors
in the shifted operad Λ−2Ger. Thus the monomial (1.3) is represented by the same list (1.2)
as the monomial (1.4).

2Note that the standard tuple (3, 2, 4) and the non-standard tuple (3, 4, 2) represent the same ΛLie-word {a3, {a2, a4}} =
{a3, {a4, a2}}.

3Note that, in this example, the Ger-word {a1, a4}{a5, {a2, a3}} is represented by a non-standard list. The output of InsGG
is always a linear combinations of standard lists.

2

The files BTCirc.py and TwBT.py define various functions for working with vectors
of the operads BT, TwBT, and Br ⊂ TwBT [4, Sections 7, 8, 9]. For a brace tree T with
n labeled vertices and k neutral vertices, we represent labeled (resp. neutral) vertices as
integers 1, 2, . . . , n (resp. length one tuples (1,), (2,), . . . , (k,)). Then T is represented as
the list of non-root edges [e1, e2, . . .] which appear in the order coming from the planar
structure of T . The edge connecting vertex v1 to vertex v2 is represented as the list [v1, v2],
where v1 is closer to the root than v2. As we go along the list corresponding to a brace tree
T , the tuples corresponding to neutral vertices must appear in standard order:

(1,), (2,), . . . (k − 1,), (k,).

For example, the brace tree shown in figure 1.1 is represented by the list

[[2, (1,)], [(1,), (2,)], [(2,), 3], [(2,), 4], [(1,), 1]].

2

1

3 4

Fig. 1.1: An example of a brace tree

The function hCirc (in BTCirc.py) computes the elementary insertion of a brace tree
into another brace tree and the function hDiff (in BTCirc.py) computes the image of the
differential of a brace tree.

Example 1.1 After executing the file BTCirc.py, the command

In [2]: hCirc([[2,1]], 2, [[(1,), 1], [(1,), 2]])

produces

Out [2]: [[1, [[(1,), 1], [(1,), 2], [(1,), 3]]], [-1, [[(1,), 2], [2, 1], [(1,), 3]]], [-1, [[(1,), 2], [(1,),
1], [(1,), 3]]], [1, [[(1,), 2], [(1,), 3], [3, 1]]], [1, [[(1,), 2], [(1,), 3], [(1,), 1]]]]

and the command

In [3]: hDiff([[(1,),1], [(1,),2], [(1,),3]])

produces

Out [3]: [[1, [[(1,), 1], [(1,), (2,)], [(2,), 2], [(2,), 3]]], [-1, [[(1,), (2,)], [(2,), 1], [(2,), 2], [(1,),
3]]]]

The output in Out [2]: shows that

2

1

◦2

1 2

=
1 2 3

−
2 3

1

−
2 1 3

+
2 3

1

+
2 3 1

3

and the output in Out [3]: shows that

∂
1 2 3

=
1

2 3

−

1 2

3

Conv.py is the main file of this package. In this file, we define the following functions
for working with vectors of (1.1):

1. dConv (and its version dConvlc) which computes the differential of a vector in (1.1).

2. pLie (and its version pLielc) which computes the pre-Lie product of two vectors in (1.1).

3. lieConv (and its version lieConvlc) which computes the Lie bracket of two vectors in
(1.1).

Tensor monomials of (1.1) are represented as length 2 tuples (T,W) where T is the list
representing a brace tree and W is a list representing a Λ−2Ger-word. For example, the
tuples

([[(1,), 1], [(1,), 2]] , [(1, 2)]) and ([[2, 1]] , [(1,), (2,)])

represent the tensor monomials

1 2

⊗ {b1, b2} and 2

1

⊗ b1 b2 . (1.5)

A tuple (T,W) representing a tensor monomial is called standard if

• the labeled vertices of T show up in the usual order and

• the list W (representing a Λ−2Ger-word) is standard.

For example, the tuple ([[2, 1]] , [(1,), (2,)]) is non-standard because the labeled vertices
of the brace tree corresponding to [[2, 1]] show up in the order 2, 1. On the other hand,
the tuple ([[(1,), 1], [(1,), 2]] , [(1, 2)]) is standard. Indeed, the labeled vertices of the brace
tree corresponding to [[(1,), 1], [(1,), 2]] show up in the usual order 1, 2 and the list [(1, 2)]
representing the Λ−2Ger-word {b1, b2} is standard.

Since the Sn-module Br(n) is freely generated by brace trees whose labeled vertices show
up in the usual order, tensor monomials corresponding to standard tuples form a basis of
the space of coinvariants (

Br(n)⊗ Λ−2Ger(n)
)
Sn
. (1.6)

This is precisely the basis we use for our package.

Example 1.2 Recall [3, Section 1] that the vectors

T{a1,a2} = 1

2

+ 2

1

and Ta1a2 = 1
2

1 2

+ 1
2

2 1

(1.7)

are cocycles in Br(2) whose cohomology classes generate the operad H•(Br) ∼= Ger.

4

Thus the vector

α(1) := 2 1

2

⊗ b1b2 +
1 2

⊗ {b1, b2}

is the first MC-sprout in (1.1). In our package, this vector is represented by the list

[[2, ([[1, 2]], [(1,), (2,)])], [1, ([[(1,), 1], [(1,), 2]], [(1, 2)])]] .

The file Conv.py also contains all the steps for finding the 2nd, 3rd and 4th MC-sprouts.
Some of these steps are time consuming4. This is why this part of the program is commented.
To find the 4th MC-sprout, we ran each step separately and “pickled” the results so that
they can be used in further steps.

