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Abstract

GT-shadows are tantalizing objects [4], [5] that may be thought of as approximations to elements of

the mysterious Grothendieck-Teichmueller group ĜT [6, Section 4]. They form a groupoid GTSh and
they act on Grothendieck’s child’s drawings. This is a detailed documentation of the software package
for working with GT-shadows and their action on child’s drawings.
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1 Introduction

1.1 The poset NFIPB4(B4) and the groupoid of GT-shadows

Let Bn be the Artin braid group and PBn be the pure braid group on n strands [3], [9]. The
standard generators of Bn are denoted by σ1, . . . , σn−1 and the standard generators of PBn

are denote by xij for 1 ≤ i < j ≤ n. Recall [5] that NFIPB4(B4) is the poset of finite index
normal subgroups N E B4 such that N ≤ PB4. For every such N, we denote by NPB3 and
NPB2 the following finite index normal subgroups in PB3 and in PB2:

NPB3 := ϕ−1
123(N) ∩ ϕ−1

12,3,4(N) ∩ ϕ−1
1,23,4(N) ∩ ϕ−1

1,2,34(N) ∩ ϕ−1
234(N), (1.1)

NPB2 := ϕ−1
12 (NPB3) ∩ ϕ−1

12,3(NPB3) ∩ ϕ−1
1,23(NPB3) ∩ ϕ−1

23 (NPB3), (1.2)

respectively.
The symbols ϕ123, ϕ12,3,4, ϕ1,23,4, ϕ1,2,34, ϕ234 (resp. ϕ12, ϕ12,3, ϕ1,23, ϕ23) in (1.1) (resp.

in (1.2)), denote the group homomorphisms PB3 → PB4 (resp. PB2 → PB3) defined by the
formulas:

ϕ123(x12) = x12, ϕ123(x23) = x23, ϕ123(x13) = x13,

ϕ234(x12) = x23, ϕ234(x23) = x34, ϕ234(x13) = x24,

ϕ12,3,4(x12) = x13x23, ϕ12,3,4(x23) = x34, ϕ12,3,4(x13) = x14x24, (1.3)

ϕ1,23,4(x12) = x12x13, ϕ1,23,4(x23) = x24x34, ϕ1,23,4(x13) = x14,

ϕ1,2,34(x12) = x12, ϕ1,2,34(x23) = x23x24, ϕ1,2,34(x13) = x13x14,

and

ϕ12(x12) = x12, ϕ23(x12) = x23, ϕ12,3(x12) = x13x23, ϕ1,23(x12) = x12x13. (1.4)

It is easy to see that NPB3 ∈ NFIPB3(B3), NPB2 ∈ NFIPB2(B2) and the subgroup NPB2 is
completely determined by its index Nord := |PB2 : NPB2|.

For every N ∈ NFIPB4(B4), the triple N,NPB3 ,NPB2 gives us a compatible equivalence
relation ∼N on the truncation PaB≤4 of the operad PaB [1], [5, Appendix A], [7, Chapter 6],
[14]. The quotient PaB≤4/ ∼N is a truncated operad in the category of finite groupoids.
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A GT-pair with the target N is a morphism of truncated operads PaB≤4 → PaB≤4/ ∼N

and such morphisms are in bijection with pairs

(m, fNPB3) ∈ {0, 1, . . . , Nord − 1} × PB3/NPB3 (1.5)

satisfying the hexagon relations

σ1x
m
12 f

−1σ2x
m
23f NPB3 = f−1σ1σ2(x13x23)m NPB3 , (1.6)

f−1σ2x
m
23f σ1x

m
12 NPB3 = σ2σ1(x12x13)m f NPB3 , (1.7)

and the pentagon relation

ϕ234(f)ϕ1,23,4(f)ϕ123(f)N = ϕ1,2,34(f)ϕ12,3,4(f)N. (1.8)

Both sides of (1.6) and (1.7) are elements of B3/NPB3 and both sides of (1.8) are elements
of PB4/N.

It is convenient to represent GT-pairs by tuples (m, f) ∈ Z×PB3 and we denote by [m, f ]
the GT-pair represented by the tuple (m, f).

For every GT-pair [m, f ], we have the group homomorphisms

TPB4
m,f : PB4 → PB4/N, TPB3

m,f : PB3 → PB3/NPB3 , TPB2
m,f : PB2 → PB2/NPB2 . (1.9)

Explicit formulas for these homomorphisms are given in [5, Corollary 2.8].
A GT-shadow with the target N is an onto morphism of truncated operads PaB≤4 →

PaB≤4/ ∼N and such morphisms are in bijection with pairs (1.5) satisfying the following
conditions:

• (m, f) obeys relations (1.6), (1.7), (1.8),

• 2m+ 1 represents a unit in the ring Z/NordZ, and

• the group homomorphism TPB3
m,f : PB3 → PB3/NPB3 is onto.

In this note, we tacitly identify GT-shadows (with the target N) with pairs (1.5) satisfying
the above conditions and we denote by GT(N) the set of GT-shadows with the target N. For
[m, f ] ∈ GT(N), Tm,f denotes the corresponding onto morphism of truncated operads

Tm,f : PaB≤4 → PaB≤4/ ∼N . (1.10)

Due to [5, Proposition 2.11], for every N ∈ NFIPB4(B4) and [m, f ] ∈ GT(N), the “kernel”
of the morphism Tm,f coincides with ∼K, where

K := ker(PB4

T
PB4
m,f−→ PB4/N).

We call the kernel of TPB4
m,f the source of the GT-shadow [m, f ] ∈ GT(N).

Since the morphism in (1.10) is onto, it induces the following isomorphism of truncated
operads:

T isom
m,f : PaB≤4/ ∼K

'−→ PaB≤4/ ∼N , (1.11)

where K := ker(TPB4
m,f ). Moreover,

Tm,f = T isom
m,f ◦ PK,

3



where PK is the standard onto morphism PaB≤4 → PaB≤4/ ∼K.
GT-shadows form a groupoid GTSh. The objects of GTSh are elements of NFIPB4(B4).

For K,N ∈ NFIPB4(B4), the set of morphisms GTSh(K,N) from K to N is

GTSh(K,N) :=
{

[m, f ] ∈ GT(N) | ker(TPB4
m,f ) = K

}
.

The composition of morphisms comes from the obvious identification of GTSh(K,N) with
the set of isomorphisms of truncated operads

PaB≤4/ ∼K
'−→ PaB≤4/ ∼N .

For example, the pair (0, 1PB3) represents the identity morphism from N to N, the iso-
morphism T isom

0,1PB3
is the identity map and

T0,1PB3
= PN : PaB≤4 → PaB≤4/ ∼N .

Just as in [5], we will tacitly identify F2 with the subgroup of PB3 generated by the
elements x12, x23. We also often denote the generators of F2 by x and y, i.e. x := x12 and
y := x23.

A GT-shadow is called practical, if it can be represented by a pair (m, f) where f ∈ F2.
In this note, we assume that all GT-shadows are practical. From now on, GT(N) denotes the
set of all practical GT-shadows with the target N. Moreover, GTSh denotes the groupoid of
practical GT-shadows.

Due to [5, Remark 2.15], we have an explicit composition formula for (practical) GT-
shadows. Namely, if [m1, f1] ∈ GTSh(N(2),N(1)), [m2, f2] ∈ GTSh(N(3),N(2)), and

m := 2m1m2 +m1 +m2 ,

f(x, y) := f1(x, y) f2(x2m1+1, f1(x, y)−1y2m1+1f1(x, y)),
(1.12)

then [m, f ] := [m1, f1] ◦ [m2, f2], i.e. the pair (m, f) represents the GT-shadow [m1, f1] ◦
[m2, f2] ∈ GTSh(N(3),N(1)).

For N ∈ NFIPB4(B4), we set

NF2 := NPB3 ∩ 〈x12, x23 〉.

For [m, f ] ∈ GT(N), the notation T F2
m,f is reserved for the group homomorphism

TPB3
m,f

∣∣∣
F2

: F2 → F2/NF2 .

This homomorphism is given explicitly by the formulas

T F2
m,f (x12) := x2m+1

12 NF2 , T F2
m,f (x23) := f−1x2m+1

23 fNF2 .

A GT-shadow [m, f ] ∈ GT(N) is called charming if1 the coset fNF2 can be represented
by f1 ∈ [F2,F2]. Equivalently, fNF2 ∈ [F2/NF2 ,F2/NF2 ].

For N ∈ NFIPB4(B4), we denote by GT♥(N) the set of charming GT-shadows in GT(N).
Due to [5, Proposition 2.22], charming GT-shadows form a subgroupoid of GTSh and we
denote this subgroupoid by GTSh♥.

1See Proposition 2.1 and Remark 2.3 in [4].
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1.2 GT-shadows coming from elements of ĜT

Recall that the Grothendieck-Teichmueller group ĜT [6, Section 4] consists of pairs (m̂, f̂) ∈
Ẑ× F̂2 that satisfy the profinite versions of the hexagon relations, the profinite version of the
pentagon relation and the invertibility condition2. The set of such pairs can be identified

with the set of continuous automorphisms of the operad P̂aB [5, Introduction] and this

identification is used to define the multiplication on ĜT.
Let N ∈ NFIPB4(B4). We say [5, Section 2.4] that a GT-shadow [m, f ] ∈ GT(N) comes

from an element (m̂, f̂) ∈ ĜT if m + NordZ (resp. fNF2) coincides with the image of the

standard homomorphism Ẑ → Z/NordZ (resp. with the image of the standard homomor-

phism F̂2 → F2/NF2). We say that an element [m, f ] ∈ GT(N) is genuine if [m, f ] comes

from an element of ĜT; otherwise, we say that [m, f ] ∈ GT(N) is fake. If [m, f ] ∈ GT(N)

comes from an element (m̂, f̂) ∈ ĜT, then [m, f ] is an approximation of (m̂, f̂).
Due to [5, Proposition 2.20], every genuine GT-shadow is charming. For this reason, it

may make sense to study only charming GT-shadows.
Let K,N ∈ NFIPB4(B4), K ≤ N and (m, f) ∈ Z× F2 be a pair that represents an element

in GT♥(K). Recall (see eq. (3.24) in [5]) that, in this situation, the same pair (m, f) also
represents a charming GT-shadow with the target N. Hence we have a natural map (of sets)

GT♥(K)→ GT♥(N). (1.13)

According to [5, Definition 3.12], a GT-shadow [m1, f1] ∈ GT♥(N) survives into K, if
[m1, f1] belongs to the image of the map in (1.13), i.e. there exists [m, f ] ∈ GT♥(K) such
that

m ≡ m1 mod Nord and fNF2 = f1NF2 .

Due to [5, Corollary 3.13], a GT-shadow in GT♥(N) is genuine if and only if it survives
into K for all K ∈ NFIPB4(B4) such that K ≤ N.

We should remark that, for all K,N ∈ NFIPB4(B4) with K ≤ N, the same construction also
gives us a natural map of sets

GT(K)→ GT(N).

1.3 Isolated objects of the groupoid GTSh♥

It is easy to see [5, Section 3.1] that the groupoid GTSh♥ is highly disconnected. However,
due to [5, Proposition 3.1], the connected component GTSh♥conn(N) of N in GTSh♥ is a finite
groupoid for every N ∈ NFIPB4(B4).

A GT-shadow [m, f ] ∈ GT♥(N) is called settled, if its source coincides with its target N,
i.e.

ker(TPB4
m,f ) = N. (1.14)

In other words, settled elements of GT♥(N) are precisely automorphisms of N in the groupoid
GTSh♥.

An element N ∈ NFIPB4(B4) is called isolated if every GT-shadow in GT♥(N) is settled.
It is clear that N ∈ NFIPB4(B4) is isolated if and only if N is the only object of the connected
component GTSh♥conn(N). It is also clear that, in this case, GT♥(N) = GTSh♥(N,N), i.e.

2In particular, 2m̂ + 1 is a unit in the ring Ẑ.
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GT♥(N) is a (finite) group. The notation NFIisolatedPB4
(B4) is reserved for the sub-poset of

isolated elements of NFIPB4(B4).
Due to [5, Proposition 3.3], for every N ∈ NFIPB4(B4), the subgroup

N] :=
⋂

[m,f ]∈GT(N)

ker(TPB4
m,f )

is an isolated element of NFIPB4(B4). Moreover, due to [5, Proposition 3.6], the intersection
of two isolated elements of NFIPB4(B4) is an isolated element of NFIPB4(B4).

Remark 1.1 Let K,N ∈ NFIisolatedPB4
(B4) and K ≤ N. It is easy to see that, in this case, the

map in (1.13) is a group homomorphism.

1.4 The action of GT-shadows on child’s drawings

For d ∈ Z≥1, Sd denotes the symmetric group on d letters and Pd denotes the set of partitions
of d. The notation ct is reserved for the standard map Sd → Pd which assigns to a permu-
tation its cycle structure. A subgroup H ≤ Sd is called transitive if it acts transitively on
the set {1, 2, . . . , d}.

Recall that a child’s drawing of degree d is represented by a pair of permutations
c := (c1, c2) in Sd for which the subgroup 〈 c1, c2 〉 ≤ Sd is transitive. Two pairs c := (c1, c2)
and c̃ := (c̃1, c̃2) in Sd represent the same child’s drawing if and only if there exists h ∈ Sd

such that c̃i = hcih
−1, i ∈ {1, 2}. For such a pair c := (c1, c2), [c] denotes the corresponding

child’s drawing.
The (conjugacy class of the) permutation group 〈 c1, c2 〉 ≤ Sd is called the monodromy

group of the child’s drawing [c]. The triple (ct(c1), ct(c2), ct(c−1
2 c−1

1 )) is called the passport
of [c].

Just as in [4], we often represent child’s drawing of degree d by group homomorphisms
ψ : F2 → Sd for which ψ(F2) is a transitive subgroup of Sd. The assignment

ψ 7→
(
ψ(x), ψ(y)

)
, x := x12, y := x23

gives us the obvious bijection between such homomorphisms ψ : F2 → Sd and permutation
pairs (c1, c2) ∈ Sd × Sd for which 〈 c1, c2 〉 is a transitive subgroup of Sd.

It is clear that ker(ψ)EF2 depends only on the child’s drawing [ψ] but not on a particular
choice of a representative ψ : F2 → Sd.

Recall from [4] the following definition:

Definition 1.2 Let N ∈ NFIPB4(B4) and ψ be a homomorphism F2 → Sd that represents a
child’s drawing. We say that the child’s drawing [ψ] is subordinate to N (or subordinate
to the equivalence relation ∼N) if

NF2 ≤ ker(ψ). (1.15)

If [ψ] is subordinate to N, then we say that N dominates [ψ]. We denote by Dessin(N) the
set of child’s drawings subordinate to N.

Let ψ : F2 → Sd be a representative of a child’s drawing subordinate to N, (m, f) be
a pair that represents an element in GT(N) and K := ker(TPB4

m,f ). We denote by ψ(m,f) the
following homomorphism F2 → Sd

ψ(m,f)(x) := ψ(x2m+1), ψ(m,f)(y) := ψ(f−1y2m+1f). (1.16)
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Due to [4, Theorem 3.1],

• ψ(m,f) represents a child’s drawing that is subordinate to K,

• [ψ(m,f)] does not depend on the choice of the representatives ψ and (m, f), and

• the assignments A sh(N) := N, A sh([m, f ])([ψ]) := [ψ(m,f)] define a cofunctor A sh from
the category GTSh to the category Dessin.

