Exploration of
 Grothendieck-Teichmueller(GT)-shadows and their action on child's drawings

Vasily Dolgushev

Temple University

The University of Minnesota, Topology Seminar, September 26, 2022

The absolute Galois group $G_{\mathbb{Q}}$ of rationals and $\widehat{G T}$

$G_{\mathbb{Q}}$ is the group of (field) automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of the field \mathbb{Q} of rational numbers. This group is uncountable. For every finite Galois extension $E \supset \mathbb{Q}$, any element $g \in \operatorname{Gal}(E / \mathbb{Q})$ can be extended (in infinitely many ways) to an element of $G_{\mathbb{Q}}$. The group $G_{\mathbb{Q}}$ is one of the most mysterious objects in mathematics!

In 1990, Vladimir Drinfeld introduced yet another mysterious group $\widehat{\text { GT }}$
 $\widehat{\mathbb{Z}} \times \widehat{\mathrm{F}}_{2}$ satisfying some conditions and it receives a one-to-one homomorphism

$$
G_{\mathbb{Q}} \hookrightarrow \widehat{\mathrm{GT}} .
$$

Only two elements of $G_{\mathbb{Q}}$ are known explicitly: the identity element and the complex conjugation $a+b i \mapsto a-b i$. The corresponding images in GT are $(0,1)$ and $(-1,1)$.

A child's drawing of degree d is ...

An isom. class of a connected bipartite ribbon graph with d edges.

An equiv. class of a pair $\left(g_{1}, g_{2}\right)$ of permutations in S_{d} for which the group $\left\langle g_{1}, g_{2}\right\rangle$ acts transitively on $\{1,2, \ldots, d\}$.
A conjugacy class of an index d subgroup of $\mathrm{F}_{2}:=\langle x, y\rangle$.
A conjugacy class of a group homomorphism $\psi: \mathrm{F}_{2} \rightarrow S_{d}$ (with the subgroup $\psi\left(\mathrm{F}_{2}\right) \leq S_{d}$ being transitive.)
An isom. class of a (non-constant) holomorphic map $\varphi: \Sigma \rightarrow \mathbb{C P}^{1}$ from a compact connected Riemann surface (without boundary) that does not have branch points above every $w \in \mathbb{C P}^{1}-\{0,1, \infty\}$.

The action of G_{Q} on child's drawings

Given a child's drawing D, we can find a smooth projective curve X defined over $\overline{\mathbb{Q}}$ and an algebraic map $\varphi: X \rightarrow \mathbb{P} \frac{1}{\mathbb{Q}}$ that does not have branch points above every $w \in \mathbb{P} \frac{1}{\mathbb{Q}}-\{0,1, \infty\} .(X, \varphi)$ is called a Belyi pair representing D.

The coefficients defining the curve X and the map φ lie in some finite Galois extension E of \mathbb{Q}. Given $g \in \operatorname{Gal}(E / \mathbb{Q})$, the child's drawing $g(D)$ is represented by the (new) Belyi pair $(g(X), g(\varphi))$. We simply act by g on the coefficients defining X and φ !

The $G_{\mathbb{Q}}$-orbit of the above child's drawing has two elements. It's 'Galois conjugate' is

Basic invariants of child's drawings

- the degree d of a child's drawing $\left[F_{2} \xrightarrow{\psi} S_{d}\right]$;
- the conjugacy class of the subgroup $\psi\left(\mathrm{F}_{2}\right) \leq S_{d}$ is call the monodromy group of [ψ];
- for a child's drawing represented by $\left(g_{1}, g_{2}\right) \in S_{d} \times S_{d}$, its passport is the triple of partitions $\left(\operatorname{ct}\left(g_{1}\right), \operatorname{ct}\left(g_{2}\right), \operatorname{ct}\left(g_{2}^{-1} g_{1}^{-1}\right)\right)$ of d, where $\operatorname{ct}(h)$ denotes the cycle type of a permutation $h \in S_{d}$;
- the cartographic group and more...

Let σ_{1}, σ_{2} be the standard generators of Artin's braid group B_{3}. The formulas (here, $g_{3}:=g_{2}^{-1} g_{1}^{-1}$)
$\sigma_{1}\left(g_{1}, g_{2}, g_{3}\right):=\left(g_{2}, g_{2}^{-1} g_{1} g_{2}, g_{3}\right), \quad \sigma_{2}\left(g_{1}, g_{2}, g_{3}\right):=\left(g_{1}, g_{3}, g_{3}^{-1} g_{2} g_{3}\right)$
define an action of B_{3} on child's drawings. Since the pure braid group PB_{3} acts trivially, we actually get an action of S_{3} on child's drawings. The action of $G_{\mathbb{Q}}$ commutes with this action of S_{3}.