We should remark that the program Conv.py was actually looking for 240× MC-sprouts.
Due to this small trick, most of the entries of augmented matrices of our linear systems are
integers and the functions of SymPy run faster.

The commands after line 813 load the main result (i.e. 240× a 4-th MC-sprout):

• al2 is the list representing the linear combination of terms of (the lowest) arity 2.

• al3 is the list representing the linear combination of terms of arity 3.

• al4 is the list representing the linear combination of terms of arity 4.

• al5 is the list representing the linear combination of terms of arity 5.

In other words, the sum al2 +al3 +al4 +al5 is the list representing 240× a 4-th MC sprout.
240× the first sprout is represented by the list:

al2 = [[120, ([[(1,), 1], [(1,), 2]], [(1, 2)])], [240, ([[1, 2]], [(1,), (2,)])]].

In order to test this result, you need to execute the file Conv.py and run the following
commands

In [2]: test2 = dConvlc(al2)

In [3]: test3 = Simplify(mult(240, dConvlc(al3)) + pLielc(al2,al2))

In [4]: test4 = Simplify(mult(240, dConvlc(al4)) + lieConvlc(al2,al3))

In [5]: test5 = Simplify(mult(240, dConvlc(al5)) + lieConvlc(al2,al4) + pLielc(al3,al3))

After this, the command

In [6]: test2, test3, test4, test5

produces the tuple

Out [7]: ([], [], [], [])

4They require 2, 3 or more hours of computer time.

5

This confirms that, if α is the vector of (1.1) corresponding to the list al2+al3+al4+al5,
then

240 · ∂(α) + α • α
does not involve terms of arities ≤ 5. In other words,

1

240
α

is a 4-th MC-sprout in (1.1).
The commented lines below line 840 were used for additional testing of various functions

in Conv.py. These additional tests were based on the identities

∂2 = 0, [∂v, w] + (−1)deg(v)[v, ∂w] = ∂([v, w])

and the Jacobi identity:

[[u, v], w] + (−1)deg(u)(deg(v)+deg(w))[[v, w], u] + (−1)deg(w)(deg(u)+deg(v))[[w, u], v] = 0.

All relationships between the Python files are shown in figure 1.2.

LinCombGraphs.py

Ger.py BTCirc.py TwBT.py Bases.py

Conv.py

Fig. 1.2: The relationships between the Python files

Acknowledgements: The authors were partially supported by the NSF grant DMS-1501001.
The authors are thankful to Sergey Plyasunov and Justin Y. Shi for showing them how to
use the module pickle.

2 Main functions of LinCombGraphs.py

Here are the main functions for working with linear combinations:

6

• The function Terms returns the tuple of “terms” of a linear combination represented
as a nested list. For example, if

vec = [[2, ([[1, 2]], [(1,), (2,)])], [1, ([[(1,), 1], [(1,), 2]], [(1, 2)])]]

then
Terms(vec) = (([[1, 2]], [(1,), (2,)]), ([[(1,), 1], [(1,), 2]], [(1, 2)])).

Note that there are no duplicates in the output of Terms.

• The function Simplify simplifies a linear combination by combining similar terms and
discarding summands of the form 0 · term. For example, if

vec = [[3, (1,)], [−1, (1,)], [5, (2,)], [−2, (2,)], [−3, (2,)], [7, (3,)]]

then
Simplify(vec) = [[2, (1,)], [7, (3,)]].

As you see, the blue summands cancel each other and the red summands are combined
into the single summand 2 · (1,).

• The function mult(k, x) returns the result of multiplying the linear combination x by a
scalar k. For example, mult(3, [[2, (9,)], [−1, (9,)], [5, (7,)]]) returns

[6, (9,)], [−3, (9,)], [15, (7,)]].

Note that mult does NOT “simplify”. As we said above, the scalar k is either an integer
or a SymPy integer or a SymPy rational.

• Note that, for every pair of linear combinations v, w (represented via nested lists), v+w
(or better yet Simplify(v + w)) gives us the sum of these linear combinations.

• Many functions in this package are defined for basic vectors and then extended by
linearity using the function linExt and bilinExt. For example, if a function f operates
as (n ≥ 2)

f((n,)) = [[1, (1, n− 1)], [1, (2, n− 2)], . . . , [1, (n− 1, 1)]],

then
linExt(f, [[3, (2,)], [−5, (3)]]) = [[3, (1, 1)], [−5, (1, 2)], [−5, (2, 1)]].

The outputs of linExt and bilinExt are simplified.

• Let B be a tuple of basis elements and x be a simplified linear combination of elements
of B. The output V ect(x,B) of V ect is the corresponding coordinate vector represented
as the list. For example, if B = ((1,), (2,), (3,), (4,)) and x = [[−5, (2,)], [7, (3,)]] then

V ect(x,B) = [0,−5, 7, 0].

• The function toLC converts a coordinate vector v (with respect to a basis B) into the
corresponding linear combination. We assume that B is a tuple and v is a list. For
example,

toLC([−1, 0, 8], ((1,), (2,), (3,))) = [[−1, (1,)], [8, (3,)]].

Note that v and B must have the same length.

7

Some comments about permutations and graphs. In this package, a permutation(
1 2 . . . n− 1 n
i1 i2 . . . in−1 in

)
∈ Sn

is represented as the tuple (i1, i2, . . . , in−1, in) and this should not be confused with the
standard cycle notation. For example, the cycle 1 7→ 3 7→ 2 7→ 4 7→ 1 is represented by the
tuple (3, 4, 2, 1).