In other words, the assignment [ψ][m,f ] := [ψ(m,f)] defines a right action of GT-shadows on
child’s drawings.

It is relatively easy to see that the monodromy group of a child’s drawing is an invariant
of the action of GTSh. Due to [4, Theorem 3.16], the passport of a child’s drawing is an
invariant of the action of the subgroupoid GTSh♥ of charming GT-shadows.

1.5 Formats of various objects related to the package

1.5.1 Permutations and permutation groups

Just as C, Python starts counting at 0. For this reason, an element in Sd is a bijection

{0, 1 . . . , d − 1} '−→ {0, 1 . . . , d − 1}. In this package, permutations are represented by in-
stances of the class sympy.combinatorics.permutations.Permutation (see [12]). The com-
mand Permutation from [12] is abbreviated to permut. For example, permut(0, 4)(3, 2, 5)
represents the permutation (0, 4)(3, 2, 5) in S6

∼= S{0,...,5}. The commands

• permut(6)(0, 2, 5)(1, 4),

• permut([2, 4, 5, 3, 1, 0, 6]),

• permut([[0, 2, 5], [1, 4], [6]]) and

• permut(((0, 2, 5), (1, 4), (6, )))

return the same permutation (0, 2, 5)(1, 4) in S7.
Permutation groups are represented by instances of the class

sympy.combinatorics.perm groups.PermutationGroup

For example, the command SG(d) (resp. AG(d), CG(d), DG(d)) returns the symmetric
group Sd (resp. the alternating group Ad, the cyclic group Zd, the dihedral group Dd of
order 2d).

For a tuple (or a list) t of permutations in Sd, the command PG(t) returns the subgroup
of Sd generated by elements of t. For a permutation g ∈ Sd, the command PG(g) returns
the cyclic subgroup 〈 g 〉 ≤ Sd.

For selected commands related to permutations and permutation groups, we refer the
reader to Section 2.

1.5.2 Homomorphisms from finitely presented groups to permutation groups

For a finitely presented groupG = 〈X|R 〉, a group homomorphism ψ : G→ Sd is represented
by the tuple of permutations (ψ(x) | x ∈ X) that satisfies all relations in R.
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For example, a group homomorphism from PB4 to Sd is represented by a tuple

(g12, g23, g13, g14, g24, g34) ∈ (Sd)
6 (1.17)

such that
g23g12g13 commutes with g12, g23, g13, (1.18)

g−1
12 g14g12 = g14g24g14g

−1
24 g

−1
14 , g−1

12 g24g12 = g14g24g
−1
14 , g−1

12 g34g12 = g34, (1.19)

g−1
23 g14g23 = g14, g−1

23 g24g23 = g24g34g24g
−1
34 g

−1
24 , g−1

23 g34g23 = g24g34g
−1
24 . (1.20)

g−1
13 g14g13 = g14g34g14g

−1
34 g

−1
14 , g−1

13 g24g13 = gg24g
−1, g−1

13 g34g13 = g14g34g
−1
14 , (1.21)

where g := g14g34g
−1
14 g

−1
34 .

We also use tuples of permutations to represent finite index normal subgroups in a finitely
presented group G = 〈X|R 〉. For example, if ψ : PB4 → Sd is a homomorphism represented
by tuple (1.17) then this tuple also represents the normal subgroup ker(ψ)E PB4.

Let k be the size of X for a finitely presented group G = 〈X|R 〉. Note that any tuple
t (of elements in Sd) of length k represents a group homomorphism ψt from the free group
Fk on k generators to Sd. If t satisfies the relations of G = 〈X|R 〉 then t also represents
a group homomorphism from G to Sd. Under the bijection between finite index normal
subgroups of G and finite index normal subgroups N of Fk that contain the kernel of the
standard onto homomorphism Fk → 〈X|R 〉, the normal subgroup NG

t EG represented by a
tuple t corresponds to the normal subgroup Nt E Fk represented by the same tuple t. It is
clear that |Fk : Nt| = |G : NG

t | coincides with the order of the permutation group generated
by elements of the tuple t.

Two different tuples of permutations may represent the same normal subgroup of G =
〈X|R 〉. Let t (resp. tt) be a tuple of permutations in Sd1 (resp. in Sd2) and ψt : G → Sd1

(resp. ψtt : G → Sd2) be the corresponding group homomorphism. Let tcap be the tuple of
elements in Sd1 × Sd2 that represents the homomorphism

ψcap(g) :=
(
ψt(g), ψtt(g)

)
: G→ Sd1 × Sd2 .

Since ker(ψcap) = ker(ψt) ∩ ker(ψtt), tuples t and tt represent the same normal subgroup
of G if and only if

• the order of the permutation group generated by elements of t coincides with the order
of the permutation group generated by elements of tt (i.e. |G : ker(ψt)| = |G : ker(ψtt)|)
and

• the order of the permutation group generated by elements of tcap coincides with the order
of the permutation group generated by elements of t (i.e. |G : ker(ψcap)| = |G : ker(ψt)|).

These simple ideas are implemented in the definitions of the functions cap( , ),
Nsubgrp less eq( , ), and sameNsubgrp( , ) from the file PaB.py. For more details, please
see Section 4.

Elements of F2 are represented by tuples of 0’s and 1’s. For example, the tuple w =
(0, 0, 1, 0) represents the element x2yx. Since we typically consider images of elements of F2

in finite groups, we ignore x−1 and y−1, i.e. we only consider words in x and y.
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1.5.3 Formats for elements of NFIPB4(B4)

We use two formats for elements of NFIPB4(B4):

• tuple format: an element N ∈ NFIPB4(B4) is represented by a group homomorphism
ψ : PB4 → Sd such that ker(ψ) = N; the homomorphism ψ is, in turn, represented by
a tuple of permutations (1.17) satisfying the relations (1.18), (1.19), (1.20) and (1.21).

• object format: an element N ∈ NFIPB4(B4) is represented by an instance of the class
Equiv.

For example, if t is a tuple representing N ∈ NFIPB4(B4), the command Equiv(t) returns
the instance of the class Equiv that represents N. Moreover, if E is an instance of the class
Equiv representing N ∈ NFIPB4(B4), the command E.PB4 returns a tuple representing N.

If an instance E of Equiv represents N ∈ NFIPB4(B4), the command E.PB3 returns a
tuple that represents the subgroup NPB3 ∈ NFIPB3(B3), the command E.xy returns a tuple
of two permutations that represents the subgroup NF2 := NPB3 ∩ 〈x12, x23 〉, the command
E.N0 returns the index Nord := |PB2 : NPB2|.

Of course, E.PB4 (resp. E.PB3) also represents a group homomorphism PB4 → Sd4

(resp. a group homomorphism PB3 → Sd3). The commands E.d4 and E.d3 return the
corresponding degrees d4 and d3.

1.5.4 Formats for GT-shadows

Given N ∈ NFIPB4(B4), we use two formats for elements of GT(N) (or candidates for elements
of GT(N)):

• tuple format: an element of GT(N) is represented by a tuple (w,m), where w is a
tuple (of 0’s and 1’s) that represents an element of F2 and m is a non-negative integer
that represents an element of Z/NordZ;

• object format: an element of GT(N) is represented by an instance of the class GTsh;
for a tuple (w,m) and a tuple t that represents N ∈ NFIPB4(B4), GTsh((w,m), t) is the
instance of the class GTsh that represents the GT-shadow corresponding to (w,m).

For example, given an instance T of the class GTsh that represents a GT-shadow with
the target N, the command T.wm returns a representative (w,m) of this GT-shadow; the
command T.tar returns the instance of the class Equiv that represents N; T.g returns a
permutation g corresponding to the coset wNF2 (g belongs to a permutation group isomorphic
to the quotient F2/NF2); finally, T.cc ch returns the value of the virtual cyclotomic character.

1.5.5 Formats for child’s drawings

For a positive integer d, we use two formats for (representatives of) child’s drawings of degree
d:

• tuple format: a child’s drawing of degree d is represented by a tuple c = (c1, c2) of
permutations in Sd such that the subgroup 〈 c1, c2 〉 is transitive;

• object format: a child’s drawing of degree d is represented by an instance of the class
Dessin.
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For example, if c is a tuple that represents a child’s drawing, then Dessin(c) is an instance
of the class Dessin that represents the child’s drawing [c]. If D is an instance of Dessin that
represents a child’s drawing D, then the command D.pr returns a tuple c that represents D,
the command D.full returns the permutation triple

(c1, c2, c
−1
2 c−1

1 ),

and the command D.passport returns the passport of D in the format of a nested tuple. For
instance, executing the lines:

Dessin( (permut(1, 2, 3, 6, 5), permut(0, 3, 6, 1, 5, 4)) ).full
Dessin( (permut(1, 2, 3, 6, 5), permut(0, 3, 6, 1, 5, 4)) ).passport

we get

(Permutation(1, 2, 3, 6, 5), Permutation(0, 3, 6, 1, 5, 4), Permutation(0, 4, 5, 3, 2, 6))

and

((5, 1, 1), (6, 1), (6, 1))

respectively.

Remark 1.3 For all timed procedures, the time is given in minutes.

1.6 Brief outline of the package. Examples of what we can do

The package consists of the auxiliary Python file Aux.py and the main Python file PaB.py.
The key classes of PaB.py are Equiv, GTsh and Dessin. As we mentioned above, instances
of Equiv represent compatible equivalence relations on PaB≤4, instances of GTsh represent
(candidates for) GT-shadows; finally, instances of Dessin represents child’s drawings. In this
documentation, we will freely use the terminology and notational conventions from [5].

When we run PaB.py, a computer creates the following objects:

• listE is the list of compatible equivalence relations corresponding to 35 distinct elements

N(0), N(1), . . . , N(33), N(34) (1.22)

of NFIPB4(B4); the equivalence relations are given in the object format; listE is obtained
from the storage file subGrPB4 org35; Table 1 shows basic information about these 35
selected elements of NFIPB4(B4);

• GTcharm wm is the (nested) list which contains charming GT-shadows whose targets
are elements of listE, i.e. len(GTcharm wm) = 35 and GTcharm wm[i] is the list
of charming GT-shadows with the target N(i); the GT-shadows are given in the tuple
format; GTcharm wm is extracted from the storage file wm list charm35;

• GTall wm is the (nested) list which contains all (practical) GT-shadows whose targets
are elements of the first 31 entries of listE, i.e. len(GTall wm) = 31 and GTall wm[i]
is the complete list of (practical) GT-shadows with the target N(i); the GT-shadows are
given in the tuple format; GTall wm is extracted from the storage file wm list all31.
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If you choose to upload GTcharm, you will also have the nested list of the charming GT-
shadows whose targets are elements of listE, i.e. len(GTcharm) = 35 and GTcharm[i] is
the complete list of charming GT-shadows with the target N(i). GT-shadows in GTcharm[i]
are given in the object format.

Here is more information about Table 1. For every 0 ≤ i ≤ 34, the quotient F2/N
(i)
F2

is

non-Abelian. Table 1 shows (in the order from left to right) the number of N(i), the index of

N(i) in PB4, the index of N
(i)
F2

in F2, the order of the commutator subgroup [F2/N
(i)
F2
,F2/N

(i)
F2

],

N
(i)
ord := |PB2 : N

(i)
PB2
|, the size of GT(N(i)) (i.e. the total number of (practical) GT-shadows

with the target N(i)) and the size of GT♥(N(i)). Finally, the last column indicates whether N(i)

is isolated or not. Note that, for N(33) and N(34), the exact numbers of (practical) GT-shadows
is not known.

i |PB4 : N(i)| |F2 : N
(i)
F2
| |[F2/N

(i)
F2
,F2/N

(i)
F2
]| N

(i)
ord |GT(N(i))| |GT♥(N(i))| isolated?

0 8 16 2 4 4 4 True

1 8 16 2 4 8 4 True

2 12 36 4 3 18 6 True

3 21 63 7 3 36 12 False

4 21 63 7 3 36 12 False

5 24 288 8 6 72 12 True

6 24 144 4 6 72 12 True

7 48 144 4 6 72 12 True

8 60 1500 60 5 100 20 True

9 60 900 4 15 360 24 True

10 72 144 18 4 16 8 False

11 72 144 18 4 16 8 False

12 108 972 27 6 72 12 True

13 120 6000 60 10 400 40 True

14 147 441 49 3 216 72 True

15 168 8232 168 7 294 42 True

16 168 1344 168 4 64 32 False

17 168 1344 168 4 64 32 False

18 180 13500 60 15 600 40 True

19 216 7776 216 6 72 12 True

20 240 6000 60 10 400 40 True

21 324 8748 108 9 486 54 True

22 504 40824 504 9 486 54 True

23 504 24696 504 7 294 42 True

24 648 1296 162 4 32 16 True

25 720 54000 240 15 1800 120 True

26 1512 40824 504 9 486 54 False

27 1512 40824 504 9 486 54 False

28 2520 63000 2520 5 200 40 True

29 2520 45360 2520 6 144 48 True

30 28224 225792 28224 4 512 256 True

31 181440 8890560 181440 7 588 84 True

32 181440 9072000 181440 10 800 160 True

33 181440 40824000 181440 15 ≥ 1800 120 True

34 762048 20575296 254016 9 ≥ 4374 486 True

Table 1: The basic information about selected 35 compatible equivalence relations

Executing the lines:
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for i in range(35):
print(i,’ ’, listE[i].ind4(), ’ ’, listE[i].indF2(), ’ ’,

listE[i].commF2().order(),’ ’, listE[i].N0,’ ’, len(GTcharm[i]))

we get selected columns of Table 1: the number of the entry N(i), |PB4 : N(i)|, |F2 : N
(i)
F2
|, the

order of the commutator subgroup [F2/N
(i)
F2
,F2/N

(i)
F2

], N
(i)
ord := |PB2 : N

(i)
PB2
| and the number

of charming GT-shadows with the target N(i).
For example, N(19) is called the Philadelphia subgroup of PB4 and it is represented by the

tuple of 6 permutations in S9:

g12 := (1, 3, 2)(4, 6, 5), g23 := (1, 4, 9)(2, 7, 6), g13 := (1, 7, 5)(3, 6, 9),
g14 := (2, 6, 7)(3, 8, 5), g24 := (1, 8, 6)(3, 4, 7), g34 := (1, 2, 3)(7, 9, 8).

(1.23)

According to Table 1, N(19) is an isolated element of NFIPB4(B4). Executing the command
{T.settled() for T in GTcharm[19]} , we get {True}. This confirms that N(19) is indeed an
isolated element of NFIPB4(B4).

Executing the command {T.settled() for T in GTcharm[16]} , we get {False,True}. This
confirms that N(16) is not isolated.

In fact, executing the lines:

GT16 not settled =[T for T in GTcharm[16] if not T.settled()]
len(GT16 not settled)

we see that exactly half of the 32 charming GT-shadows with the target N(16) are not settled
and the remaining 16 charming GT-shadows are settled.

Executing the line:

{T.src()==listE[17] for T in GT16 not settled}

we get {True}. So we see that, for every GT-shadow T in the list GT16 not settled, the
source of T is N(17).

Thus the connected component of N(16) in the groupoid GTSh♥ has exactly two (isomor-
phic) objects: N(16) and N(17). There are exactly 16 elements in GTSh♥(N(16),N(16)) and
exactly 16 elements in GTSh♥(N(17),N(16)).

