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The absolute Galois group GQ of rationals and ĜT

GQ is the group of (field) automorphisms of the algebraic closure Q of
the field Q of rational numbers. This group is uncountable. For every
finite Galois extension E ⊃ Q, any element g ∈ Gal(E/Q) can be
extended (in infinitely many ways) to an element of GQ. The group GQ

is one of the most mysterious objects in mathematics!

In 1990, Vladimir Drinfeld introduced yet another mysterious group ĜT
(the Grothendieck-Teichmuelller group). ĜT consists of pairs (m̂, f̂ ) in
Ẑ× F̂2 satisfying some conditions and it receives a one-to-one
homomorphism

GQ ↪→ ĜT.

Only two elements of GQ are known explicitly: the identity element
and the complex conjugation a + bi 7→ a− bi . The corresponding
images in ĜT are (0,1) and (−1,1).
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A child’s drawing of degree d is . . .

An isom. class of a connected bipartite ribbon graph with d edges.

An equiv. class of a pair (g1,g2) of permutations in Sd for which the
group 〈g1,g2 〉 acts transitively on {1,2, . . . ,d}.

A conjugacy class of an index d subgroup of F2 := 〈 x , y 〉.

A conjugacy class of a group homomorphism ψ : F2 → Sd (with the
subgroup ψ(F2) ≤ Sd being transitive.)

An isom. class of a (non-constant) holomorphic map ϕ : Σ→ CP1 from
a compact connected Riemann surface (without boundary) that does
not have branch points above every w ∈ CP1 − {0,1,∞}.
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The action of GQ on child’s drawings

Given a child’s drawing D, we can find a smooth projective curve X
defined over Q and an algebraic map ϕ : X → P1

Q
that does not have

branch points above every w ∈ P1
Q
− {0,1,∞}. (X , ϕ) is called a Belyi

pair representing D.

The coefficients defining the curve X and the map ϕ lie in some finite
Galois extension E of Q. Given g ∈ Gal(E/Q), the child’s drawing g(D)
is represented by the (new) Belyi pair (g(X ),g(ϕ)). We simply act by g
on the coefficients defining X and ϕ!

The GQ-orbit of the above child’s drawing has two elements. It’s ‘Galois
conjugate’ is
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Basic invariants of child’s drawings

the degree d of a child’s drawing [F2
ψ−→ Sd ];

the conjugacy class of the subgroup ψ(F2) ≤ Sd is call the
monodromy group of [ψ];
for a child’s drawing represented by (g1,g2) ∈ Sd × Sd , its
passport is the triple of partitions

(
ct(g1), ct(g2), ct(g−1

2 g−1
1 )
)

of
d , where ct(h) denotes the cycle type of a permutation h ∈ Sd ;
the cartographic group and more...

Let σ1, σ2 be the standard generators of Artin’s braid group B3. The
formulas (here, g3 := g−1

2 g−1
1 )

σ1(g1,g2,g3) := (g2,g−1
2 g1g2,g3), σ2(g1,g2,g3) := (g1,g3,g−1

3 g2g3)

define an action of B3 on child’s drawings. Since the pure braid group
PB3 acts trivially, we actually get an action of S3 on child’s drawings.
The action of GQ commutes with this action of S3.
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A bit about (the gentle version of) ĜT

For (m̂, f̂ ) ∈ Ẑ× F̂2, the formulas

Em̂,̂f (x) := x2m̂+1, Em̂,̂f (y) := f̂−1y2m̂+1 f̂

define a continuous endomorphism Em̂,̂f of F̂2.

Ẑ× F̂2 is a monoid with the binary operation

(m̂1, f̂1) • (m̂2, f̂2) :=
(

2m̂1m̂2 + m̂1 + m̂2, f̂1Em̂1 ,̂f1
(f̂2)

)
and the identity element (0,1).