Edges of a directed graph Γ with the set of vertices {1, 2, . . . , n} are represented as lists
of length 2. For example, an edge from vertex i to vertex j is represented by the list [i, j].
A directed graph Γ is represented by the list of its edges. For example, the directed graph
shown in figure 2.1 is represented by the list

[[1, 2], [1, 2], [2, 1], [2, 3], [4, 2], [3, 3]].

Here we tacitly assume that we deal with graphs without vertices of valency 0.

1 2

3

4

Fig. 2.1: An example of a directed graph

We also assume that all our trees are rooted and planar. All edges of trees are oriented
“away from the root” and they are listed in the order coming from the planar structure of
the tree.

Here are the main functions for working with permutations and graphs:

• Perm(n) generates all permutation in Sn (as tuples). For example,

Sn = tuple(s for s in Perm(n))

gives us the tuple of all elements in Sn. For practical purposes, it is better to use
Perm(n) as the generator.

• The function inv computes the inverse of a permutation. For example inv((3, 4, 2, 1))
returns (4, 3, 1, 2).

• The function V ert returns the tuple of vertices (without repetitions) of a graph in the
order they appear in the corresponding list. For example,

V ert([[1, 2], [1, 2], [2, 1], [2, 3], [4, 2], [3, 3]])

returns the tuple (1, 2, 3, 4). NumV ert(G) gives the number of vertices of a graph G.

• V al(G, i) gives the valency of vertex i in a graph G.

• NumIn(T, i) returns the number of edges of a tree T which originate from vertex i. For
example, NumIn([[1, 2], [1, 3], [3, 4]], 1) returns 2, NumIn([[1, 2], [1, 3], [3, 4]], 3) returns
1, and NumIn([[1, 2], [1, 3], [3, 4]], 2) returns 0.

8

In LinCombGraphs.py, we also have 3 functions for working with SymPy matrices:

• The function toCol converts a numerical list (of length k) into the corresponding k× 1
SymPy matrix.

• Null(C) returns the basis of the null space of the SymPy matrix C. The output of
Null is a list. Each entry of this list is the list representing the corresponding vector.
For example, if C = Matrix([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) then Null(C) is the nested list

[[−1, 1, 0], [−1, 0, 1]].

In other words, the null space of the matrix 1 1 1
1 1 1
1 1 1


is two-dimensional and it is spanned by the vectors −1

1
0

 and

 −1
0
1

 .

• The input of the function Solve is a SymPy matrix M . The output is a tuple

(Consist, x0, NullMtx).

– If the system with the augmented matrix M is consistent then Consist is True, x0

is a solution of this system (represented as a SymPy column matrix), and NullMtx
is the SymPy matrix whose columns form a basis of the null space for the corre-
sponding coefficient matrix.

– If the system with the augmented matrix M is inconsistent, the function Solve
returns (False, (), ()). Moreover, it raises the exception:

Your system is inconsistent

For example, if M = Matrix([[3, 5,−4, 7], [−3,−2, 4,−1], [6, 1,−8,−4]]) then Solve(M)
is the tuple

(True, Matrix([[−1], [2], [0]]), Matrix([[4/3], [0], [1]])).

In other words, the linear system with the augmented matrix 3 5 −4 7
−3 −2 4 −1
6 1 −8 −4


is consistent; the vector  −1

2
0


9

is a solution of this system; the null space of the corresponding coefficient matrix has
dimension 1 and it is spanned by the vector 4/3

0
1

 .

3 Main functions of Ger.py

Recall that the Lie bracket { , } of a Gerstenhaber algebra [4, Appendix A] is odd and the
(commutative) multiplication is even. So, for every triple a, b, c of homogeneous elements of
a Gerstenhaber algebra, we have

ad{a,b}(c) = −(−1)|a|adaadb(c)− (−1)|b|+|a||b|adbada(c), (3.1)

where ada := {a, } and |a|, |b| are the degrees of a and b, respectively. In particular, if a is
even, then

ad{a,b}(c) = −adaadb(c)− (−1)|b|adbada(c). (3.2)

Identity (3.2) is used many times in lines 194–267 of Ger.py. This part of the code is the
preparation for defining the functions InsLLie and toStandard. The function InsLLie has
three inputs t, i, tt, where t = (i1, . . . , in) and tt = (j1, . . . , jm) are tuples of positive integers
without repetitions and i is an element of t. The output of InsLLie is the list of lists of the
form [coefficient, tuple] representing the vector of the free ΛLie-algebra

(−1)(m−1)(n−k−1) {ar1 , . . . {ark−1
{L, {ark+1

, . . . , arn}..},

where
L = {aj1+i−1, {aj2+i−1, . . . {ajm−1+i−1, ajm+i−1}..},

k is the unique index such that ik = i, and

rs =

{
is if is < i,

is +m− 1 if is > i.

For example, InsLLie((4, 2, 5, 1), 2, (1, 2)) returns

[[1, (5, 2, 3, 6, 1)], [1, (5, 3, 2, 6, 1)]]

which agrees with

−{a5, {{a2, a3}, {a6, a1}}} = {a5, {a2, {a3, {a6, a1}}}}+ {a5, {a3, {a2, {a6, a1}}}}.

If the integer i does not belong to the tuple t then InsLLie(t, i, tt) returns an error message.
If tuples t and tt represent monomials v ∈ ΛLie(n) and ṽ ∈ ΛLie(m), respectively, then

InsLLie(t, i, tt) returns the list representing the vector

v ◦i ṽ ∈ ΛLie(n+m− 1).