Executing the command {p for p in comb(range(35),2) if listE[p[1]].finer(listE[p[0]])}, we
get: {

(1, 10), (1, 11), (1, 24), (2, 5), (2, 6), (2, 7), (2, 9), (2, 19), (2, 21),

(2, 25), (3, 14), (4, 14), (5, 19), (8, 13), (8, 18), (8, 20), (8, 25), (10, 24), (1.24)

(11, 24), (16, 30), (17, 30), (18, 25), (26, 34), (27, 34)}.
In other words, we get the set of all pairs (i, j) with 0 ≤ i < j ≤ 34 such that N(j) ⊂ N(i).
For example, since (8, 20) belongs to the above set of pairs, N(20) ⊂ N(8). Since (5, 20) is not
in the above list, N(20) 6⊂ N(5).

Executing the command furusho test1(listE[5]) (resp. furusho test comm1(listE[5])), we
get False (resp. True). This shows that element N(5) does not satisfy the strong Furusho
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property (see Property 5.1), however N(5) satisfies the weak Furusho property (see Property
5.2).

The command furusho test1(listE[24]) returns True, which means that element N(24) sat-
isfies the strong Furusho property and hence N(24) also satisfies the weak Furusho property.

The command furusho test comm1(listE[25]) returns False which means that element N(25)

does not satisfy the weak Furusho property and hence N(25) does not satisfy the strong
Furusho property.

Executing the lines:

c8=(permut(7)(0,1,2)(3,4,5),permut(0,7,4)(1,3,6))
D8=Dessin(c8)

we create a child’s drawing D8,0 of degree 8 and genus 0 represented by the permutation
triple3 (

(1, 2, 3)(4, 5, 6), (1, 8, 5)(2, 4, 7), (1, 3, 7, 4, 6, 8)(2, 5)
)
. (1.25)

Executing the command D8.passport, we see that the passport of D8,0 is(
(3, 3, 1, 1), (3, 3, 1, 1), (6, 2)

)
.

Executing the command D8.is Galois( ), we get False. Hence the child’s drawing D8,0 is not
Galois4.

Executing the command {i for i in range(35) if listE[i].subord(c8)}, we get {5, 19}. This
means that D8,0 is subordinate to N(5) and N(19).

Executing the command {Dessin(T.act(c8))==D8 for T in GTcharm[5]}, we get {True}.
This means that the orbit GT♥(N(5))(D8,0) is a singleton. Hence, for every element g of the
absolute Galois group GQ of rationals, Dg

8,0 = D8,0.

Organization of the documentation. In addition to the introduction, the documentation
has 7 sections and two appendices. In Section 2, we listed selected commands related to
permutations and permutation groups. In Section 3, we described various auxiliary functions.
These functions are defined in the Python file Aux.py. Section 4 is devoted to functions,
generators, and classes defined in the Python file PaB.py. In this section, we described a
generator for GT-shadows and a generator for charming GT-shadows (these are the generators
gener GT sh( ) and gener GT charm( ), respectively). In Section 4, we also described the
classes Equiv, GTsh, Dessin and various functions for working with child’s drawings. In
brief Subsection 4.1.1, we described how we obtained 35 selected elements of the poset
NFIPB4(B4) (see (1.22)).

In Section 5, we presented more examples of working with this package. We described
possible ways of looking for charming GT-shadows that are fake. We discussed versions of
the Furusho property. Finally, we presented more examples of using the commands related
to child’s drawings and to the action of the groupoid GTSh♥ on child’s drawings: we showed
how to generate all non-Abelian child’s drawings of degrees 3, 4 and 5, and computed GTSh♥-
orbits of selected child’s drawings of degrees ≤ 5. We also showed how to produce child’s
drawings subordinate to a given element of NFIPB4(B4).

3This example is also stored in the file dde8E5E19.
4This is also clear from the passport of D8,0.
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Section 6 contains detailed descriptions of all storage files. In Section 7, we described
indirect ways of testing various functions, methods and outputs. In Appendix A, we briefly
reviewed the braid groups Bn, PBn and presented some calculations relevant to the package.
Finally, in Appendix B, we proved an auxiliary statement that justifies certain lines of code
in PaB.py.

Contributors: The following people contributed to this software5 package: Chelsea Zackey,
Aidan Lorenz, Khanh Le and V.A.D.

Acknowledgement. V.A.D. is thankful to John Voight for many clarifying discussions and
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2 Selected commands related to permutations and permutation
groups

Here is the list of selected commands related to permutations and permutation groups from
the Python library SymPy [11]:

• for a permutation g, g.size returns its degree; for instance, the command
permut(7)(0, 4, 1)(2, 3).size returns 8 because the permutation (7)(0, 4, 1)(2, 3) belongs
to S8;

• for a permutation g ∈ Sd and i ∈ {0, 1, . . . , d − 1}, the command ig returns g(i); for
instance, for g = permut(7)(0, 4, 1)(2, 3), the command

[ig for i in range(8)]

returns the list [4, 0, 3, 2, 1, 5, 6, 7];

• permutations in Sd act on the set {1, 2, . . . , d} from the right; so, for g, h ∈ Sd, the
command g ∗ h returns the composition h ◦ g;

• for a permutation g and an integer n, the command g**n returns the permutation gn;
for instance, g**(−1) returns the inverse of the permutation g;

• for a permutation g, the command g.cyclic form returns the list of cycles of length
≥ 2; each cycle is represented by a list; for instance, the command
permut(18)(0, 2, 5)(1, 4).cyclic form returns [[0, 2, 5], [1, 4]];

• for a permutation g, the command g.order() returns the order of g; for instance, the
command permut(7)(0, 4, 1)(2, 3).order() returns 6;

5The names of contributors are given in the reverse alphabetic order.
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• SymPy has a built-in bijection between Sd and the set {0, 1, . . . , d!− 1}: for a permu-
tation g in Sd the command g.rank() returns the value of this bijection (i.e. its unique
hashtag in {0, 1, . . . , d! − 1}); for example, the hashtag permut(d − 1).rank() of the
identity element permut(d − 1) is 0 for every d ≥ 1; it is often more efficient to store
hashtags than the corresponding instances of the class
sympy.combinatorics.permutations.Permutation;

• for a permutation group G, the command G.order() returns the order of G; for instance,
the command AG(5).order() returns 60 (i.e. the order of the alternating group A5);

• for a permutation group G ≤ Sd, the command G.degree returns d;

• for a permutation group G, the command G.elements returns the set of elements of G;
for instance, the command AG(3).elements returns

{Permutation(2), P ermutation(0, 1, 2), P ermutation(0, 2, 1)},

i.e. the set of elements of the alternating group A3;

• for a permutation group G, the command G.is abelian returns True if G is Abelian,
otherwise it returns False; for instance, the command AG(3).is abelian returns True
and the command SG(3).is abelian returns False;

• for a permutation group G ≤ Sd, the command G.is transitive() returns True if G is a
transitive subgroup of Sd; otherwise it returns False;

• for two permutation groups H and G, the command H.is subgroup(G) returns True if
H ≤ G, otherwise it returns False;

• for a subgroup H of a permutation group G, the command H.is normal(G) returns True
if H is a normal subgroup of G, otherwise it returns False; for instance, the command
AG(5).is normal(SG(5)) returns True, while the command DG(5).is normal(SG(5))
returns False;

• for a subgroup H of a permutation group G, the command G.commutator(G,H) re-
turns the commutator subgroup [G,H]; for instance, the command
DG(5).commutator(DG(5), DG(5)) returns the cyclic subgroup of S5 generated by
(0, 1, 2, 3, 4), while the command
SG(5).commutator(SG(5), SG(5)) returns the alternating group A5;

• for a subgroup H of a permutation group G, the command

G.coset transversal(H)

returns a transversal of the left cosets of G by H (as a list); for instance, if H =
PG(permut(1, 2)), then the command

SG(3).coset transversal(H)

returns
[Permutation(2), P ermutation(0, 2), P ermutation(2)(0, 1)],

i.e. S3 = H t (0, 2)H t (0, 1)H;
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• for a subgroup H of a permutation group G and g ∈ G, the command
G. coset representative(g,H) returns the unique representative of the left coset g H in
accordance with G.coset transversal(H); for instance the command

{G. coset representative(g,H) == g for g in G.coset transversal(H)}

returns {True}.

For more commands and examples, please see [12] and [13].

3 Selected functions of Aux.py

Here is the list of selected functions from Aux.py:

• for a permutation g, display perm(g) prints the nested tuple whose entries are cycles
of the permutation; the shift i 7→ i+ 1 is incorporated; for example,
display perm(permut(0, 4)(3, 2, 5)) prints the nested tuple ((1, 5), (3, 6, 4)); note that
cycles of length 1 are not shown; in particular, the commands
display perm(permut(0, 4)(3, 2, 5)) and display perm(permut(18)(0, 4)(3, 2, 5)) print the
same nested tuple;

• for a list L of iterables, cart pr(L) is a generator of all elements of the Cartesian product
L[0]×L[1]×L[2]× . . . ; for example, cart pr([[5], [2, 1], [3, 4], [6]]) generates the 4 tuples
(5, 2, 3, 6), (5, 2, 4, 6), (5, 1, 3, 6), (5, 1, 4, 6);

• lcm (resp. lcm3) returns the least common multiple of two (resp. three) integers;

• for n ∈ Z≥2, m units(n) generates all integers between 0 and n− 1 such that 2m+ 1 is
a unit of the ring Z/nZ;

• for a positive integer d, prm(d) returns a random permutation of degree d;

• ran(n) returns the tuple (0, 1, ..., n− 1);

• split(t) generates all possible splittings of a tuple t; for instance, split((1, 2, 3)) generates
((1, 2, 3), ), ((1, 2), (3, )) and ((1, ), (2, ), (3, )); for a tuple t of length n, the number of
outputs of split(t) is the total number of partitions of n;

• for permutations s and t of the same degree, comp(s, t) returns the composition of two
permutations s and t in the standard order, i.e. t acts first and s acts second;

• for a tuple (or a list) of permutations t (of the same degree), the command compAll(t)
returns the consecutive composition of all permutations in t;

• for a positive integer d, one(d) returns the identity element in Sd;

• is id(g) returns True if the permutation g is the identity element, otherwise False;

• not id is the negation of is id;

• concat(g, h) implements the standard homomorphism Sn×Sk → Sn+k; for instance, the
command concat(permut(0, 2)(3, 4), permut(0, 2, 1)) returns the permutation

(0, 2)(3, 4)(5, 7, 6);
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• for a tuple t of permutations in Sd and a tuple tt of permutations in Sn, concat tup
returns the tuple whose entries are obtained by “concatenating” the corresponding
entries of t and tt;

• commut(g, h) returns the group commutator ghg−1h−1 of permutations g and h of the
same degree;

• for permutations g, h of the same degree, conj(g, h) returns the permutation ghg−1;

• conj tup is the extension of the command conj to the case when the second argument
is a tuple of permutations, i.e., for a permutation g ∈ Sd and a tuple t of permutations
of degree d, the command conj tup(g, t) returns the tuple

tuple(conj(g, h) for h in t);

• let t be a tuple of permutations in Sd, G be the subgroup of Sd generated by elements
of t and X be the set of indices i ∈ {0, 1, . . . , d − 1} for which the G-orbit of i is
not a singleton; then every permutation g in t is uniquely determined by the corre-
sponding “trimmed” permutation in SX

∼= Sq, where q is the size of X; the function
trim perms(t) returns the tuple of the corresponding trimmed permutations; of course,
the permutation groups PG(trim perms(t)) and PG(t) are isomorphic; this command
was used to “simplify” tuples of permutations that represent elements of NFIPB4(B4);

• for a tuple t of three permutations s1, s2, s3 (of the same degree), relB4(t) returns True
if the tuple t represents a homomorphism from B4 to a symmetric group; otherwise, it
returns False;

• for a tuple t representing a group homomorphism ϕ : B4 → Sd, restr PB4(t) returns the
tuple (g12, g23, g13, g14, g24, g34) that represents the homomorphism ϕ

∣∣
PB4

: PB4 → Sd;

• for d ∈ Z≥1, generB4(d, timed) generates all group homomorphisms from B4 to Sd

up to conjugation by elements of Sd; generB4 A(d, timed) is another version of this
generator; generB4 A works faster than generB4 for d > 5;

• dict2tup, tup2dict allow us to reformat partitions from the dictionary format to the
tuple format; for instance, the command tup2dict((5, 3, 3, 1, 1)) returns the dictionary
{1 : 2, 3 : 2, 5 : 1} and the command dict2tup({1 : 2, 3 : 2, 5 : 1}) returns the tuple
(5, 3, 3, 1, 1);

• for tuples t and tt of permutations in Sd of the same length, are conj easy(t, tt) returns
True if there exists g in Sd such that conj tup(g)(t) coincides with tt; otherwise, it
returns False;

• for a non-increasing tuple p of positive integers (k1, k2, . . . ), toCanPerm(p) returns the
permutation (0, 1, . . . , k1 − 1)(k1, . . . , k1 + k2 − 1), . . . ;

• for a permutation group G and subgroups H1, H2 of G, double coset reps(H1, G,H2)
generates representatives of double cosets in H1\G/H2; exactly one representative for
each double coset.
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4 Classes, functions and methods of PaB.py

Here is the list of selected functions and generators from the Python file PaB.py:

• for a tuple t of six permutations in Sd, relPB4(t) returns True if t represents a homo-
morphism PB4 → Sd; otherwise, the function returns False;

• for a tuple t that represents a homomorphism PB4 → Sd, the command cenPB4(t)
returns the image of the generator

c4 = x14x24x34x12x13x23

of the center Z(PB4) of PB4; see Proposition A.2 in Appendix A.1; this function was
used for testing relPB4( ) indirectly;

• for tuples x, y of permutations representing homomorphisms from a free group on len(x)
generators to symmetric groups, the command, cap(x, y) returns the tuple of permu-
tations that represents the intersection of the kernels of the corresponding homomor-
phisms;

• for tuples x, y of permutations representing homomorphisms from a free group on len(x)
generators to symmetric groups, the command, Nsubgrp less eq(x, y) returns True if
the kernel of the homomorphism corresponding to x is contained in the kernel of the
homomorphism corresponding to y; otherwise, the command returns False; the function
is often applied to tuples that represent finite index normal subgroups of a finitely
presented group (say, PBn or Bn); for this function, we tacitly assume that len(x) ==
len(y);

• for tuples x, y of permutations representing homomorphisms from a free group on
len(x) generators to symmetric groups, the command sameNsubgrp(x, y) returns True
if the kernels of the corresponding homomorphisms coincide; otherwise, the command
sameNsubgrp(x, y) returns False; the function is often applied to tuples that represent
finite index normal subgroups of a finitely presented group (say, PBn or Bn); for this
function, we tacitly assume that len(x) == len(y);

• the functions fi1 23 4, fi123, fi12 3 4, fi1 2 34, fi234 are related to the homomor-
phisms PB3 → PB4 defined in (1.3); for instance, for a tuple t that represents a homo-
morphism ψt : PB4 → Sd the command fi1 23 4(t) returns the tuple that represents
the homomorphism

ψt ◦ ϕ1,23,4 : PB3 → Sd ;

• similarly, the functions fi12, fi12 3, fi1 23, fi23 are related to the homomorphisms
PB3 → PB4 defined in (1.4); for instance, for a tuple t that represents a homomorphism
ψt : PB3 → Sd the command fi1 23(t) returns a permutation that represents the
homomorphism6

ψt ◦ ϕ1,23 : PB2 → Sd ;

• for a tuple t that represents an element N ∈ NFIPB4(B4), the command N PB3(t)
returns a tuple that represents NPB3 ∈ NFIPB3(B3) defined in (1.1);