Let σ1, σ2 be the standard generators of Artin’s braid group B3,

c := (σ1σ2σ1)2 and x12 := σ2
1, x23 := σ2

2.
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The gentle version ĜTgen of ĜT

Let ĜTmon be the submonoid of Ẑ× F̂2 that consists of pairs (m̂, f̂ )
satisfying the hexagon relations:

σ2m̂+1
1 f̂−1σ2m̂+1

2 f̂ = f̂−1σ1σ2 x−m̂
12 cm̂ ,

f̂−1σ2m̂+1
2 f̂ σ2m̂+1

1 = σ2σ1x−m̂
23 cm̂ f̂

and f̂ ∈ [F̂2, F̂2]top. cl..

ĜTgen is the group of invertible elements of the monoid ĜTmon.

The formula
χvir (m̂, f̂ ) := 2m̂ + 1

defines a (continuous) group homomorphism ĜTgen → Ẑ×.
χvir is called the virtual cyclotomic character.

In the remaining slides, ĜT denotes ĜTgen = ĜT0. D. Harbater, L.
Schneps, (2000).
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The action of ĜT on child’s drawings

Let (m̂, f̂ ) be an element of ĜT and D be a child’s drawing. It is
convenient to represent D by a group homomorphism

ψ : F2 → Sd ,

where ψ(F2) is transitive. (D corresponds to the conjugacy class of the
stabilizer of 1 or 2 or 3 . . . .)

ψ extends, by continuity, to a (continuous) group homomorphism
ψ̂ : F̂2 → Sd . The child’s drawing D(m̂,̂f ) corresponds to the group
homomorphism

ψ̂ ◦ Em̂,̂f

∣∣
F2

: F2 → Sd .

Em̂,̂f (x) := x2m̂+1 and Em̂,̂f (y) := f̂−1 y2m̂+1 f̂ .

See Y. Ihara’s paper “On the embedding of Gal(Q/Q) into ĜT” + the
appendix by M. Emsalem and P. Lochak.
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The Artin braid group B3 and PB3

B3 (resp. PB3) denotes the Artin braid group (resp. the pure braid
group) on 3 strands. σ1, σ2 are the standard generators of B3

σ1 σ2

We set ∆ := σ1σ2σ1 = σ2σ1σ2.
PB3 is generated by

x12 := σ2
1, x23 := σ2

2, c := ∆2 .

It is known that Z(B3) = Z(PB3) = 〈 c 〉 ∼= Z, the subgroup 〈 x12, x23 〉 is
isomorphic to F2. In fact, PB3 ∼= F2 × 〈 c 〉.
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A bit more about F2, PB3 and B3

We tacitly identify F2 with the subgroup 〈 x12, x23 〉 ≤ PB3. We also set

x := x12 and y := x23.

We denote by θ and τ the following automorphisms of F2:

θ(x) := y , θ(y) := x , τ(x) := y , τ(y) := y−1x−1.

We set

NFIPB3(B3) := {N E B3 | N ≤ PB3, |B3 : N| <∞}

and abbreviate NFI := NFIPB3(B3).
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Preparation

For N ∈ NFI, we set

NF2 := F2 ∩ N, Nord := lcm
(

ord(x12N),ord(x23N),ord(cN)
)
.

We say that (m, f ) ∈ Z× F2 satisfies the hexagon relations modulo N
if

σ2m+1
1 f−1σ2m+1

2 f N = f−1σ1σ2x−m
12 cm N

f−1σ2m+1
2 f σ2m+1

1 N = σ2σ1x−m
23 cm f N.

Proposition

If (m, f ) ∈ Z× F2 satisfies the hexagon relations modulo N, then the
formulas

Tm,f (σ1) := σ2m+1
1 N, Tm,f (σ2) := f−1σ2m+1

2 f N

define a group homomorphism Tm,f : B3 → B3/N.
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Let us restrict Tm,f to PB3 and to F2