For example, InsLLie((3, 2, 1), 2, (1, 2)) returns

[[−1, (4, 2, 3, 1)], [−1, (4, 3, 2, 1)]]

10

which agrees with

{a3, {a2, a1}} ◦2 {a1, a2} = − {a4, {a2, {a3, a1}}} − {a4, {a3, {a2, a1}}}.

The function toStandard takes a tuple which represents a ΛLie word and turns it into
the linear combination of standard Ger word of the form {ai1 , {ai2 , . . .}..}. For example,
toStandard((4, 2, 3, 1)) returns the list

[[1, [(2, 3, 1, 4)]], [1, [(2, 1, 3, 4)]], [−1, [(3, 1, 2, 4)]], [−1, [(1, 3, 2, 4)]]]

which agrees with
{a4, {a2, {a3, a1}}} =

{a2, {a3, {a1, a4}}}+ {a2, {a1, {a3, a4}}} − {a3, {a1, {a2, a4}}} − {a1, {a3, {a2, a4}}}.
Note that the function toStandard can be applied to a standard tuple.

For a tuple t = (i1, i2, . . . , in) and a list L = [(j11, . . . , j1k1), . . . , (jr1, . . . , jrkr)],

Ins1(t, L)

returns the list which represents the vector

(−1)|w|(n−2){w, {ai2 , {ai3 , . . . {ain−1 , ain}..},

where
w = {aj11 , . . . , {aj1k1−1

, aj1k1}..} . . . {ajr1 , . . . , {ajrkr−1
, ajrkr}..}. (3.3)

For example, Ins1((2, 3, 1), [(5,), (3, 4)]) returns

[[1, [(5, 3, 1), (3, 4)]], [1, [(3, 4, 3, 1), (5,)]], [1, [(4, 3, 3, 1), (5,)]]]

which agrees with
−{a5 · {a3, a4}, {a3, a1}} =

{a5, {a3, a1}} · {a3, a4}+ {a3, {a4, {a3, a1}}} · a5 + {a4, {a3, {a3, a1}}} · a5 .

Note that the output Ins1(t, L) does not depend on the first entry t[0] of the tuple t.
For a tuple t = (i1, i2, . . . , in) (without repetitions), an integer i (in the tuple t), and a

list
W = [(j11, . . . , j1k1), . . . , (jr1, . . . , jrkr)],

InsLG(t, i,W)

returns the list which represents the vector

(−1)|w|(n−k−1){ai1 , . . . {aik−1
, {w, {aik+1

, . . . {ain−1 , ain}..},

where k is the index for which ik = i and w is defined in (3.3). For example,

InsLG((2, 3, 1), 3, [(4,), (6, 5)])

returns
[[1, [(2, 4, 1), (6, 5)]], [−1, [(2, 6, 5), (4, 1)]], [−1, [(2, 6, 5, 1), (4,)]],

[−1, [(2, 4), (6, 5, 1)]], [−1, [(2, 5, 6, 1), (4,)]], [−1, [(2, 4), (5, 6, 1)]]]

11

which agrees with

{a2, {a4·{a6, a5}, a1}} = {a2, {a4, a1}}·{a6, a5}−{a2, {a6, a5}}·{a4, a1}−{a2, {a6, {a5, a1}}}·a4

−{a2, a4} · {a6, {a5, a1}} − {a2, {a5, {a6, a1}}} · a4 − {a2, a4} · {a5, {a6, a1}}.
If i does not belong to the tuple t, then InsLG returns an error message. Note that

“terms of” the output InsLG(t, i,W) are not necessarily standard.
We use the function InsLG to define the function InsGG described above in Section 1.

4 Main functions of BTCirc.py and TwBT.py

We use two different ways to represent brace trees in this package. The first one is explained
in Section 1 and we call it the h-presentation (h for “human”). For example, the brace tree

1 2

(4.1)

corresponding to the cup product has the h-presentation

[[(1,), 1], [(1,), 2]].

The vertex labeled by the tuple (1,) is the (only) neutral vertex of this brace tree.
To describe the second presentation (we call it c-presentation), we let T be a brace tree

with n labeled vertices and k neutral vertices. To this T , we assign the new brace tree T ′

with n+ k labeled vertices and no neutral vertices at all. The brace tree T ′ is obtained from
T following these steps:

• first, we shift all the labels of T up by k,

• second, we turn the neutral vertices into labeled ones by assigning the labels 1, 2, . . . , k
according to the total order coming from the planar structure.

For example, if T is the brace tree shown in (4.1) then

T ′ = 1

2 3

So the c-presentation of a brace tree T (with k neutral vertices) is the list of the form
[k, L] where L is the list corresponding to the brace tree T ′. For example, the c-presentation
of the brace tree in (4.1) corresponding to the cup product is the list

[1 , [[1, 2], [1, 3]]].

Although the h-presentation makes the visualization easier, the implementation of the
elementary insertions and the differential is more straightforward in c-presentation.

The module TwBT.py is used to convert the c-presentation of a brace tree to its h-
presentation and vice versa. Thus,

• The input of H2Comp is the h-presentation of a brace tree T and the output is the
c-presentation of T .

12

• Conversely, the input of Comp2H is the c-presentation of a brace tree T and the output
is the h-presentation of T .

• Comp2Hlc is the extension of Comp2H to linear combinations.

• For an h-presented brace tree T with n labeled vertices, getPermBr(T) is the permu-
tation σ ∈ Sn such that T = σ(Tcan), where Tcan is the unique brace tree corresponding
to T in which the labeled vertices appear in the standard order coming from the planar
structure. For example if T = [[(1,), 3], [(1,), 1], [(1,), 2],] then getPermBr(T) is the
tuple (3, 1, 2).