6Recall that PB2 is an infinite cyclic group generated by x12.
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• for a tuple x that represents an element NPB3 ∈ NFIPB3(B3), the command Nord(x)
returns the index |PB2 : NPB2| of NPB2 , where NPB2 is defined in (1.2);

• for a tuple wm = (w,m) and a tuple t of permutations that represents N ∈ NFIPB4(B4),
the command penta(wm, t) returns True if (w,m) satisfies pentagon relation (1.8) mod-
ulo N; otherwise penta(wm, t) returns False; here w is a tuple of 0’s and 1’s that repre-
sents an element of F2 and m is an integer;

• for a tuple wm = (w,m) and a tuple tt of permutations that represents K ∈ NFIPB3(B3),
the command hexa1(wm, tt) returns True if (w,m) satisfies the first hexagon relation
(see (1.6)) modulo K; otherwise hexa1(wm, tt) returns False; as above, w is a tuple of
0’s and 1’s that represents an element of F2 and m is an integer; please see Proposition
B.1 in Appendix B for the explanation of line 552 in PaB.py

tup = (x23 ∗ ∗m, fxy, x12 ∗ ∗m, fxz inv, z ∗ ∗m, fyz);

• for a tuple wm = (w,m) and a tuple tt of permutations that represents K ∈ NFIPB3(B3),
the command hexa2(wm, tt) returns True if (w,m) satisfies the second hexagon relation
(see (1.7)) modulo K; otherwise hexa2(wm, tt) returns False; as above, w is a tuple of
0’s and 1’s that represents an element of F2 and m is an integer; please see Proposition
B.1 in Appendix B for the explanation of line 569 in PaB.py

tup = (fux inv, x12 ∗ ∗m, fxy inv, x23 ∗ ∗m, fuy, u ∗ ∗m);

• for a (possibly empty) tuple w of elements in {0, 1, . . . , q−1} and a tuple t that represents
a group homomorphism from Fq to Sd, the command w2g(w, t) returns the value ϕ(w)
in Sd; for instance, the command w2g((0, 0, 1), (permut(0, 1, 2), permut(1, 2))) returns
Permutation(0, 2), i.e. the product (0, 1, 2) · (0, 1, 2) · (1, 2); the command w2g(( ), t)
returns the identity element of Sd; if q does not coincide with the length of t, the
command will not work;

• for a tuple tt representing a homomorphism ϕ : F2 → Sd, generWF2(tt, timed=None)
generates all words in F2 corresponding to distinct elements of the permutation group
ϕ(F2) ≤ Sd; for each element g ∈ ϕ(F2), generWF2(tt, timed=None) yields exactly one
w ∈ F2 such that ϕ(w) = g; at each iteration, this generator uses a list W of words
in F2 of a fixed length and a list L of the corresponding permutations in ϕ(F2); for
every word w ∈ W , the generator tests whether ϕ(w + (0, )) (resp. ϕ(w + (1, ))) is a
new permutation of ϕ(F2); if this is the case, the word w + (0, ) (resp. w + (1, )) is
appended to Wnew and the permutation ϕ(w + (0, )) (resp. ϕ(w + (1, ))) is appended
to Lnew; the hashtag of each new permutation is appended to the list G; at the end
of each iteration, W becomes Wnew and L becomes Lnew; if the second argument of
generWF2( , ) is True, the generator prints the status update in the form

time elapsed (in minutes) the length of the list G;

the last status update for generWF2(tt,True) is

time elapsed (in minutes) the order of the group ϕ(F2);
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• for a tuple t = (g0, g1) representing a homomorphism ϕ : F2 → Sd, the function
generWComm(t, timed=None) generates words in F2 that represent distinct elements of
the commutator subgroup [ϕ(F2), ϕ(F2)] of the permutation group ϕ(F2); the generator
goes through all words in F2 of the form xk1yt1xk2yt2 . . . such that

k1 + k2 + · · · ≡ 0 mod ord(g0) and t1 + t2 + · · · ≡ 0 mod ord(g1);

if the second variable of generWComm( , ) is True, the generator prints the update
every time it stores the next 1000 hashtags of new permutations;

• for a tuple t representing N ∈ NFIPB4(B4), gener GT pr(t) generates all GT-pairs with
the target N satisfying the condition gcd(2m+1, Nord) = 1; the outputs are in the tuple
format;

• if wm is a tuple that represents a GT-pair with the target N ∈ NFIPB4(B4) and tt is a
tuple that represents NPB3 , then the command sourcePB3(wm, tt) returns a tuple that
represents

ker(PB3

T
PB3
m,f−→ PB3/N)E PB3 ;

• if wm is a tuple that represents a GT-pair with the target N ∈ NFIPB4(B4) and tt is
a tuple that represents N, then the command sourcePB4(wm, tt) returns a tuple that
represents

ker(PB4

T
PB4
m,f−→ PB4/N)E PB4 ;

• for a tuple t representing N ∈ NFIPB4(B4), gener GT sh(t) generates all GT-shadows
with the target N; the outputs are in the tuple format;

• for a tuple t representing N ∈ NFIPB4(B4), gener GT charm(t) generates all charming
GT-shadows with the target N; the outputs are in the tuple format.

4.1 The class Equiv. Its attributes and methods

The class Equiv has exactly one instance variable and this instance variable is a tuple of 6
permutations. Two instances E and EE of Equiv are equal if and only if the corresponding
(normal) subgroups of PB4 coincide.

In the description of attributes and methods of Equiv given below, N denotes the element
of NFIPB4(B4) represented by instance “self” of the class Equiv. This class has the following
data attributes:

• self.PB4 is the instance variable, i.e. self.PB4 is a tuple of 6 permutations that
represents N ∈ NFIPB4(B4);

• self.PB3 is a tuple of 3 permutations that represents NPB3 ∈ NFIPB3(B3);

• self.N0 is Nord, i.e. the index |PB2 : NPB2|;

• self.xy is a tuple of two permutations that represents NF2 := F2 ∩ NPB3 E F2;

• self.d4 is the degree of permutations in self.PB4;

• self.d3 is the degree of permutations in self.PB3.
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The class Equiv has the following methods:

• self.ind4() returns the index |PB4 : N|;

• self.ind3() returns the index |PB3 : NPB3|;

• self.indF2() returns the index |F2 : NF2 |;

• self.commF2() returns the commutator subgroup of a permutation group isomorphic
to F2/NF2 ; the output is an instance of the class
sympy.combinatorics.perm groups.PermutationGroup; for examples, the command
self.commF2().order() returns the order of the commutator subgroup [F2/NF2 ,F2/NF2 ];

• self.relPB4() returns True if the tuple self.PB4 indeed represents a homomorphism
from PB4 to a permutation group; otherwise the command returns False;

• for an instance E of Equiv, the command self.finer(E) returns True if self is a finer
equivalence relation than E (i.e. if N ≤ NE, where NE is the element of NFIPB4(B4)
represented by E); otherwise, the command returns False;

• for an instance E of the class Equiv, the command self.cap(E) returns an instance of
Equiv that represents N ∩NE; here NE is the element of NFIPB4(B4) represented by E;

• for a permutation pair c that represents a child’s drawing, the command self.subord(c)
returns True if the child’s drawing is subordinate to the equivalence relation “self”, i.e.
if NF2 is a subgroup of the kernel of the homomorphism from F2 corresponding to c;
otherwise, the command returns False.

4.1.1 How we obtained 35 selected elements in NFIPB4(B4)

Recall that listE consists of 35 instances of the class Equiv and elements of listE correspond
to 35 selected element of NFIPB4(B4) (see (1.22)). The procedure fishingE nonAb( , , )
(see line 947 in PaB.py) was used to produce most of elements of listE. We will now explain
what the procedure fishingE nonAb does.

Let L be a (possibly empty) list of instances of the class Equiv, d be a positive inte-
ger and timed ∈ {False,True}. The procedure fishingE nonAb(L, d, timed) looks through
(conjugacy classes of) group homomorphisms ϕ : B4 → Sd and “restricts” them to PB4.
Let us set N := ker(ϕ

∣∣
PB4

). If |PB4 : N| ≥ 6, the finite group F2/NF2 is non-Abelian and

the equivalence relation corresponding to N is not in L, then the procedure appends this
equivalence relation to L. As it runs, the procedure prints updates. If timed is True, then,
at the very end, the procedure will print the time elapsed (in minutes).

To produce most of elements of listE, we used fishingE nonAb for d = 4, 5, 6, 7, 8. We
also let a compute work for day for d = 9 to get more examples of elements N ∈ NFIPB4(B4)
for which F2/NF2 is non-Abelian. Elements N(14),N(24),N(30),N(34) were not produced with the
help of fishingE nonAb. They were produced by intersecting already obtained subgroups
of PB4. More precisely,

N(14) := N(3) ∩ N(4), N(24) := N(10) ∩ N(11), N(30) := N(16) ∩ N(17), N(34) := N(26) ∩ N(27).

See the beginning of [5, Section 4]. As we see in Table 1, listE is sorted by the index
|PB4 : N|.
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We encourage the reader to execute these lines:

Test = [ ]
fishingE nonAb(Test,6,True)

After that, executing the lines:

len(Test)
{E in listE for E in Test}

we get 2 and {True}. In other words, for d = 6, the procedure fishingE nonAb gives us two
elements of NFIPB4(B4) and they are already in listE.

After executing the above commands, the reader may also try to run fishingE nonAb
for d = 7.

It is possible that there are elements N ∈ NFIPB4(B4) represented by group homomor-
phisms PB4 → S9 that do not belong to the list in (1.22) and such that F2/NF2 is non-
Abelian.

4.2 The class GTsh. Its attributes and methods

As we mentioned above, the class GTsh has two instance variables: (w,m) and t. w is a
tuple of 0’s and 1’s and it represents an element of F2, m is a non-negative integer and t is
a tuple of 6 permutations; t represents an element N ∈ NFIPB4(B4). Two instances T and
TT of GTsh represent the same GT-shadows if and only if the command T == TT returns
True.

In the description of attributes and methods of GTsh given below, “self” represents a
GT-shadow [m, f ] (or a candidate for GT-shadow) with the target N. The class GTsh has
the following data attributes:

• self.wm returns the first instance variable of self , i.e. the tuple (w,m), where the
tuple w represents f ∈ F2;

• self.w returns the tuple w, i.e. self.wm[0];

• self.tar returns the instance of the class Equiv that represents N ∈ NFIPB4(B4); for
instance, the command self.tar.PB4 returns the tuple of 6 permutations that also
represents N;

• self.cc ch returns the value of the virtual cyclotomic character of self , i.e. the remain-
der of the division of 2m+ 1 by Nord;

• self.g returns the image of self.w (i.e. the image of f) in a permutation group isomor-
phic to F2/NF2 .

The class GTsh has the following methods:

• self.is GTpr() returns True if the pair (m, f) satisfies hexagon relations (1.6), (1.7),
pentagon relation (1.8), and 2m + 1 represents a unit in the ring Z/NordZ; otherwise,
the command returns False;
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• if self represents a GT-shadow, then self.src() returns the source of [m, f ] viewed as
the morphism in the groupoid GTSh; the output is an instance of the class Equiv;

• self.is GTsh() returns True if self represents7 a (practical) GT-shadow; otherwise, the
command returns False;

• self.is charm() returns True if self represents a charming GT-shadow; otherwise, the
command returns False;

• self.settled() returns True if self represents a settled GT-shadow, i.e. the source of the
morphism [m, f ] in the groupoid GTSh coincides with its target; note that the command
self.settled() does not verify whether [m, f ] is charming or not, so it can be applied to
morphisms of the groupoid GTSh and to morphisms of the sub-groupoid GTSh♥; if the
GT-shadow [m, f ] is not settled then the command self.settled() returns False;

• E be an instance of the class Equiv that represents NE ∈ NFIPB4(B4) and N ≤
NE; self.proj(E) returns an instance of GTsh that represents the image of [m, f ] in
GT♥(NE) with respect to the natural map GT♥(N)→ GT♥(NE) (see (1.13)); note that
this method can also be applied to instances of GTsh that represent elements of GT(N);

• let NE be an element of NFIPB4(B4) represented by an instance E of the class Equiv
and NE ≤ N; the command self.survives(E) returns True if self belongs to the image
of the natural projection GT♥(NE) → GT♥(N) (see (1.13)); this command may work
slowly if the order of the commutator subgroup [F2/N

E
F2
, F2/N

E
F2

] is greater than 105;
for this method, it is important that self represents a charming GT-shadow with the
target N;

• let K be the source of the GT-shadow [m, f ] and other be an instance of the class GTsh
that represents a GT-shadow [m′, f ′] with the target K; the command self.compose(other)
returns an instance of the class GTsh that represents the composition [m, f ] ◦ [m′, f ′]
(see eq. (2.55) in [5, Section 2.5]); the method tests whether the target of other coin-
cides with the source of self ; if they do not coincide the command self.compose(other)
returns an error message;

• assuming that [m, f ] is a charming GT-shadow, the command self.inv() returns an
instance of GTsh that represents the inverse of [m, f ] in the groupoid GTSh♥; note
that the method finds the inverse by generating GT-shadows in GT♥(K) where K is
the source of [m, f ]; this command may work slowly if the order of the commutator
subgroup [F2/KF2 , F2/KF2 ] is greater than 105;

• let c be a tuple (of two permutations) that represents a child’s drawing D; it is as-
sumed that D is subordinate to N; the command self.act(c) returns a tuple (of two
permutations) that represents the child’s drawing D[m,f ] (see [4, Theorem 3.1]).

4.3 The class Dessin. Its attributes and methods. Additional functions from
PaB.py

Instances of the class Dessin represent child’s drawings. The instance variable pr is a tuple
of two permutations (c1, c2) in Sd such that the subgroup 〈 c1, c2 〉 ≤ Sd is transitive. For

7This part of the code is justified by [5, Proposition 2.10].
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two instances D and DD of Dessin represented by pairs (c1, c2) and (c̃1, c̃2), the command
D == DD returns True if and only if D and DD have the same degree d and there exists
h ∈ Sd such that c̃1 = hc1h

−1 and c̃2 = hc2h
−1.

The class Dessin has the following data attributes:

• self.pr returns the instance variable, i.e. a tuple (c1, c2) of permutations that represents
the child’s drawing;

• self.d returns the degree of the child’s drawing represented by self ;

• self.full returns the permutation triple (c1, c2, c
−1
2 c−1

1 );

• self.passport returns the passport of the child’s drawing represented by self ; the output
of self.passport is a nested tuple of length 3; each entry of this tuple is a partition
of d; for instance, Dessin((permut(2, 3), permut(0, 1, 2))).passport returns the tuple
((2, 1, 1), (3, ), (4, )).

The class Dessin has the following methods:

• self.monG() returns the monodromy group 〈 c1, c2 〉 of the child’s drawing self ;

• self.is transitive() returns True if self indeed represents a child’s drawing, i.e. if the
permutation group 〈 c1, c2 〉 is transitive; otherwise, the method returns False;

• self.genus() returns the genus of the covering of CP1 \ {0, 1,∞} corresponding to the
child’s drawing self ;

• self.is Galois() returns True if the covering map corresponding to self is Galois; oth-
erwise, the method returns False.