Restricting the above homomorphism Tm,f : B3 → B3/N to PB3 and to
F2, we get

T PB3
m,f : PB3 → PB3/N, T F2

m,f : F2 → F2/NF2 ,

T PB3
m,f (x12) = x2m+1

12 N, T PB3
m,f (x23) = f−1x2m+1

23 f N,

T PB3
m,f (c) = c2m+1 N,

T F2
m,f (x) = x2m+1 NF2 , T F2

m,f (y) = f−1y2m+1f NF2 ,

Tm,f is onto ⇐⇒ T PB3
m,f is onto ⇐⇒ T F2

m,f is onto.

ker(Tm,f ) = ker(T PB3
m,f ). Hence ker(Tm,f ) ∈ NFI.
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A GT-shadow is . . .

Definition

Let N ∈ NFI. A GT-shadow with the target N is a pair

[m, f ] := (m + NordZ, fNF2) ∈ Z/NordZ× F2/NF2

satisfying the hexagon relations (modulo N) and such that

2m + 1 represents a unit in the ring Z/NordZ,

fNF2 ∈ [F2/NF2 ,F2/NF2 ], or equivalently ∃ w ∈ [F2,F2] such that
fNF2 = wNF2 , and

the homomorphism Tm,f : B3 → B3/N is onto (⇐⇒ T PB3
m,f is onto

⇐⇒ T F2
m,f is onto).

GT(N) is the set of GT-shadows with the target N.
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The groupoid GTSh

Guess what?!.... GT-shadows form a groupoid GTSh.

Ob(GTSh) := NFIPB3(B3); for K,N ∈ NFI,

GTSh(K,N) :=
{

[m, f ] ∈ GT(N) | ker(Tm,f ) = K
}
.

Let N(1),N(2),N(3) ∈ NFI and

N(3)
[m2,f2]
−−−−−→ N(2)

[m1,f1]
−−−−−→ N(1).

The composition of morphisms is defined by the formula:

[m1, f1] ◦ [m2, f2] :=
[

2m1m2 + m1 + m2 , f1Em1,f1(f2)
]

∀ N ∈ NFI, [0,1F2 ] is the identity morphism in GTSh(N,N).
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A comment

For (m, f ) ∈ Z× F2, the formulas

Em,f (x) := x2m+1, Em,f (y) := f−1y2m+1f

define an endomorphism of F2.

Moreover, for all (m1, f1), (m2, f2) ∈ Z× F2,

Em1,f1 ◦ Em2,f2 = Em,f ,

where m := 2m1m2 + m1 + m2 and f := f1Em1,f1(f2).

On can show that the set Z× F2 is a monoid with respect to the binary
operation

(m1, f1) • (m2, f2) :=
(
2m1m2 + m1 + m2 , f1Em1,f1(f2)

)
with (0,1F2) being the identity element.
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Basic facts about GTSh

GTSh has infinitely many objects. (NFIPB3(B3) is infinite because
PB3 is residually finite.)
GTSh is highly disconnected. However, for every N ∈ NFIPB3(B3),
the connected component GTShconn(N) of N is a finite groupoid.
If GTShconn(N) has only one object (i.e. GT(N) is group), then we
say that N is isolated.
For every N ∈ NFIPB3(B3), the object

N� :=
⋂

K∈Ob(GTShconn(N))

K

is isolated. In particular, the subposet NFIisol. ⊂ NFI of isolated
objects is cofinal.
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“Reduction modulo” H

Let N,H ∈ NFI with N ≤ H. We have NF2 ≤ HF2 and Hord|Nord.

If a pair (m, f ) ∈ Z× F2 represents a GT-shadow with the target N,
then the same pair also represents a GT-shadow with the target H.