• The function ActBr(,) implements the left action of a permutation on an h-presented
tree. For example, ActBr((3, 1, 2), [[(1,), 1], [(1,), 2], [(1,), 3]]) returns

[[(1,), 3], [(1,), 1], [(1,), 2]].

• Let T be a brace tree without neutral vertices and with the standard order of labels. Let
r be a positive integer< the number of vertices of T . Then giveBr(r, T) generates all ad-
missible5 braces trees with r neutral vertices which can be obtained from T by replacing
labeled vertices by neutral vertices. For example, if T = [[1, 2], [2, 3]] then giveBr(1, T)
does not generate anything. On the other hand, if T = [[1, 2], [2, 3], [2, 4], [1, 5]] then the
command

In [2]: for TT in giveBr(1,T):

...: print(TT)

...:

returns

[[(1,), 1], [1, 2], [1, 3], [(1,), 4]]

[[1, (1,)], [(1,), 2], [(1,), 3], [1, 4]]

The command

In [3]: for TT in giveBr(2,T):

...: print(TT)

...:

returns

[[(1,), (2,)], [(2,), 1], [(2,), 2], [(1,), 3]]

In the module BTCirc.py, we define the functions twCirc and twDiff which implement
the elementary insertion and the differential (in terms of the c-presentation) in TwBT, re-
spectively.

In lines 65–338, we define various auxiliary functions for working with brace trees. The
most important auxiliary function in these lines are prune(,) and graft(, ,):

5Recall that a brace tree is admissible if every neutral vertex has at least 2 children.

13

• For vertex i of a brace tree T (without neutral vertices), prune(T, i) returns the list
of branches originating from i in the usual order coming from the planar structure. If
no edges originate from i then prune(T, i) returns the empty list []. For example, if
T = [[7, 3], [3, 6], [3, 1], [1, 4], [1, 5], [7, 2]], then prune(T, 3) returns (see the top part of
figure 4.1)

[[[3, 6]] , [[3, 1], [1, 4], [1, 5]]]

and prune(T, 7) returns (see the bottom part of figure 4.1)

[[[7, 3], [3, 6], [3, 1], [1, 4], [1, 5]] , [[7, 2]]].

• The function graft(, ,) has 3 arguments: a brace tree T (without neutral vertices),
a list L of branches, and the tuple sec of positions of T for attaching branches. For
instance, the brace tree T shown in figure 4.2 has 13 such positions6 and they are
indicated in the figure by red numbers 1, 2, . . . , 13. The length of sec must coincide
with the length of L, sec may have repetitions, for every brach B of L the lowest
vertex B[0][0] of B must be univalent. The label of the lowest vertex of B is replaced
by the label of the vertex to which the branch B is attached. For example, if T =
[[7, 3], [3, 6], [3, 1], [1, 4], [1, 5], [7, 2]] (the brace tree in figure 4.2) and

B1 = [[9, 8]]; B2 = [[10, 12], [12, 11], [12, 13]]; B3 = [[15, 14], [14, 16]]; B4 = [[17, 18]]

then graft(T, [B1, B2, B3, B4], (3, 4, 11, 11)) returns this list

[[7, 3], [3, 6], [6, 8], [3, 12], [12, 11], [12, 13], [3, 1], [1, 4], [1, 5], [7, 14], [14, 16], [7, 18], [7, 2]]

and this process is illustrated in figure 4.3.

Note that the function graft deals with labeled planar trees whose set of labels is not
necessarily {1, 2, . . . , n}, where n is the number of non-root vertices.

7

3 2

6 1

4 5

pruning at vertex 3

3

6

3

1

4 5

7

3 2

6 1

4 5

pruning at vertex 7

7

3

6 1

4 5

7

2

Fig. 4.1: Illustrations of the function prune

The function twCirc implements the operadic insertion in the c-presentation. For exam-
ple, if T = [1 , [[1, 2], [1, 3]]] (i.e. the c-presentation of the brace tree in (4.1)) and TT =

6It is not hard to see that a brace tree with e non-root edges has 2e+ 1 positions for attaching branches.

14

1 7
11

13

2 3
4

10 2
12

3

6 5 1
7

9

6

4
8

5

Fig. 4.2: This brace tree has 13 positions for attaching the branches

9

8

B1

10

12

11 13

B2 15

14

16

B3

17

18

B4

7

3 2

6 1

4 5
3

4

11
grafting at positions 3, 4, 11, 11

7

3

6
12

1
8

11 13

4 5

14

16

18
2

Fig. 4.3: An illustration of grafting

1

2

Fig. 4.4: This brace tree has the c-presentation [0 , [[1, 2]]]

15

[0 , [[1, 2]]] (i.e. the c-presentation of the brace tree in figure 4.4) then twCirc(T, 1, TT)
returns

[[−1, [1, [[1, 2], [2, 3], [1, 4]]]]],

twCirc(TT, 1, T) returns
[[1, [1, [[1, 4], [1, 2], [1, 3]]]],

[−1, [1, [[1, 2], [2, 4], [1, 3]]]],

[−1, [1, [[1, 2], [1, 4], [1, 3]]]],

[1, [1, [[1, 2], [1, 3], [3, 4]]]],

[1, [1, [[1, 2], [1, 3], [1, 4]]]]],

(4.2)

and twCirc(TT, 2, T) returns

[[1, [1, [[2, 1], [1, 3], [1, 4]]]]].