Here is the description of additional functions8 from the Python file PaB.py:

• Let N be an isolated element of NFIPB4(B4) and L be a list of instances of the class GTsh
that represent all elements of GT♥(N); the command shadows2perm group(L, timed =
None) returns the corresponding permutation group as a subgroup of Sd where d is the
size of GT♥(N); the output is an instance of the class
sympy.combinatorics.perm groups.PermutationGroup; note that d is also the order of
this permutation group; if the second (optional) argument is True, then the command
also prints how much time it took to form the permutation group;

• shadows2perm group choice( , timed = None) is a version of
shadows2perm group( , timed = None) in which non-identity elements of GT♥(N) are
chosen randomly; here it is assumed that L[0] represents the identity element of the
group GT♥(N); sometimes, this function works faster than
shadows2perm group( , timed = None);

• Let N be an isolated element of NFIPB4(B4), L be a list of instances of the class
GTsh that represent all elements of GT♥(N), and T be an element of L; the com-
mand shadow2perm(T, L) returns the permutation in Slen(L) corresponding to the left

action of the corresponding GT-shadow on GT♥(N); we assume that L[0] represents
the identity element of the group GT♥(N); the output is an instance of the class
sympy.combinatorics.permutations.Permutation;

8Most of these functions are for working with child’s drawings.
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• for a positive integer d, the command dessin star(d) returns a tuple that represents the
child’s drawing with one black vertex of valency d and d univalent white vertices;

• for a positive integer d, the command dessin path(d) returns a tuple that represents
the child’s drawing, whose graph is the path graph with d edges; if d is even, then the
corresponding graph has 2 black univalent vertices;

• for a tuple tup of three partitions of an integer d ≥ 2, gener dessin pt(tup) is a generator
of all child’s drawing (in the tuple format) with the passport tup; note that there are
triples of partitions that are not passports for any child’s drawing;

• for a positive integer d, gener dessin(d) is a generator of all child’s drawing of degree
d; the outputs are given in the tuple format; this generator has a limited practical value
for d > 7;

• for a positive integer d, the command rand dessin(d) returns a permutation pairs that
represents a “relatively random” child’s drawing of degree d;

• for a tuple c that represents a child’s drawingD subordinate to N ∈ NFIPB4(B4) and a list
L of GT-shadows with the target N, the command orbit(c, L) returns the corresponding
orbit of D; elements of L are instances of the class GTsh; the output of orbit( , ) is a
list whose entries are instances of the class Dessin;

• for an instance of the class Equiv and a positive integer d, srch dessin(E, d) is a
generator of all (if any) child’s drawings of degree d subordinate to the equivalence
relation represented by E; the outputs of the generator are tuples of permutations;

• for a tuple x that represents a homomorphism ψ : PB4 → Sn, the command
conjBySig1(x) (resp. conjBySig2(x), conjBySig3(x)) returns a tuple that represents

the homomorphism ψ̃ : PB4 → Sn defined by the formula ψ̃(w) := ψ(σ1wσ
−1
1 ) (resp. by

the formula ψ̃(w) := ψ(σ2wσ
−1
2 ), ψ̃(w) := ψ(σ3wσ

−1
3 )); of course, ker(ψ̃) = σ−1

1 ker(ψ)σ1

(resp. ker(ψ̃) = σ−1
2 ker(ψ)σ2, ker(ψ̃) = σ−1

3 ker(ψ)σ3);

• for a tuple x that represents a finite index normal subgroup H in PB4, the command
isNormB4(x) returns True if HE B4; otherwise, the command returns False;

• for a tuple c that represents a child’s drawing of degree d, the command dessin2PB4(c)
returns a tuple that represents a group homomorphism ϕ : PB4 → Sd with the following
property: the intersection of F2 ≤ PB3 ≤ PB4 with the kernel of ϕ is the kernel of the
group homomorphism F2 → Sd corresponding to c;

• for a tuple tt that represents a normal subgroup (of finite index) K in PB4, the command
B4 inv(tt) returns a tuple that represents a normal core of K in B4; thus, for every
tuple c that represents a child’s drawing, the tuple B4 inv(dessin2PB4(c)) represents
an element of NFIPB4(B4) the dominates the child’s drawing [c];

• let xy be a tuple of two permutations and H be a subgroup of a permutation group
G generated by elements of xy (tuple xy represents a group homomorphism F2 → G);
the command subgrp2dessin(H, xy) returns a tuple that represents a child’s drawing
corresponding to the action of F2 on the set G/H of left cosets of H in G; the index of
H in G is the degree of this child’s drawing.
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For example, the commands len(list(gener dessin(3))) and len(list(gener dessin(4)))
return 7 and 26, respectively. This means that there are exactly 7 child’s drawings of degree
3 and exactly 26 child’s drawings of degree 4.

Executing the lines:

for i in range(5):
t = dessin2PB4(rand dessin(8))
print(isNormB4(t))

we see that a “typical” normal subgroup (of finite index) in PB4 is not normal in B4.

5 Playing with selected examples of elements of NFIPB4
(B4), GT-

shadows and their action on child’s drawings

5.1 Looking for charming GT-shadows that are fake

Recall that an GT-shadow [m, f ] ∈ GT♥(N) is fake if it does not come from an element of

ĜT. Due to [5, Corollary 3.13], a GT-shadow [m, f ] ∈ GT♥(N) is fake if and only if there
exists K ∈ NFIPB4(B4) such that

• K ≤ N and

• [m, f ] does not survive into K, i.e. [m, f ] does not belong to the image of the natural
map in (1.13).

We will now describe functions from PaB.py that may be used to look for charming
GT-shadows that are fake.

5.1.1 Looking for fake GT-shadows using function charm fake search

The function charm fake search( , , ) has 3 arguments: E, EE, num. E and EE are
instances of the class Equiv that represent N,K ∈ NFIPB4(B4) and num is the total number
of charming GT-shadows with the target N. We assume that K ≤ N, i.e. the equiva-
lence relation represented by EE is finer than the one represented by E. The command
charm fake search(E,EE, num) returns True if all charming GT-shadows with the target
N survive into K; otherwise, the command returns False.

The following command gives us the list of pairs (i, j) such that i < j and N(j) ≤ N(i):

pairs=[p for p in comb(range(35),2) if listE[p[1]].finer(listE[p[0]])]

Executing9 the line:

{ charm fake search(listE[p[0]],listE[p[1]], len(GTcharm[p[0]])) for p in pairs }

we get {True}. This implies that, for every pair (i, j) ∈ {0, . . . , 34}2 such that i < j and
N(j) ≤ N(i), the natural map

GT♥(N(j))→ GT♥(N(i))

9This command may take more than a minute.
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is onto.

5.1.2 Looking for fake GT-shadows using function charm fake4isolated

The function charm fake4isolated( , , ) has 3 arguments: E, EE, num. E and EE are
instances of the class Equiv that represent elements N,K ∈ NFIPB4(B4) and num is the total
number of charming GT-shadows whose target is N. It is assumed that K ≤ N and N, K are
isolated objects of GTSh♥ (i.e. the connected component GTSh♥conn(N) (resp. GTSh♥conn(K))
of N (resp. of K) in the groupoid GTSh♥ has exactly one object).

The command charm fake4isolated(E,EE, num) returns True if every GT-shadow in
GT♥(N) survives into K; otherwise the command returns False.

The function charm fake4isolated( , , ) generates all elements of GT♥(K) and produces
their images in GT♥(N). If, in the process of execution, the function gets > num//2 distinct
charming GT-shadows with the target N, then the function returns True. Here, it is important
that GT♥(K) and GT♥(N) are finite groups and the natural map GT♥(K) → GT♥(N) is a
group homomorphism. (See Remark 1.1.) Remark 1.1 implies that the elements of GT♥(N)
that survive into K form a subgroup of GT♥(N). Since GT♥(N) cannot have proper subgroups
of order> |GT♥(N)|//2, the code for the function charm fake4isolated( , , ) works correctly.

Let us consider the intersection N := N(19) ∩ N(23). Both N(19) and N(23) are isolated.
GT♥(N(19)) (resp. GT♥(N(23))) is a group of order 12 (resp. 42). The quotient F2/NF2 has
order 192, 036, 096 = 28 · 37 · 73 and the commutator subgroup [F2/NF2 ,F2/NF2 ] has order
108, 864 = 26 · 35 · 7.

Using charm fake4isolated( , , ) on iMac with the processor 3.4 GHz (Quad-Core Intel
Core i5) it took over an hour to verify that every charming GT-shadow in GT(N(19)) survives
into N. On the other hand, on the same iMac, it took less than a minute to verify that every
charming GT-shadow in GT(N(23)) survives into N.

Let us consider element N(7) from list (1.22) and element Ndde6 stored (in the tuple format)
in the file E dde6genus0. Both N(7) and Ndde6 are isolated objects of the groupoid GTSh♥;
GT♥(N(7)) is a group of order 12 = 22 · 3 and GT♥(Ndde6) is a group of order 32 = 25. Since
N(7) and Ndde6 are isolated, so is the element K := N(7) ∩ Ndde6.

Executing the following10 lines:

Edde6 = Equiv(load now(E dde6genus0))
EE = listE[7].cap(Edde6)
GT = [GTsh(wm,Edde6.PB4) for wm in gener GT charm(Edde6.PB4)]
charm fake4isolated(listE[7],EE,len(GTcharm[7]))
charm fake4isolated(Edde6,EE,len(GT))

we get True and True. This shows that the natural maps GT♥(K) → GT♥(N(7)) and
GT♥(K)→ GT♥(Ndde6) are onto, i.e. every charming GT-shadows with the target N(7) (resp.
with the target Ndde6) survives into K := N(7) ∩ Ndde6.

5.2 On various versions of the Furusho property

Various versions of the Furusho property are motivated by the statement which says roughly
that, in the pro-unipotent setting, the pentagon relation implies the two hexagon relations.

10The last command may take more than 5 minutes.
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For a precise formulation of this statement, we refer the reader to [2, Theorem 3.1] and [8,
Theorem 1].

We say that an element N ∈ NFIPB4(B4) satisfies the strong Furusho property (see [5,
Section 4.3]) if

Property 5.1 For every fNF2 ∈ F2/NF2 satisfying pentagon relation (1.8) modulo N, there
exists m ∈ Z such that

• 2m+ 1 represents a unit in Z/NordZ and

• the pair (m, f) satisfies hexagon relations (1.6), (1.7).

Since every genuine GT-shadow can be represented by a pair (m, f) with f ∈ [F2,F2], it
makes sense to consider the weaker version of Property 5.1:

Property 5.2 For every fNF2 ∈ [F2/NF2 ,F2/NF2 ] satisfying pentagon relation (1.8) modulo
N, there exists m ∈ Z such that

• 2m+ 1 represents a unit in Z/NordZ and

• the pair (m, f) satisfies hexagon relations (1.6), (1.7).

Since there are examples of N ∈ NFIPB4(B4) that satisfy neither Property 5.1 nor Property
5.2, one could say that there is no version of Furusho’s theorem for GT-shadows. Still, it
is worth mentioning that some elements N ∈ NFIPB4(B4) satisfy Property 5.2 and some of
these elements satisfy Property 5.1.

Here are selected functions for working with questions related to the Furusho property:

• for a tuple w that represents an element of F2 and an instance E of the class Equiv
that represents N ∈ NFIPB4(B4), the command onto(w,E) returns True if there exists m

such that (2m+1)+NordZ ∈
(
Z/NordZ

)×
and the cosets x2m+1

12 NPB3 , w
−1x2m+1

23 wNPB3 ,
c2m+1NPB3 generate the group PB3/NPB3 ; otherwise, the command returns False;

• for an instance E of the class Equiv that represents N ∈ NFIPB4(B4) and a tuple w
that represents f ∈ F2 satisfying pentagon relation (1.8), the command furusho(w,E)
returns True if the set{
m ∈ {0, 1, . . . , Nord − 1}

∣∣ 2m+ 1 ∈
(
Z/NordZ

)×
, (m, f) satisfies (1.6) and (1.7)

}
is non-empty; otherwise, the command returns False;

• for an instance E of the class Equiv that represents N ∈ NFIPB4(B4), furusho test(E)
is a generator of tuples of length 2: the first entry is a word w (of 0’s and 1’s) that
satisfies pentagon relation (1.8) and the second entry is the output furusho(w,E);

• for an instance E of the class Equiv that represents N ∈ NFIPB4(B4),
furusho test comm(E) is a generator of tuples of length 2: the first entry is a word
w (of 0’s and 1’s) that represents an element of [F2/NF2 ,F2/NF2 ] satisfying pentagon
relation (1.8) and the second entry is the output furusho(w,E);
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• for an instance E of the class Equiv that represents N ∈ NFIPB4(B4), the command
furusho test1(E) returns False if there exists fNF2 ∈ F2/NF2 that satisfies pentagon
relation (1.8) and such that the set{
m ∈ {0, 1, . . . , Nord − 1}

∣∣ 2m+ 1 ∈
(
Z/NordZ

)×
, (m, f) satisfies (1.6) and (1.7)

}
is empty; otherwise, the command returns True;

• for an instance E of the class Equiv that represents N ∈ NFIPB4(B4), the command
furusho test comm1(E) returns False if there exists fNF2 ∈ [F2/NF2 ,F2/NF2 ] that sat-
isfies pentagon relation (1.8) and such that the set{
m ∈ {0, 1, . . . , Nord − 1}

∣∣ 2m+ 1 ∈
(
Z/NordZ

)×
, (m, f) satisfies (1.6) and (1.7)

}
is empty; otherwise, the command returns True.

Using the function furusho test1( ), we showed that every N in the following list of 11
elements (out of 35 elements in (1.22))

N(1), N(2), N(3), N(4), N(6), N(7), N(9), N(10), N(11), N(14), N(24) (5.1)

satisfy Property 5.1.
Similarly, using the function furusho test comm1 we showed that every N in the following

list of 13 elements (out of 35 elements in (1.22))

N(0), N(1), N(2), N(3), N(4), N(5), N(6), N(7), N(9), N(10), N(11), N(14), N(24) (5.2)

satisfy Property 5.2.
For example N(5) does not belong to list (5.1). Executing the lines:

Test = list(furusho test(listE[5]))
Test ok = [p for p in Test if p[1]]
len(Test)
len(Test ok)

we see that exactly 72 elements fN
(5)
F2
∈ F2/N

(5)
F2

satisfy pentagon relation (1.8) (modulo N(5))
and, for exactly half of these elements, the set{

m ∈ {0, . . . , 5}
∣∣ 2m+ 1 ∈

(
Z/6Z

)×
, (m, f) satisfies (1.6) and (1.7) modulo N

(5)
PB3

}
is non-empty (N

(5)
ord = 6).

Element N(8) does not belong to list (5.2). Executing the lines:

Test = list(furusho test comm(listE[8]))
Test ok = [p for p in Test if p[1]]
len(Test)
len(Test ok)
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we see that exactly 16 elements fN
(8)
F2
∈ [F2/N

(8)
F2
,F2/N

(8)
F2

] satisfy pentagon relation (1.8)

(modulo N(8)) and, for exactly 10 of these 16 elements, the set{
m ∈ {0, . . . , 4}

∣∣ 2m+ 1 ∈
(
Z/5Z

)×
, (m, f) satisfies (1.6) and (1.7) modulo N

(8)
PB3

}
is non-empty (N

(8)
ord = 5).

We should remark, even if N ∈ NFIPB4(B4) satisfies Property 5.1, it does not mean that
every element in (m, fNF2) ∈ {0, 1, . . . , Nord − 1} × F2/NF2 satisfying the pentagon relation
and the hexagon relations is a GT-shadow. More precisely, for some of these pairs, the
homomorphism TPB3

m,f : PB3 → PB3/NPB3 is not onto.