Hence we have a natural map

RN,H : GT(N)→ GT(H)

If N,H are isolated (i.e. GT(N),GT(H) are groups) then RN,H is a group
homomorphism.
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ĜT versus GTSh

For every (m̂, f̂ ) ∈ ĜT and N ∈ NFI the pair

PRN(m̂, f̂ ) :=
(
PNord( m̂ ) , PNF2

( f̂ )
)
∈ Z/NordZ× F2/NF2

is a GT-shadow with the target N. (For K ∈ NFI(G), PK denotes the
standard continuous homomorphism Ĝ→ G/K.) PRN(m̂, f̂ ) is an
approximation of the element (m̂, f̂ ).

A GT-shadow [m, f ] ∈ GT(N) is called genuine if ∃ (m̂, f̂ ) ∈ ĜT such
that PRN(m̂, f̂ ) = [m, f ]. Otherwise, it is called fake.

A GT-shadow [m, f ] ∈ GT(N) survives into K ∈ NFI (with K ≤ N) if
[m, f ] ∈ RK,N

(
GT(K)

)
.

Proposition. A GT-shadow [m, f ] ∈ GT(N) is genuine ⇐⇒ [m, f ]
survives into K for every K ∈ NFIPB3(B3) such that K ≤ N.
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The Main Line functor

Let K,N ∈ NFI be isolated objects of the groupoid GTSh and K ≤ N.

Since RK,N is a group homomorphism

GT(K)→ GT(N),

the assignments

ML(N) := GT(N), ML( K ≤ N ) := RK,N

define a functor from the poset NFIisol. to the category of finite groups.

Theorem. The limit of ML is isomorphic to (the gentle version of) ĜT.
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Can GT-shadows act on child’s drawings? Sure!

Recall that a child’s drawing of degree d can be represented by a
group homomorphism ψ : F2 → Sd (with the subgroup ψ(F2) being
transitive). [ψ] denotes the child’s drawing represented by a
homomorphism ψ : F2 → Sd .

We say that a child’s drawing [ψ] is subordinate to N ∈ NFI (or N
dominates [ψ]), if

NF2 ⊂ ker(ψ).

Dessin(N) denotes the set of child’s drawings subordinate to N.
We denote by Dessin the category whose objects are elements of NFI.
For K,N ∈ NFI, morphisms from K to N are all functions from
Dessin(K) to Dessin(N).
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The action of GTSh on child’s drawings

Proposition

Let K,N ∈ NFI and [m, f ] ∈ GTSh(K,N). Let ψ : F2 → Sd be a
homomorphism that represents [ψ] ∈ Dessin(N). Then

the homomorphism ψ̃ : F2 → Sd

ψ̃(x) := ψ(x2m+1), ψ̃(y) := ψ(f−1y2m+1f )

represents a child’s drawing subordinate to K and

the assignments A sh(N) := N, [ψ][m,f ] := [ψ ◦ Em,f ] define a
cofunctor A sh : GTSh→ Dessin.

One can show that the action of GTSh on child’s drawing is compatible
with the action of ĜT.
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What can be proved about the action of GTSh?

The action of GTSh on child’s drawings is compatible with the
action of S3. Hence the passport of a child’s drawing is invariant
with respect to the GTSh-action.

The GTSh-action is compatible with the partial order on the set of
child’s drawings. (We say that [H̃] ≤ [H] if ∃ w ∈ F2 such that
H̃ ≤ w H w−1, i.e the child’s drawing [H̃] “covers” [H].)

If a child’s drawing D ∈ Dessin(N) is Galois, then so is D[m,f ] for
every [m, f ] ∈ GT(N).

The GTSh-action commutes with the operation of taking the
Galois (normal) closure of a child’s drawing.

If a child’s drawing [ψ] ∈ Dessin(N) is abelian (i.e. the monodromy
group ψ(F2) is abelian), then the orbit GT(N)([ψ]) is a singleton.
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GT-shadows for the dihedral subposet

Let n ∈ Z≥3 and Dn := 〈 r , s | rn, s2, rsrs 〉 be the dihedral group of
order 2n. Let ϕ be the following homomorphism PB3 → D3

n

ϕ(x12) := (r−1, s, s), ϕ(x23) := (rs, r , rs), ϕ(c) := id

and
K(n) := ker(PB3

ϕ−→ D3
n).