The output in (4.2) shows that

1

2

◦1

1 2

=
3 1 2

−
1 2

3

−
1 3 2

+
1 2

3

+
1 2 3

The function twDiff implements the differential in the c-presentation. For example, if
TT = [0 , [[1, 2]]] (i.e. the c-presentation of the brace tree in figure 4.4) then twDiff(TT)
returns

[[1, [1, [[1, 3], [1, 2]]]], [−1, [1, [[1, 2], [1, 3]]]]]

which agrees with

∂ 1

2

=
2 1

−
1 2

For T = [1 , [[1, 2], [1, 3]]] (i.e. the c-presentation of the brace tree in (4.1)), twDiff(T)
returns the empty list []. It agrees with the fact that the brace tree in (4.1) is a cocycle.

The function hCirc (resp. hDiff) implements the operadic insertion for brace trees
(resp. the differential) in the h-presentation. The functions hCirc and hDiff are obtained
from twCirc and twDiff in the obvious way using the functions H2Comp and Comp2H
from TwBT.py.

Finally, the function hDifflc is the extension of hDiff to linear combinations.

5 Main functions of Conv.py

The main functions of Conv.py are dConv, pLie, lieConv and their extensions dConvlc,
pLielc, lieConvlc to linear combinations. Since these function were already mentioned in
Section 1, we will only give several examples.

If v = ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 2, 3)]) then the dConv(v) returns

[[1, ([[(1,), 1], [(1,), (2,)], [(2,), 2], [(2,), 3]], [(1, 2, 3)])],

[−1, ([[(1,), (2,)], [(2,), 1], [(2,), 2], [(1,), 3]], [(1, 2, 3)])]].

16

This output shows that

∂

1 2 3

⊗S3 {b1{b2, b3}} =
1

2 3

⊗S3 {b1{b2, b3}} −
3

1 2

⊗S3 {b1{b2, b3}}.

dConvlc is the extension of dConv to linear combination of basis vectors in (1.1) For
example, the first sprout

1
2

1 2
⊗S2 {b1, b2} + 1

2

⊗S2 b1b2

is represented by the list

[[S(1)/2, ([[(1,), 1], [(1,), 2]], [(1, 2)])], [1, ([[1, 2]], [(1,), (2,)])]].

So
dConvlc

(
[[S(1)/2, ([[(1,), 1], [(1,), 2]], [(1, 2)])], [1, ([[1, 2]], [(1,), (2,)])]]

)
returns the empty list [].
pLie(v, w) computes the pre-Lie bracket of basis vectors v and w in (1.1). For example,

if v = ([[(1,), 1], [(1,), 2]], [(1, 2)]) and w = ([[1, 2]], [(1,), (2,)]), then pLie(v, w) returns

[[1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1, 3), (2,)])], [1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1,), (2, 3)])],

[−1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 2), (3,)])], [−1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 3), (2,)])]].

This agrees with

1 2
⊗S2 {b1, b2} • 1

2

⊗S2 b1 b2 =

1
2

3
⊗S3 {b1, b3} b2 +

1
2

3
⊗S3 b1 {b2, b3}

−
1 2

3

⊗S3 {b1, b2} b3 −
1 2

3

⊗S3 {b1, b3} b2.

pLielc(v1, v2) computes the pre-Lie bracket of two linear combinations of basis vectors.
For example, if

v = [[1, ([[(1,), 1], [(1,), 2]], [(1, 2)])] , [2, ([[1, 2]], [(1,), (2,)])]]

then pLielc(v, v) returns

[[−1, ([[(1,), (2,)], [(2,), 1], [(2,), 2], [(1,), 3]], [(1, 2, 3)])],

[−1, ([[(1,), (2,)], [(2,), 1], [(2,), 2], [(1,), 3]], [(2, 1, 3)])],

[1, ([[(1,), 1], [(1,), (2,)], [(2,), 2], [(2,), 3]], [(1, 2, 3)])],

17

[2, ([[(1,), 1], [1, 2], [(1,), 3]], [(1,), (2, 3)])], [−2, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 3), (2,)])],

[2, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])], [−2, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 3), (2,)])],

[2, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 2), (3,)])], [2, ([[1, (1,)], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])]]

which agrees with the computation of the pre-Lie bracket of

1 2
⊗S2 {b1, b2} + 2 1

2

⊗S2 b1 b2

with itself.
We should remark that the outputs of pLie and lieConv are not simplified, in general. For

example, if v = ([[(1,), 1], [(1,), 2]], [(1, 2)]) and w = ([[1, 2]], [(1,), (2,)]), then lieConv(v, w)
returns the linear combination with 10 summands:

[[1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1, 3), (2,)])], [1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1,), (2, 3)])],

[−1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 2), (3,)])], [−1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 3), (2,)])],

[1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])], [−1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1, 3), (2,)])],

[−1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 3), (2,)])], [1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 2), (3,)])],

[1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 2), (3,)])], [1, ([[1, (1,)], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])]].

For the same basis vectors v and w, the command Simplify(lieConv(v, w)) returns a
linear combination with 6 summands:

[[1, ([[(1,), 1], [1, 2], [(1,), 3]], [(1,), (2, 3)])], [−1, ([[(1,), 1], [(1,), 2], [2, 3]], [(1, 3), (2,)])],

[1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])], [−1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 3), (2,)])],

[1, ([[(1,), 1], [(1,), 2], [(1,), 3]], [(1, 2), (3,)])], [1, ([[1, (1,)], [(1,), 2], [(1,), 3]], [(1,), (2, 3)])]].