For instance, N(11) satisfies Property 5.1. However, executing the lines:

Test = [ ]
for w in generWF2(listE[11].xy,None):

if penta((w,0),listE[11].PB4):
for m in m units(listE[11].N0):

if hexa1((w,m),listE[11].PB3) and hexa2((w,m),listE[11].PB3):
Test.append((w,m))

Test ok = [wm for wm in Test if GTsh(wm,listE[11].PB4).is GTsh()]
len(Test)
len(Test ok)

we see that the set11

{(m, fN(11)
F2

) ∈ {0, 1, 2, 3} × F2/N
(11)
F2
| (m, fN

(11)
F2

) satisfies (1.6), (1.7), (1.8)}

has 24 elements and only 16 of these 24 elements represent GT-shadows.
Similarly, executing the lines:

Test = [ ]
for w in generWComm(listE[11].xy,None):

if penta((w,0),listE[11].PB4):
for m in m units(listE[11].N0):

if hexa1((w,m),listE[11].PB3) and hexa2((w,m),listE[11].PB3):
Test.append((w,m))

Test ok = [wm for wm in Test if GTsh(wm,listE[11].PB4).is GTsh()]
len(Test)
len(Test ok)

we see that the set

{(m, fN(11)
F2

) ∈ {0, 1, 2, 3} × [F2/N
(11)
F2

,F2/N
(11)
F2

] | (m, fN
(11)
F2

) satisfies (1.6), (1.7), (1.8)}

has 12 elements and only 8 of these 12 elements represent GT-shadows (in fact, these 8
elements represent charming GT-shadows).

11N
(11)
ord = 4 and, for every 0 ≤ m ≤ 3, 2m + 1 represents a unit in Z/4Z.
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5.3 Playing with child’s drawings and their GTSh♥-orbits

Several selected examples of child’s drawings and their GTSh♥-orbits are described in [4,
Section 5].

In this section, we present more examples of using the commands related to child’s draw-
ings and to the action of the groupoid GTSh♥ on child’s drawings.

Since the groupoid GTSh (and the groupoid GTSh♥) acts trivially on Abelian child’s
drawings (see [4, Corollary 4.7]), we will focus only on non-Abelian examples.

Executing the lines:

LD3 = [c for c in gener dessin(3) if c[0]*c[1]!=c[1]*c[0]]
LD4 = [c for c in gener dessin(4) if c[0]*c[1]!=c[1]*c[0]]
LD5 = [c for c in gener dessin(5) if c[0]*c[1]!=c[1]*c[0]]

we form a list LD3 (resp. LD4, LD5) of all non-Abelian child’s drawings of degree 3 (resp.
degree 4, degree 5). Executing the commands len(LD3), len(LD4) and len(LD5), we see
that there are exactly 3 (resp. 19, 91) non-Abelian child’s drawings of degree 3 (resp. degree
4, 5).

Executing the lines:

LD3 E = [[i for i in range(35) if listE[i].subord(c)] for c in LD3]
LD4 E = [[i for i in range(35) if listE[i].subord(c)] for c in LD4]
LD5 E = [[i for i in range(35) if listE[i].subord(c)] for c in LD5]

for L in LD3 E:
print(L)

LD4 ok = [LD4[i] for i in range(len(LD4)) if len(LD4 E[i])>0]
LD5 ok = [LD5[i] for i in range(len(LD5)) if len(LD5 E[i])>0]

for c in LD4 ok:
display perm(c[0]); display perm(c[1])
print(i for i in range(35) if listE[i].subord(c))
print(’ ’)
print(’ ’)

for c in LD5 ok:
display perm(c[0]); display perm(c[1])
print(i for i in range(35) if listE[i].subord(c))

we see that

• every non-Abelian child’s drawing of degree 3 is subordinate to N(12) and to N(19) from
the list in (1.22);

• LD4 ok is a list of 3 non-Abelian child’s drawings of degree 4 and each child’s drawing
in LD4 ok is subordinate to element N(0) or to element N(2) from the list in (1.22);
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all the remaining non-Abelian child’s drawings of degree 4 are not subordinate to any
element from (1.22);

• LD5 ok has length 1 and LD5 ok[0] represents a non-Abelian child’s drawings of de-
gree 5 that is subordinate to elements N(8),N(13),N(18),N(20),N(25) from (1.22); all the
remaining non-Abelian child’s drawings of degree 5 are not subordinate to any element
from (1.22).

Let us denote by D4,12, D4,8,1, D4,8,2 the child’s drawings represented by elements of
LD4 ok. The child’s drawings D4,12, D4,8,1 and D4,8,2 are also represented12 by the following
permutation pairs:

((1, 2, 3), (2, 4, 3)), (5.3)

((1, 2)(3, 4), (2, 3)), (5.4)

((1, 2), (1, 3)(2, 4)), (5.5)

respectively. The monodromy group of D4,12 has order 12 (it is obviously the alternating
group A4) and the monodromy groups of D4,8,1 and D4,8,2 are of order 8. The results of the
above commands show that D4,12 is subordinate to elements

N(2), N(5), N(6), N(7), N(9), N(19), N(21), N(25),

and D4,8,1, D4,8,2 are subordinate to elements N(0),N(1),N(10),N(11),N(24) from the list in
(1.22). In particular, the element N(0) ∩ N(2) dominates all 3 child’s drawings D4,12, D4,8,1

and D4,8,2.
Let us denote by D5,2 the child’s drawing represented by LD5 ok[0]. This child’s drawing

has genus 2 and it is also represented by the permutation pair:

((1, 2, 3, 4, 5), (1, 2, 4, 5, 3)). (5.6)

As we mentioned above, D5,2 is subordinate to elements N(8),N(13),N(18),N(20),N(25) from the
list in (1.22).

The child’s drawing D5,2 can be represented a Belyi pair defined over Q and one such Belyi
pair can be found in https://beta.lmfdb.org/Belyi/5T4/5/5/5/a/. Indeed, by manually
copying the permutation pair from https://beta.lmfdb.org/Belyi/5T4/5/5/5/a/ and ex-
ecuting the line:

Dessin((permut(0,1,2,3,4), permut(0,2,3,1,4))) == Dessin(LD5 ok[0])

we see that D5,2 and the Belyi pair from https://beta.lmfdb.org/Belyi/5T4/5/5/5/a/

represent the same child’s drawing.
Executing the lines:

EE = listE[0].cap(listE[2])
GT0 2 = [GTsh(wm,EE.PB4) for wm in gener GT charm(EE.PB4)]

we get an instance EE of Equiv that represents the element N(0) ∩ N(2) and the list GT0 2
of all charming GT-shadows with the target N(0) ∩ N(2).

12Since the output of the command list(G.elements) for a permutation group G depends on the computer session, you may
get different representatives for child’s drawings D4,12, D4,8,1 and D4,8,2.
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Executing the commands {len(orbit(c,GTcharm[12])) for c in LD3},
{len(orbit(c,GT0 2)) for c in LD4 ok} and len(orbit(LD5 ok[0], GTcharm[8])), we see
that

• GT♥(N(12)) acts trivially on all non-Abelian child’s drawing of degree 3;

• GT♥(N(0) ∩ N(2)) acts trivially on D4,12, D4,8,1 and D4,8,2;

• GT♥(N(8)) acts trivially on D5,2.

It is known (see, for example, [10]) that GQ acts trivially on all child’s drawings of degree
≤ 4. However, there are child’s drawings of degree 5 on which GQ acts non-trivially. Several
examples of such child’s drawings can be found in [10] (as well as in many other articles
and surveys on this topics). Using this package, one can show that the child’s drawing D5,0

stored in file dde5genus0 is subordinate to an element Ndde5 stored (in the tuple format) in
the file E dde5genus0 and the orbit

GT♥(Ndde5)(D5,0) = GQ(D5,0)

has size 2. More details about D5,0 can be found in [4, Section 5].

Recall that the Philadelphia subgroup N(19) is an isolated object of the groupoid GTSh♥.
In particular, GT♥(N(19)) is a group. Executing the lines:

LD6 19 = [ ]
for c in srch dessin(listE[19], 6):

if c[0]*c[1] != c[1]*c[0]:
LD6 19.append(c)

len(LD6 19)
{len(orbit(c, GTcharm[19])) for c in LD6 19}

we see that there are exactly 28 non-Abelian child’s drawings of degree 6 subordinate to
N(19) and the group GT(N(19)) acts trivially on all these child’s drawings.

Executing the command c6 = load now(′dde6genus0′), we pull yet another example D6,0

of a child’s drawing of degree 6. D6,0 is represented by the permutation triple(
(1, 4, 5, 2)(3, 6), (1, 6, 3, 2)(4, 5), (1, 3)(2, 4)

)
(5.7)

and by the Belyi pair from https://beta.lmfdb.org/Belyi/6T10/4.2/4.2/2.2.1.1/a/

Executing13 the lines:

tt = B4 inv(dessin2PB4(c6))
EE = Equiv(tt)
GTdde6=[GTsh(wm, EE.PB4) for wm in gener GT charm(EE.PB4)]

we get an instance EE of Equiv that represents an element Ndde6 that dominates D6,0.

Executing the command orbit(c6, GTdde6), we see that the orbit GT♥(Ndde6)(D6,0) has size
two.

13The third line may take more than a minute.
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Copying the permutation pair that represents the Galois conjugate of D6,0 from https:

//beta.lmfdb.org/Belyi/6T10/4.2/4.2/2.2.1.1/a/ manually and executing the line:

Dessin((permut(0,3,4,1)(2,5), permut(0,1,4,5)(2,3))) == orbit(c6, GTdde6)[1]

we see that the GQ-orbit of D6,0 coincides with GT♥(Ndde6)(D6,0).

5.3.1 Producing child’s drawings subordinate to N using proper subgroups of F2/NF2

Another possible way of producing child’s drawings subordinate to a given element N ∈
NFIPB4(B4) is based on using subgroups of F2/NF2 . Indeed, we have the standard bijection
between subgroups H ≤ F2/NF2 of index d and subgroups H̃ ≤ F2 of index d such that
NF2 ≤ H̃. For every such H ≤ F2/NF2 , the left action of F2 on the set F2/H̃ of left cosets
of H̃ gives us a child’s drawing subordinate to N. This idea is implemented in the function
subgrp2dessin( , ) described in Section 4.3.

Here is an example of looking for child’s drawings subordinate to N(21) from the list in
(1.22). Executing the lines:

G = PG(listE[21].xy); LG = list(G.elements); gen = [ ]
for i in range(10):

a=choice(LG); b=choice(LG)
d=PG(a,b).order()
if d < G.order( ):

gen.append((a,b))
print(’I found a proper subgroup of index ’, G.order( )//d)

we found14 6 pairs (a, b) of elements of G for which the subgroups 〈 a, b 〉 have indicies:

54, 36, 54, 12, 36, 27.

Since 12 is the smallest index, we produced a child’s drawing D12,3 of degree 12 subordinate
to N(21) by executing the command c12 = subgrp2dessin(PG(gen[3]), listE[21].xy). (It is
also a good idea to execute the command listE[21].subord(c12).)

By executing the command len(orbit(c12, GTcharm[21])), we verified that GT♥(N(21))
acts trivially on D12,3. Hence GQ also acts trivially on D12,3. (The child’s drawing D12,3 is
stored (in the tuple format) in file dde12E21.)

Using the function subgrp2dessin( , ) in the similar way, we produced the child’s drawing
D36,10 subordinate to N(21) and stored in file dde36E21. Executing15 the lines:

c36 = load now(’dde36E21’); T = GTcharm[21][1]; T.wm
Dessin(T.act(c36)) == Dessin(c36)

we see that (the GT-shadow coming from) the complex conjugation acts non-trivially on
D36,10. In particular, the orbit GT♥(N(21))(D36,10) has size ≥ 2. (If you are patient and/or
you have a relatively fast computer, you may also try to execute the command

14The specific results depend heavily on the computer session.
15The second line may take more than a minute.
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len(orbit(c36, GTcharm[21])). The author guesses that the orbit GT♥(N(21))(D36,10) has size
2.)

6 Descriptions of storage files

• subGrPB4 org35 contains the list of 35 selected elements (1.22) of NFIPB4(B4); each
element is stored as a tuple that represents a group homomorphism from PB4 to a
permutation group;

• wm list charm35 contains the nested list of length 35; its i-th entry is the list of all
elements in GT♥(N(i)) (in the tuple format), where N(i) is the i-th entry of the list stored
in subGrPB4 org35;

• wm list all31 contains the nested list of length 31; its i-th entry (for 0 ≤ i ≤ 30) is the
list of all GT-shadows (in the tuple format) in GT(N(i)), where N(i) is the i-th entry of
the list stored in subGrPB4 org35;

• wm list31 all contains the list of all elements in GT(N(31)) (in the tuple format); this
list has 588 elements; for the iMac with the processor 3.4 GHz, Intel Core i5, it took
approximately 9.5 full days to complete this task;

• wm list32 all contains the list of all elements in GT(N(32)) (in the tuple format); this
list has 800 elements; for the iMac with the processor 3.4 GHz, Intel Core i5, it took
almost 10 full days to complete this task;

• Mighty Dandy wm list contains the list of the found 4374 (practical) GT-shadows
for the Mighty Dandy N(34); each GT-shadow is given in the tuple format; note that
GT(N(34)) may contain more (practical) GT-shadows;

• G Mighty Dandy contains an instance of the class
sympy.combinatorics.perm groups.PermutationGroup that represents a subgroup of
S486 isomorphic to the group GTSh♥(N(34),N(34)) = GT♥(N(34));

• Leila PB4 contains Leila’s subgroup NL ∈ NFIPB4(B4) and it is given in the tuple
format; here is the basic information about NL:

– NL is the kernel of a group homomorphism PB4 → S130, NLPB3
is the kernel of a

homomorphism PB3 → S130 and NLord = 12,

– |PB4 : NL| = 285, 315, 214, 344, 192 = 229 · 312 ≈ 3 · 1014,

– |PB3 : NLPB3
| = 2, 985, 984 = 212 · 36 ≈ 3 · 106,

– |F2 : NLF2
| = 248, 832 = 210 · 35, the order of the commutator subgroup of F2/N

L
F2

is
1728 = 26 · 33,

– NL is an isolated element of NFIPB4(B4) and GT♥(NL) is a non-Abelain group of
order 48 = 24 · 3.

• wm list Leila contains the list of all elements of GT♥(NL) in the tuple format; as we
mentioned above, GT♥(NL) is a non-Abelian group of order 48 = 24 · 3; its 3-Sylow
subgroup is normal but its 2-Sylow subgroup is not normal; a 2-Sylow subgroup of
GT♥(NL) is non-Abelian;
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• dde4Many contains the child’s drawingD4,0 (in the tuple format) of degree 4 represented
by the first bipartite ribbon graph in figure 6.1 on page 39; D4,0 is also represented by
the permutation triple: (

(1, 2, 3), (2, 4, 3), (1, 4, 2)
)
,

and the Belyi pair from https://beta.lmfdb.org/Belyi/4T4/3.1/3.1/3.1/a/; its
passport is ((3, 1), (3, 1), (3, 1)) and its genus is 0; D4,0 is subordinate to the elements

N(2), N(5), N(6), N(7), N(9), N(19), N(21), N(25) from the list in (1.22); the orbit GT♥(N(2))(D4,0)
(as well as the orbit GQ(D4,0)) is a singleton;

• dde5genus0 contains the child’s drawing D5,0 (in the tuple format) of degree 5; D5,0 is
represented by the permutation triple(

(1, 4, 5, 2), (2, 3, 5, 4), (1, 4)(2, 3)
)

and by the Belyi pair from https://beta.lmfdb.org/Belyi/5T3/4.1/4.1/2.2.1/a;
the passport of D5,0 is (

(4, 1), (4, 1), (2, 2, 1)
)

and its genus is 0; D5,0 is subordinate to the element Ndde5 stored in file E dde5genus0

and the orbit GT♥(Ndde5)(D5,0) (as well as the orbit GQ(D5,0)) has size 2;

• dde6genus0 contains the child’s drawing D6,0 (in the tuple format) of degree 6; D6,0 is
represented by the permutation triple(

(1, 4, 5, 2)(3, 6), (1, 6, 3, 2)(4, 5), (1, 3)(2, 4)
)

and by the Belyi pair from https://beta.lmfdb.org/Belyi/6T10/4.2/4.2/2.2.1.