One can show that K(n) E B3, i.e. K(n) ∈ NFIPB3(B3).

We call {
K(n) : n ∈ Z≥3

}
⊂ NFIPB3(B3)

the dihedral subposet of NFIPB3(B3).
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Basic facts about GTShconn(K(n))

For every n ≥ 3, K(n) is isolated. Hence GT(K(n)) is a (finite) group
and the Galois child’s drawing represented by K(n)

F2
≤ F2 admits a

Belyi pair defined over Q.

If q,n ≥ 3 are odd and q|n then the group homomorphism

RK(n),K(q) : GT(K(n))→ GT(K(q))

is onto. I do not think that one can find fake GT-shadows using
the dihedral subposet.

For odd n ≥ 3, the group GT(K(n)) can be described explicitly and
the limit of the corresponding functor K(n) 7→ GT(K(n)) can be also
computed explicitly.
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Greetings to a distant mathematical ancestor! :-)

d = 3 d = 4

d = 5

. . .

T0(z) := 1, T1(z) := z, T2(z) := 2z2 − 1,

T3(z) := 4z3 − 3z, T4(z) := 8z4 − 8z2 + 1,

T5(z) := 16z5 − 20z3 + 5z, . . .

Td+1(z) := 2zTd (z)− Td−1(z), ϕd (z) :=
1
2

(Td (z) + 1).
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More child’s drawings? Sure!

GTSh-orbits of the following child’s drawings are singletons:

. . .

Weeeeell... I would not try to draw child’s drawings from the following
family (here n is odd):

G := 〈g12,g23 〉 ≤ D3
n , g12 := (r−1, s, s), g23 := (rs, r , rs),

Let Cn be the child’s drawing corresponding to the action of g12 and
g23 on the set G/H of left cosets, where

H := 〈 (r ,1,1) , (1, s, s) 〉 ≤ G
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A bit more about the family Cn, n ≥ 3, odd

The degree of Cn is 2n2.

Cn is not Galois.

Cn is subordinate to K(n) and GT(K(n))(Cn) = {Cn}.

C3 is represented by this permutation pair

(3,5)(4,6)(7,18)(8,17)(9,15)(10,16)(11,14)(12,13),

(1,7,15,3,9,13)(2,8,16,4,10,14)(5,11,18,6,12,17).

Its passport is (28 12, 63, 63). Its genus is 2.
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Dear Collaborators! Thank you!

These people worked (are working) with me on GT-shadows for the
gentle version of the Grothendieck-Teichmueller group:

Jacob Guynee (currently, a PhD student at Georgia Tech)
Jessica Radford (currently, a PhD student at the University of
Oklahoma)
Jingfeng Xia (currently, a PhD student at Temple University)
Hm... your name can be here! :-)
Are you an “adult mathematician”? Your name can be here too! :-)
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Hierarchy of orbits

Consider a chain in the poset NFIPB3(B3)

N(1) ⊃ N(2) ⊃ N(3) ⊃ . . .

and a child’s drawing D ∈ Dessin(N(1)). It is clear that D is subordinate
to N(i) for every N(i) in this chain.
Recall that GT(N) denotes the set of all GT-shadows with the target N.
(GT(N) is finite!)

For every child’s drawing D, we have the following hierarchy of orbits:

GT(N(1))(D) ⊃ GT(N(2))(D) ⊃ GT(N(3))(D) ⊃ · · · ⊃ ĜT(D) ⊃ GQ(D).

It is very hard to compute GQ(D); there are no tools in modern
mathematics to compute orbits ĜT(D); it is relatively easy to
compute orbits GT(N)(D).
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