On the other hand, outputs of commands pLielc and lieConvlc are necessarily simplified
because the function Simplify is used in the definition of the function bilinExt.

5.1 Leaving the homogenous part for the dessert

Let us now describe a simple trick which we used often in the process of finding the 4-th MC
sprout. This trick allows us to split a large linear system into two somewhat smaller linear
systems. Then we can express the solution set of the original system in terms of the solution
sets of these smaller systems.

Every linear system can be split into two linear systems:

A1~x = ~r, (5.1)

A2~x = ~0, (5.2)

where ~r is a vector whose all components are non-zero.
Let ~x0 be a solution of (5.1) and C be the matrix whose columns form a basis of the null

space of A1. Furthermore, let ~y0 be a solution of the system

A2C~y = −A2~x0 (5.3)

18

and C1 be a matrix whose columns form a basis of the null space of A2C.
Then the vector

~x0 + C~y0

is a solution of the original linear system

A1~x = ~r, A2~x = ~0

and columns of the matrix CC1 form a basis of the subspace of vectors ~x satisfying

A1~x = ~0 and A2~x = ~0.

In this documentation, we call (5.1) (resp. (5.3)) the first (resp. the second) layer of the
original linear system.

5.2 Solving the linear systems for terms in arity 5

Let
α•2 + α◦2 + α•3 + α◦3 + α•4 + α◦4 (5.4)

be 240× a 3rd MC-sprout found in Conv.py between lines 267 and 388, where α•m (resp. α◦m)
is the sum of terms of arity m with exactly one neutral vertex (resp. zero neutral vertices).

For example (see lines 278, 280, and 313 in Conv.py),

α◦2 = 240 1

2

⊗S2 b1b2 , α•2 = 120
1 2

⊗S2 {b1, b2},

α◦3 = 120 1

2 3

⊗S2 b1{b2, b3}.

Remark 5.1 Note that the 3rd MC-sprout (5.4) cannot be extended to a 4th one. In other
words, the sum

−[α•2, α
•
4]− α•3 • α•3 − [α•2, α

◦
4]− [α◦2, α

•
4]− [α•3, α

◦
3]

does not belong to the image of ∂

∂
((

Br(5)⊗ Λ−2Ger(5)
)
S5

)
.

We modify (5.4) later in Conv.py by adding an appropriate vector from the subspace(
Br(4)⊗ Λ−2Ger(4)

)
S4
∩ ker(∂). (5.5)

Let us go over the process of finding vectors7

α•5 ∈
(
Br(5)⊗ Λ−2Ger(5)

)
S5
, γ•4 ∈

(
Br(4)⊗ Λ−2Ger(4)

)
S4
∩ ker(∂)

7Every term in α•5 and γ•4 has exactly one neutral vertex.

19

for which
240 · ∂α•5 + [α•2, γ

•
4] = −[α•2, α

•
4]− α•3 • α•3 . (5.6)

The augmented matrix LAug (as a nested list) of the linear system corresponding to (5.6)
is found using lines 437–473. It is “pickled” in LAugfile. Using the two commands

M = Matrix(LAug); M = M.T

one can convert the nested list LAug into the corresponding SymPy matrix. Then the
command M.shape returns the tuple (2016, 1376). In other words, the augmented matrix of
the linear system corresponding to (5.6) has the size 2016× 1376.

In lines 476–503, we form the first layer of the linear system corresponding to (5.6), find a
particular solution for the first layer and find the matrix whose columns form a basis of the
null space of the coefficient matrix of the first layer. (This took approximately 2 hours of
computer time). This particular solution is “pickled” in Xfile and this matrix is “pickled”
in MNullfile.

In lines 505–536, we form the second layer, find a particular solution (“pickled” in
XXfile) and find the matrix (“pickled” in MMNullfile) whose columns form a basis of
the null space of the coefficient matrix from the second layer.

In lines 539–551, we use the solution sets coming from these two layers to get a particular
solution (“pickled” in Y Y file) for the linear system corresponding to (5.6) and a SymPy
matrix (“pickled” in Nullbfile) whose columns form a basis of the null space of the coefficient
matrix of the linear system corresponding to (5.6). In lines 553–571, we test results from
lines 539–551.

In lines 577–605, we convert the particular solution obtained in lines 539–551 to the actual
vectors α•5 (this is al5b in Conv.py) and γ•4 (this is al4More in Conv.py) which satisfy (5.6).
These vectors are “pickled” in al5bfile and al4bMorefile, respectively. They were tested in
lines 607-609.

In lines 612–800, we proceed in the similar manner and find vectors8

α◦5 ∈
(
Br(5)⊗ Λ−2Ger(5)

)
S5
, γ◦4 ∈

(
Br(4)⊗ Λ−2Ger(4)

)
S4
∩ ker(∂)

which satisfy the equation

240 · ∂α◦5 + [α•2, γ
◦
4] = −[α•2, α

◦
4]− [α◦2, α

•
4 + γ•4]− [α◦3, α

•
3]. (5.7)

In Conv.py, vectors α◦5 and γ◦4 are represented by the lists al5c (“pickled” in al5cfile) and
al4cMore (“pickled” in al4cMorefile), respectively.

The resulting vectors α◦5 and γ◦4 are tested in lines 803–806.
Thus the sum

α•2 + α◦2 + α•3 + α◦3 + (α•4 + γ•4) + (α◦4 + γ◦4) + α•5 + α◦5

is a 4-th MC-sprout in (1.1). Therefore, due to [2, Corollary 2.16], the MC-sprout

α•2 + α◦2 + α•3 + α◦3 + (α•4 + γ•4) + (α◦4 + γ◦4)

is a truncation of a genuine MC element of (1.1) (defined over rationals).