1/a; the passport of D6,0 is (
(4, 2), (4, 2), (2, 2, 1, 1)

)
and its genus is 0; D6,0 is subordinate to the element Ndde6 stored in file E dde6genus0

and the orbit GT♥(Ndde6)(D6,0) (as well as the orbit GQ(D6,0)) has size 2;

• dde7E28 contains the child’s drawing D7,0,28 (in the tuple format); D7,0,28 is represented
by the permutation triple:(

(1, 2, 3, 4, 5), (3, 6, 7, 5, 4), (1, 7, 6, 3, 2)
)

and it is subordinate to N(28); its passport is ((5, 1, 1), (5, 1, 1), (5, 1, 1)) and its genus is
zero; the orbit GT♥(N(28))(D7,0,28) is a singleton (hence the GQ-orbit of D7,0,28 is also a
singleton); a Belyi pair that represents D7,0,28 can be found at https://beta.lmfdb.

org/Belyi/7T6/5.1.1/5.1.1/5.1.1/a/;

• dde7E29 contains the child’s drawing D7,0,29 (in the tuple format); D7,0,29 is represented
by the permutation triple:(

(1, 2, 3)(4, 5)(6, 7), (1, 5, 6)(2, 7)(3, 4), (1, 4)(2, 6)(3, 7, 5)
)

and it is subordinate to N(29); its passport is ((3, 2, 2), (3, 2, 2), (3, 2, 2)) and its genus is
zero; the orbit GT♥(N(29))(D7,0,29) is a singleton (hence the GQ-orbit of D7,0,29 is also a
singleton); a Belyi pair that represents D7,0,29 can be found at https://beta.lmfdb.

org/Belyi/7T6/3.2.2/3.2.2/3.2.2/a;
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• dde8E5E19 contains the child’s drawing D8,0 (in the tuple format) of degree 8 that is
subordinate to N(5) and N(19); D8,0 is represented by the permutation triple(

(1, 2, 3)(4, 5, 6), (1, 8, 5)(2, 4, 7), (1, 3, 7, 4, 6, 8)(2, 5)
)
,

its passport is ((3, 3, 1, 1), (3, 3, 1, 1), (6, 2)
)

and its genus is zero; altogether, there are

5 child’s drawings with this passport; the orbit GT♥(N(5))(D8,0) is a singleton (hence
the GQ-orbit of D8,0 is also a singleton); the author could not find D8,0 in database
[10]; however, the author guesses that a Belyi pair that represents D8,0 may be obtained
from the one at https://beta.lmfdb.org/Belyi/8T12/6.2/3.3.1.1/3.3.1.1/a/ by
applying a Moebius transformation; D8,0 is also represented by the second bipartite
ribbon graph shown in figure 6.1 on page 39;

• dde12E21 contains the child’s drawing D12,3 (in the tuple format) of degree 12 that is
subordinate to N(21); D12,3 is represented by the permutation triple(

(1, 11, 6, 3, 9, 2, 5, 7, 4), (1, 6, 12, 3, 2, 10, 5, 4, 8)(7, 11, 9),

(1, 5, 3)(2, 11, 8, 4, 9, 12, 6, 7, 10)
)
,

its passport is ((9, 1, 1, 1), (9, 3), (9, 3)) and its genus is 3; the orbit GT♥(N(21))(D12,3) is
a singleton (hence the GQ-orbit of D12,3 is also a singleton);

• dde12wheel contains the child’s drawing D12,0 (in the tuple format) of degree 12 rep-
resented by the third bipartite ribbon graph shown in figure 6.1 on page 39; unfor-
tunately, D12,0 is not subordinate to any element from the list in (1.22); executing
the commands c12 = load now(′dde12wheel′), E = Equiv(B4 inv(dessin2PB4(c12))),
E.commF2( ).order( ), we produce an instance of Equiv that represents an element N
that dominates D12,0; we also see that the commutator subgroup of F2/NF2 has order
78732 = 22 · 39; if the reader has enough patience or a stronger computer, he/she may
try to find all charming GT-shadows with the target N;

• dde14E15 contains the child’s drawing D14,5 (in the tuple format) of degree 14 that is
subordinate to N(15); D14,5 is represented by the permutation triple(

(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14), (1, 2, 5, 9, 3, 8, 13)(4, 10, 11, 14, 7, 12, 6),

(1, 14, 8, 11, 4, 9, 3)(2, 13, 7, 12, 10, 5, 6)
)
,

its passport is ((7, 7), (7, 7), (7, 7)) and its genus is 5; the orbit GT♥(N(15))(D14,5) has
size 2;

• dde15E29 contains the child’s drawing D15,4 (in the tuple format) of degree 15 that is
subordinate to N(29); D15,4 is represented by the permutation triple(
(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15), (1, 2, 6, 12, 9, 15)(3, 7, 13)(4, 11, 14, 5, 8, 10),

(1, 2, 15, 11, 8, 3)(4, 13, 9, 5, 10, 12)(6, 14, 7)
)
,

its passport is ((6, 6, 3), (6, 6, 3), (6, 6, 3)) and its genus is 4; the orbit GT♥(N(29))(D15,4)
has size 2;
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• dde18E29 contains a tuple that represents the child’s drawing D18,4; this child’s drawing
is represented by the permutation triple:(

(1, 10, 17, 2, 9, 18)(3, 12, 13, 4, 11, 14)(5, 8, 15, 6, 7, 16),

(1, 16, 11, 2, 15, 12)(3, 18, 7, 4, 17, 8)(5, 14, 9, 6, 13, 10),

(1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12)(13, 15, 17)(14, 16, 18)
)
;

D18,4 has genus 4 and its passport is ((6, 6, 6), (6, 6, 6), (3, 3, 3, 3, 3, 3)); D18,4 is subordi-

nate to N(29) and the orbit GT♥(N(29))(D18,4) is a singleton; the covering corresponding
to D18,4 is Galois;

• dde20E8 many contains the child’s drawing D20,5 (in the tuple format) of degree 20
that is subordinate to N(8),N(13),N(18),N(20),N(25); its passport is

((5, 5, 5, 5), (5, 5, 5, 5), (5, 5, 5, 5))

and its genus is 5; the orbit GT♥(N(8))(D20,5) is a singleton; although D20,5 has a uniform
passport, D20,5 is not Galois;

• dde21E15 contains the child’s drawing D21,7 (in the tuple format) of degree 21 that is
subordinate to N(15); its passport is ((7, 7, 7), (7, 7, 7), (7, 7, 7)) and its genus is 7; the
orbit GT♥(N(15))(D21,7) is a singleton; although D21,7 has a uniform passport, D21,7 is
not Galois;

• dde36E21 contains the child’s drawing D36,10 (in the tuple format) of degree 36 and
genus 10 that is subordinate to N(21); its passport is(

(9, 9, 9, 3, 3, 3), (9, 9, 9, 3, 3, 3), (9, 9, 9, 3, 3, 3)
)

and the orbit GT(N(21))(D36,10) has size ≥ 2;

• E dde5genus0 contains an element Ndde5 ∈ NFIPB4(B4) (in the tuple format) that dom-
inates the child’s drawing stored in dde5genus0;

– Ndde5 is the kernel of a group homomorphism PB4 → S160, Ndde5
PB3

is the kernel of a

homomorphism PB3 → S160 and Ndde5
ord = 4,

– |PB4 : Ndde5| = 25 · 1010 = 210 · 512,

– |PB3 : Ndde5
PB3
| = 8, 000 = 26 · 53,

– |F2 : Ndde5
F2
| = 2, 000 = 24 · 53, the order of the commutator subgroup of F2/N

dde5
F2

is
125 = 53,

– Ndde5 is not an isolated object of the groupoid GTSh♥; the connected component
GTSh♥conn(Ndde5) has two objects;

• E dde6genus0 contains an element Ndde6 ∈ NFIPB4(B4) (in the tuple format) that dom-
inates the child’s drawing stored in dde6genus0;

– Ndde6 is the kernel of a group homomorphism PB4 → S192, Ndde6
PB3

is the kernel of a

homomorphism PB3 → S192 and Ndde6
ord = 4,
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– |PB4 : Ndde6| = 210 · 324,

– |PB3 : Ndde6
PB3
| = 46, 656 = 26 · 36,

– |F2 : Ndde6
F2
| = 11, 664 = 24 · 36, the order of the commutator subgroup of F2/N

dde6
F2

is 729 = 36,

– the element Ndde6 is isolated and GT♥(Ndde6) is a non-Abelian group of order 32 = 25.

Fig. 6.1: The child’s drawings D4,0, D8,0 and D12,0 stored in files dde4Many, dde8E5E19 and dde12wheel,
respectively

7 Testing

Many functions, methods and outputs were tested directly. For example, the command

{isNormB4(E.PB4) for E in listE}

returns {True}. This confirms that, for every equivalence relation E in listE of 35 elements,
the corresponding subgroup NE ≤ PB4 is normal in B4.

In the rest of this section, we outline indirect ways of testing various functions, methods
and outputs.

Testing the lists of charming GT-shadows using the cyclotomic character

It is well known that the cyclotomic character χ : GQ → Ẑ× is an onto group homomorphism.
Hence, for every N ∈ NFIPB4(B4), the virtual cyclotomic character

Chcyclot : GT♥(N)→
(
Z/NordZ

)×
(7.1)

is onto.
For a tuple t representing N ∈ NFIPB4(B4), the command test cyclotomic(t) prints the

image of the virtual cyclotomic character and returns True if the map (7.1) is onto. Otherwise,
the command prints the alarming statement “Something is wrong with the values of the
virtual cyclotomic character.” and returns False.

To test the package, we applied the function test cyclotomic to all elements of NFIPB4(B4)
represented by the entries of listE.

Indirect testing of relPB4( )

The function relPB4 was tested (indirectly) using the explicit formula for the standard
generator c4 of the center Z(PB4) of PB4. (See (A.10) in Appendix A.1). For a tuple of t
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representing a group homomorphism PB4 → Sd, the command cenPB4(t) returns the image
of c4 in Sd. For a tuple of 6 permutations in Sd, the command test relPB4(t) returns True
if the permutation cenPB4(t) commutes with each entry of the tuple t; otherwise, it returns
False.

Executing the command {test relPB4(E.PB4) for E in listE}, we get {True}.

Indirect testing of N PB3 and cap

Let t be a tuple representing a homomorphism from PB4 to Sd and NEPB4 be the kernel of
this homomorphism. Both commands N PB3(t) and N PB3 1(t) return a homomorphism
ϕ from PB3 to a symmetric group whose kernel is

NPB3 := ϕ−1
123(N) ∩ ϕ−1

12,3,4(N) ∩ ϕ−1
1,23,4(N) ∩ ϕ−1

1,2,34(N) ∩ ϕ−1
234(N).

Unlike N PB3, the function N PB3 1 does not use cap. This is why, the degree of the
permutation group ϕ(PB3) for N PB3 1 may be bigger than the degree of the correspond-
ing permutation group for N PB3. Of course, the kernel of the homomorphism PB3 → Sd

corresponding to N PB3(t) coincides with the kernel of the homomorphism PB3 → Sd1 cor-
responding to N PB3 1(t). This observation was used for testing N PB3 and cap indirectly.

Indirect testing of sameNsubgrp( , )

For tuples x and y representing homomorphisms ϕx and ϕy from a free group on len(x)
generators to symmetric groups, sameNsubgrp(x, y) returns True if ker(ϕx) = ker(ϕy); oth-
erwise it returns False. This function is often applied to tuples representing homomorphisms
from a finitely presented group to symmetric groups.

Here is an example of testing sameNsubgrp( , ): let t be a tuple representing a homo-
morphism16 ϕ : PB4 → Sd (for concreteness, we could use listE[19].PB4) and g be a random
permutation in Sd; using the command tt = conj tup(g, t), we form another homomorphism
ϕ′ : PB4 → Sd with the same kernel; the command sameNsubgrp(t, tt) (as well as the
command sameNsubgrp(tt, t)) returns True.

Indirect testing of the generators generWF2 and generWComm

The function test generWF2( ) was used for testing the generator generWF2. For a positive
integer d, the command test generWF2(d) forms a tuple t of two random permutations in
Sd; then a computer uses generWF2 to form the complete list Wlist of words that represent
elements of the permutation group17 G generated by elements of t; a computer checks that
the length of Wlist coincides with the order of G; finally, a computer checks that the set of
permutations corresponding to words in Wlist coincides with the set of elements of G.

Similarly the function test generWComm( ) was used for testing the generator
generWComm. For a positive integer d, the command test generWComm(d) forms a tuple
t of two random permutations in Sd; a computer forms the permutation group G gener-
ated by elements of t and forms the commutator subgroup H of G; then a computer uses
generWComm to form the complete list Wlist of words that represent elements of H; a
computer checks that the length of Wlist coincides with the order of H; finally, a computer

16Of course, the same tuple t also represents a homomorphism from F6 to Sd.
17It is very likely that G = Sd
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checks that the set of permutations corresponding to words in Wlist coincides with the set
of elements of H.

Indirect testing of conjBySig1, conjBySig2 and conjBySig3

conjBySig1( ), conjBySig2( ) and conjBySig3( ) were tested (indirectly) using the func-
tion test conj braid rel( ). The input t of test conj braid rel( ) is a tuple (of permuta-
tions) that represents a homomorphism from PB4 to a symmetric group. The command
test conj braid rel(t) returns True if

• conjBySig1(conjBySig2(conjBySig1(t))) coincides with
conjBySig2(conjBySig1(conjBySig2(t))) and

• conjBySig2(conjBySig3(conjBySig2(t))) coincides with
conjBySig3(conjBySig2(conjBySig3(t))) and

• conjBySig1(conjBySig3(t)) coincides with conjBySig3(conjBySig1(t)).

We used these lines:

for i in range(5):
t=dessin2PB4(rand dessin(d))
print(test conj braid rel(t))

for d = 4, 5, 6, 7 to test the functions conjBySig1( ), conjBySig2( ), conjBySig3( ) via the
braid relations.

Indirect testing of gener dessin pt, gener dessin, gener dessin slow, all dessin and all dessin slow

The generators of child’s drawings gener dessin and gener dessin slow use different ways
of producing child’s drawings of a given degree. For an integer d ≥ 2, the command
test dessin(d) compares the results of these two generators. More precisely, it forms the
list of child’s drawings of degree d (in the tuple format) using gener dessin and the list
of child’s drawings of degree d (in the tuple format) using gener dessin slow. Then the
function compares the lists of the corresponding child’s drawings in the object format.