8Every term in α◦5 and γ◦4 has zero neutral vertices.

20

Remark 5.2 A simple test shows that, if [α•2, γ] = 0 for

γ ∈
(
Br(4)⊗ Λ−2Ger(4)

)
S4
∩ ker(∂)

and all terms of γ have exactly one neutral vertex, then γ = 0. It is this observation, which
allows us to use equation (5.7) instead of the more general equation

240 · ∂α◦5 + [α•2, γ
◦
4] + [α◦2, γ] = −[α•2, α

◦
4]− [α◦2, α

•
4 + γ•4]− [α◦3, α

•
3]

with the unknowns α◦5, γ◦4 , and

γ ∈
(
Br(4)⊗ Λ−2Ger(4)

)
S4
∩ ker(∂) ∩ ker([α•2,]),

where we assume that all terms of γ have exactly one neutral vertex.

6 A few remarks about Bases.py

The file Bases.py plays an auxiliary role. This file was used to form bases for several vector
spaces:

• The function saveBr9() was used to form and store the list Br9 of length 9. For
1 ≤ n ≤ 9, Br9[n − 1] is the list of all admissible9 brace trees of arity n with exactly
1 neutral vertex. The labeled vertices of all such trees appear in the standard order
(coming from the planar structure). The listBr9 can be “unpickled” using the command
loadBr9().

For example, the sequence of lines in the console:

In [2]: Br9 = loadBr9()

In [3]: len(Br9[2])

Out[3]: 4

In [4]: Br9[2]

Out [4]:
[[[(1,), 1], [(1,), 2], [(1,), 3]],
[[(1,), 1], [1, 2], [(1,), 3]],
[[(1,), 1], [(1,), 2], [2, 3]],
[[1, (1,)], [(1,), 2], [(1,), 3]]]

shows that there are exactly 4 admissible brace trees of arity 3 with exactly one neutral
vertex and with the standard order of labeled vertices. These brace trees are drawn in
figure 6.1.

9Recall that a brace tree is admissible if every neutral vertex has at least 2 children.

21

• The function saveConvCirc() was used to form and then store the list ConvCirc of
length 6. For every 1 ≤ n ≤ 6, ConvCirc[n − 1] is the basis of degree 1 elements10 in
BT(n)⊗Sn Λ−2Ger(n). For example, the command ConvCirc = loadConvCirc() loads
the list ConvCirc from the storage file. Then the command ConvCirc[2] returns this
list with 6 entries

[([[1, 2], [1, 3]], [(1, 2), (3,)]), ([[1, 2], [2, 3]], [(1, 2), (3,)]),

([[1, 2], [1, 3]], [(1, 3), (2,)]), ([[1, 2], [2, 3]], [(1, 3), (2,)]),

([[1, 2], [1, 3]], [(1,), (2, 3)]), ([[1, 2], [2, 3]], [(1,), (2, 3)])].

The basis vectors from this list are shown in figure 6.2.

• The function saveConvBul() was used to form and store the list ConvBul of length 6.
For every 1 ≤ n ≤ 6, ConvBul[n− 1] is the basis of degree 1 elements in

Br(n)⊗Sn Λ−1Lie(n).

For example, the command ConvBul = loadConvBul() loads the list ConvBul from
the storage file. Then the command ConvBul[1] returns this list with 1 element:

[([[(1,), 1], [(1,), 2]], [(1, 2)])].

This means that the subspace of degree 1 elements of Br(2) ⊗S2 Λ−1Lie(2) is spanned
by the single vector

1 2

⊗S2 {b1, b2}.

• genGer(n) returns the list of all standard Ger-words in Ger(n). For example, the com-
mand genGer(3) returns this list with 6 elements:

[[(1, 2, 3)], [(2, 1, 3)], [(1, 2), (3,)], [(1, 3), (2,)], [(1,), (2, 3)], [(1,), (2,), (3,)]].

1 2 3 1
2

3 1 2
3

1

2 3

Fig. 6.1: The brace trees in the list Br9[2]

10For the definition of the operad BT, we refer the reader to [4, Section 7].

22

1
2 3

⊗S3
{b1, b2} b3 1

2

3

⊗S3
{b1, b2} b3 1

2 3
⊗S3
{b1, b3} b2

1

2

3

⊗S3
{b1, b3} b2 1

2 3
⊗S3

b1 {b2, b3} 1

2

3

⊗S3
b1 {b2, b3}

Fig. 6.2: The basis vectors in the list ConvCirc[2]

References

[1] V.A. Dolgushev and C.L. Rogers, Notes on algebraic operads, graph complexes, and
Willwacher’s construction, Mathematical aspects of quantization, 25–145, Contemp.
Math., 583, Amer. Math. Soc., Providence, RI, 2012.

[2] V.A. Dolgushev and G.E. Schneider, When can a formality quasi-isomorphism over
rationals be constructed recursively? arXiv:1610.04879.

[3] V. A. Dolgushev and T. H. Willwacher, A Direct Computation of the Cohomology of
the Braces Operad, Forum Math. 29, 2 (2017) 465–488; arXiv:1411.1685.

[4] V. A. Dolgushev and T. H. Willwacher, Operadic twisting – with an application to
Deligne’s conjecture, J. Pure Appl. Algebra 219, 5 (2015) 1349–1428.

[5] The library SymPy, http://www.sympy.org/en/index.html

23