The total number of child’s drawings of degree d (for d ≤ 6) was also compared to the
corresponding entry of the sequence in [15].

Indirect testing of the methods compose and act of the class GTsh

Consider N(21). Since N(21) is isolated, GT♥(N(21)) is a (finite) group. The list GTcharm[21]
has length 54 = 2 · 33 and it contains all elements of GT♥(N(21)) in the object format.

Executing the line:

{p[0].compose(p[1]) in GTcharm[21] for p in prod(GTcharm[21],GTcharm[21])}

we get {True}. Thus we verified that the list GTcharm[21] is closed under composition.
The command GTcharm[21][0].wm returns ((), 0). In other words, GTcharm[21][0] rep-

resents the identity morphism of N(21) in GTSh♥. Executing the lines:
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{GTcharm[21][0].compose(T) == T for T in GTcharm[21]}
{T.compose(GTcharm[21][0]) == T for T in GTcharm[21]}

we get {True} and {True}. This way we tested the method compose using the identity
property.

Executing18 the lines:

triples = list(prod(GTcharm[21][1: ], GTcharm[21][1: ], GTcharm[21][1: ]))
Test =[ ]
for i in range(180):

t=choice(triples)
Test.append(t[0].compose(t[1]).compose(t[2])==t[0].compose(t[1].compose(t[2])))
triples.remove(t)

set(Test)

we get {True}. This way we tested the method compose using the associativity property for
180 randomly selected triples of non-identity elements of GT♥(N(21)).

Executing the lines:

def inv exists(T):
for TT in GTcharm[21][1: ]:

if T.compose(TT) == GTcharm[21][0] and TT.compose(T) == GTcharm[21][0]:
return True

return False
{inv exists(T) for T in GTcharm[21][1: ]}

we get {True}. This way we tested the method compose using the invertibility of each
GT-shadow.

Let us now consider elements N(16) and N(17) from the list in (1.22). Executing the lines:

E16=listE[16]; E17=listE[17]
GT16=GTcharm[16]; GT17=GTcharm[17]
{T.src( )==E17 for T in GT16 if T.src( )!=E16}
{T.src( )==E16 for T in GT17 if T.src( )!=E17}

we get {True} and {True}. Thus N(16) and N(17) are not isolated, and {N(16),N(17)} is the set
of objects of the connected component GTSh♥conn(N(16)) of N(16) in the groupoid GTSh♥.

Executing the lines:

GT16 16=[T for T in GT16 if T.settled( )]
GT17 17=[T for T in GT17 if T.settled( )]
GT16 17=[T for T in GT17 if T.src( )==E16]
GT17 16=[T for T in GT16 if T.src( )==E17]

18You may need to wait for several minutes.
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we form the lists GT16 16, GT17 17, GT16 17 and GT17 16 with the obvious content: for
instance, GT16 17 is the list of instances that represent all elements in GTSh♥(N(16),N(17)).

Since the list GT16 16 has 16 elements, the group GTSh♥(N(16),N(16)) of automorphisms
of N(16) in the groupoid GTSh♥ has order 16. It is not surprising that all four lists GT16 16,
GT17 17, GT16 17 and GT17 16 have the same length.

Executing the lines:

{T.inv( ) in GT17 16 for T in GT16 17}
{T.inv( ) in GT16 17 for T in GT17 16}
{T.inv( ) in GT16 16 for T in GT16 16}
{T.inv( ) in GT17 17 for T in GT17 17}

we get the outputs {True} . . . {True}. This way we tested the method inv( ) of the class
GTsh in the set-up when targets of GT-shadows are not isolated.

Executing19 the lines:

T=choice(GT16 17)
{T.compose(p[0]).compose(p[1])==
T.compose(p[0].compose(p[1])) for p in prod(GT16 16,GT16 16)}
{T.compose(p[0]).compose(p[1])==
T.compose(p[0].compose(p[1])) for p in prod(GT16 16,GT17 16)}
{T.compose(p[0]).compose(p[1])==
T.compose(p[0].compose(p[1])) for p in prod(GT17 16,GT17 17)}
{T.compose(p[0]).compose(p[1])==
T.compose(p[0].compose(p[1])) for p in prod(GT17 16,GT16 17)}

we get the outputs {True} . . . {True}. This way we tested the method compose( ) of the class
GTsh using the associativity in the set-up when targets of GT-shadows are not isolated.

Due to [4, Theorem 3.16], the passport of a child’s drawing is invariant with respect to
the action of GTSh♥. This statement allowed us to test the method act indirectly as follows.
Let us denote by

D14,5, D15,4, D5,0, D6,0 (7.2)

the child’s drawing stored in files dde14E15, dde15E29, dde5genus0 and dde6genus0, re-
spectively. These child’s drawings are subordinate to N(15), N(29), the element Ndde5 stored in
the file E dde5genus0 and the element Ndde6 stored in the file E dde6genus0, respectively.
We showed that the corresponding orbits

GT♥(N(15))(D14,5), GT♥(N(29))(D15,4), GT♥(Ndde5)(D5,0), GT♥(Ndde6)(D6,0)

all have size 2. We verified that, for every child’s drawing D in list (7.2), the passport of the
child’s drawing conjugate to D (via GTSh♥) coincides with the passport of D.

We also observed that GTSh♥-orbits of selected child’s drawings coincide with the corre-
sponding GQ-orbits presented in [10]. For more details about such selected child’s drawings,
please see Section 5.3 of this note or [4, Section 5].

19Each command may take more than a minute.
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A Some calculations related to the braid groups

Our conventions for the Artin braid group Bn and the pure braid group PBn agree with
those in [5, Appendix A]. In particular, we denote by σ1, . . . , σn−1 the standard generators
of Bn. We assume that the stands of geometric braids move up. The standard generators of
PBn are given by the formula

xij := σj−1 . . . σi+1σ
2
i σ
−1
i+1 . . . σ

−1
j−1 , 1 ≤ i < j ≤ n. (A.1)

It is known [9, Section 1.3] that any relation on the standard generators of PBn is a conse-
quence of these relations

x−1
rs xijxrs =



xij if s < i or i < r < s < j,

xrjxijx
−1
rj if s = i,

xrjxsjxijx
−1
sj x

−1
rj if r = i < s < j,

xrjxsjx
−1
rj x

−1
sj xij xsjxrjx

−1
sj x

−1
rj if r < i < s < j.

(A.2)

Using [9, Theorem 1.16] and the above relations, one can see that, for every n ≥ 3, PBn is
isomorphic to the semi-direct product of PBn−1 and the free group Fn−1 on n−1 generators.
More precisely,

PBn
∼= Kn n Un, Kn

∼= PBn−1 , (A.3)

where Un is freely generated by x1,n, . . . , xn−1,n and Kn is generated by xij with 1 ≤ i < j ≤
n− 1.

For n = 4, we have

x12 = σ2
1, x23 = σ2

2, x13 = σ2σ1σ
−1
2 = σ−1

1 σ2σ1,

x14 = σ3σ2σ
2
1σ
−1
2 σ−1

3 = σ−1
1 σ−1

2 σ2
3σ2σ1 = σ−1

1 σ3σ
2
2σ
−1
3 σ1, (A.4)

x24 = σ3σ
2
2σ
−1
3 = σ−1

2 σ2
3σ2, x34 = σ2

3 .

It is known [9, Corollary 1.20], that the Abelianization PBn/[PBn,PBn] of PBn is freely
generated by images of {xij}1≤i<j≤n. In other words, PBn/[PBn,PBn] is isomorphic to

Z
n(n−1)

2 .

For any 1 ≤ i ≤ n− 2, we have

(σiσi+1)3 = (σi+1σi)
3 . (A.5)

Indeed,

(σiσi+1)3 = (σiσi+1σi)(σi+1σiσi+1) = (σi+1σiσi+1)(σiσi+1σi) = (σi+1σi)
3 .

Moreover, if n = 3, then the element

c3 := (σ1σ2)3 = (σ2σ1)3

belongs to the center of B3 (and the center of PB3).
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Indeed,
σ1c3 = σ1σ2σ1σ2σ1σ2σ1 = σ1σ2σ1σ2σ1σ2σ1 = c3 σ1

and
σ2c3 = σ2σ1σ2σ1σ2σ1σ2 = σ2σ1σ2σ1σ2σ1σ2 = c3 σ2 .

It is known [9, Theorem 1.24] that Z(B3) = Z(PB3) = 〈 c3 〉.
The group PB3 is generated by

x12 = σ2
1, x23 = σ2

2, x13 = σ2σ
2
1σ
−1
2 = σ−1

1 σ2
2σ1 , (A.6)

where the identity σ2σ
2
1σ
−1
2 = σ−1

1 σ2
2σ1 follows from this calculation:

σ2σ
2
1σ
−1
2 = (σ2σ1σ

−1
2 )(σ2σ1σ

−1
2 ) = (σ−1

1 σ2σ1)(σ−1
1 σ2σ1) = σ−1

1 σ2
2σ1 .

Proposition A.1 In PB3, we have

x23x12x13 = c3 = x12x13x23 . (A.7)

Proof. Using (A.6), we get

x23x12x13 = σ2
2σ

2
1σ2σ

2
1σ
−1
2 = σ2σ2σ1σ1σ2σ1σ1σ

−1
2 = σ2σ2σ1σ2σ1σ2σ1σ

−1
2

= σ2(σ2σ1)3σ−1
2 = (σ2σ1)3 = c3.

The identity x23x12x13 = x12x13x23 follows easily from x−1
23 c3x23 = c3. �

A.1 The generator of the center of B4

Recall [9, Theorem 1.24] that, for every n ≥ 3, the center Z(Bn) of Bn coincides with the
center Z(PBn) of PBn. Moreover, Z(Bn) is an infinite cyclic group generated by ∆2

n where

∆n := (σ1 . . . σn−1)(σ1 . . . σn−2) . . . (σ1σ2)σ1. (A.8)

In particular, the center Z(B4) = Z(PB4) is generated by the element

c4 := σ1σ2σ3σ1σ2σ
2
1σ2σ3σ1σ2σ1. (A.9)

Let us prove that

Proposition A.2 The generator c4 of Z(PB4) can be rewritten as

c4 = x14x24x34x12x13x23. (A.10)

Proof. Since σ1σ3 = σ3σ1, we have

c4 = σ1σ2σ1(σ3σ2σ
2
1σ2σ3)σ1σ2σ1 . (A.11)

Since c4 ∈ Z(B4), (σ1σ2σ1)−1c4σ1σ2σ1 = c4. Combining this observation with (A.7) and
(A.11), we get

c4 = (σ3σ2σ
2
1σ2σ3)σ1σ2σ1σ1σ2σ1 = σ3σ2σ

2
1σ2σ3 x12x13x23,

i.e.
c4 = σ3σ2σ

2
1σ2σ3 x12x13x23 . (A.12)

Using the definitions of x14, x24 and x34, we rewrite the element σ3σ2σ
2
1σ2σ3 as follows:

σ3σ2σ
2
1σ2σ3 = σ3σ2σ

2
1σ
−1
2 σ−1

3 (σ3σ
2
2σ3) = x14σ3σ

2
2σ3 = x14(σ3σ

2
2σ
−1
3 )σ2

3 = x14x24x34 .

Combining this calculation with (A.12), we see that (A.10) indeed holds. �
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B Justification of the code for hexa1( , ) and hexa2( , )

In this section, we work only with B3 and PB3. Moreover, we set c := c3, where c3 is the
standard generator of the center of B3.

Using the braid relation σ1σ2σ1 = σ2σ1σ2 and the definitions

x12 := σ2
1, x23 := σ2

2, c := (σ1σ2σ1)2 ,

it is easy to deduce the following identities

σ1x12σ
−1
1 = x12, σ1x23σ

−1
1 = zc,

σ2x12σ
−1
2 = uc, σ2x23σ

−1
2 = x23,

σ−1
1 x12σ1 = x12, σ−1

1 x23σ1 = uc,
σ−1

2 x12σ2 = zc, σ−1
2 x23σ2 = x23,

σ1σ2 x12 σ
−1
2 σ−1

1 = x23, σ1σ2 x23 σ
−1
2 σ−1

1 = zc,
σ2σ1 x12 σ

−1
1 σ−1

2 = uc, σ2σ1 x23 σ
−1
1 σ−1

2 = x12,

(B.1)

where
z := x−1

23 x
−1
12 , u := x−1

12 x
−1
23 .

Let us use (B.1) to prove the following statement:

Proposition B.1 Let K ∈ NFIPB3(B3) and (m, f) ∈ Z× F2. Then the first hexagon relation

σ1x
m
12 f

−1σ2x
m
23f K = f−1σ1σ2(x13x23)m K (B.2)

is equivalent to
xm23 fx

m
12, f(x12, z)

−1zmf(x23, z) ∈ K, (B.3)

and the second hexagon relation

f−1σ2x
m
23f σ1x

m
12 K = σ2σ1(x12x13)m f K , (B.4)

is equivalent to
f(u, x12)−1xm12f

−1xm23f(u, x23)um ∈ K. (B.5)

Proof. Due to Proposition A.1, we have x13x23 = x−1
12 c and x12x13 = x−1

23 c. Therefore, (B.2)
and (B.4) are equivalent to

σ1x
m
12 f

−1σ2x
m
23f K = f−1σ1σ2x

−m
12 cm K (B.6)

and
f−1σ2x

m
23f σ1x

m
12 K = σ2σ1x

−m
23 cm f K , (B.7)

respectively.
Using (B.1), we rewrite the left hand side of (B.6) as follows

σ1x
m
12 f

−1σ2x
m
23f K = xm12 σ1f

−1σ−1
1 σ1σ2x

m
23f K =

xm12 σ1f
−1σ−1

1 σ1σ2x
m
23fσ

−1
2 σ−1

1 σ1σ2 K = xm12f
−1(x12, zc)z

mf(x23, zc)σ1σ2c
m K. (B.8)

Similarly, using (B.1), we rewrite the right hand side of (B.6) as follows

f−1σ1σ2x
−m
12 cm K = f−1x−m23 σ1σ2c

m K. (B.9)
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Combining (B.8) with (B.9), we conclude that (B.2) is equivalent to

xm23f x
m
12f
−1(x12, zc) z

mf(x23, zc) ∈ K. (B.10)

Similarly, applying (B.1) to (B.7), we get

f−1σ2x
m
23f σ1x

m
12 = f−1xm23f(uc, x23)umσ2σ1c

m

and
σ2σ1x

−m
23 cm f = x−m12 f(uc, x12)σ2σ1c

m .

Thus (B.7) is equivalent to

f(uc, x12)−1xm12 f
−1xm23 f(uc, x23)um ∈ K. (B.11)

Let q1 (resp. q2) be the sum of the exponents of x12 (resp. x23) in the reduced form of
f ∈ 〈x12, x23 〉.

Since c ∈ Z(PB3), we can rewrite the expression f−1(x12, zc)z
mf(x23, zc) as follows

f−1(x12, zc)z
mf(x23, zc) = f−1(x12, z)c

−q2zmf(x23, z)c
q2 = f−1(x12, z)z

mf(x23, z).

Similarly, we can rewrite the expression f(uc, x12)−1xm12 f
−1xm23 f(uc, x23) as follows

f(uc, x12)−1xm12 f
−1xm23 f(uc, x23) =

c−q1f(u, x12)−1xm12 f
−1xm23 f(u, x23)cq1 = f(u, x12)−1xm12 f

−1xm23 f(u, x23).

Thus (B.10) (resp. (B.11)) is equivalent to (B.3) (resp. to (B.5)). �
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