A bit about (the gentle version of) GT

For $(\hat{m}, \hat{f}) \in \widehat{\mathbb{Z}} \times \widehat{\mathrm{F}}_{2}$, the formulas

$$
E_{\hat{m}, \hat{f}}(x):=x^{2 \hat{m}+1}, \quad E_{\hat{m}, \hat{f}}(y):=\hat{f}^{-1} y^{2 \hat{m}+1} \hat{f}
$$

define a continuous endomorphism $E_{\hat{m}, \hat{f}}$ of $\widehat{\mathrm{F}}_{2}$.
$\widehat{\mathbb{Z}} \times \widehat{\mathrm{F}}_{2}$ is a monoid with the binary operation

$$
\left(\hat{m}_{1}, \hat{f}_{1}\right) \bullet\left(\hat{m}_{2}, \hat{f}_{2}\right):=\left(2 \hat{m}_{1} \hat{m}_{2}+\hat{m}_{1}+\hat{m}_{2}, \hat{f}_{1} E_{\hat{m}_{1}, \hat{f}_{1}}\left(\hat{f}_{2}\right)\right)
$$

and the identity element $(0,1)$.
Let σ_{1}, σ_{2} be the standard generators of Artin's braid group B_{3},

$$
c:=\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{2} \quad \text { and } \quad x_{12}:=\sigma_{1}^{2}, \quad x_{23}:=\sigma_{2}^{2}
$$

The gentle version $\widehat{\mathrm{GT}}_{\text {gen }}$ of $\widehat{\mathrm{GT}}$

Let $\widehat{\mathrm{GT}}_{\text {mon }}$ be the submonoid of $\widehat{\mathbb{Z}} \times \widehat{\mathrm{F}}_{2}$ that consists of pairs (\hat{m}, \hat{f}) satisfying the hexagon relations:

$$
\begin{gathered}
\sigma_{1}^{2 \hat{m}+1} \hat{f}^{-1} \sigma_{2}^{2 \hat{m}+1} \hat{f}=\hat{f}^{-1} \sigma_{1} \sigma_{2} x_{12}^{-\hat{m}} c^{\hat{m}} \\
\hat{f}^{-1} \sigma_{2}^{2 \hat{m}+1} \hat{f} \sigma_{1}^{2 \hat{m}+1}=\sigma_{2} \sigma_{1} x_{23}^{-\hat{m}} c^{\hat{m}} \hat{f}
\end{gathered}
$$

and $\hat{f} \in\left[\hat{F}_{2}, \widehat{\mathrm{~F}}_{2}\right]^{\text {top.cl. }}$.
$\widehat{\mathrm{GT}}_{\text {gen }}$ is the group of invertible elements of the monoid $\widehat{\mathrm{GT}}_{\text {mon }}$. The formula

$$
\chi_{\operatorname{vir}}(\hat{m}, \hat{f}):=2 \hat{m}+1
$$

defines a (continuous) group homomorphism $\widehat{\mathrm{GT}}_{\text {gen }} \rightarrow \widehat{\mathbb{Z}}^{\times}$. $\chi_{\text {vir }}$ is called the virtual cyclotomic character.
In the remaining slides, $\widehat{G T}$ denotes $\widehat{\mathrm{GT}}_{\text {gen }}=\widehat{\mathrm{GT}}_{0} . D$. Harbater, L . Schneps, (2000).

The action of GT on child's drawings

Let (\hat{m}, \hat{f}) be an element of $\widehat{\mathrm{GT}}$ and D be a child's drawing. It is convenient to represent D by a group homomorphism

$$
\psi: F_{2} \rightarrow S_{d},
$$

where $\psi\left(\mathrm{F}_{2}\right)$ is transitive. (D corresponds to the conjugacy class of the stabilizer of 1 or 2 or $3 \ldots$. .)
ψ extends, by continuity, to a (continuous) group homomorphism $\hat{\psi}: \widehat{F}_{2} \rightarrow S_{d}$. The child's drawing $D^{(\hat{m}, \hat{f})}$ corresponds to the group homomorphism

$$
\begin{gathered}
\left.\hat{\psi} \circ E_{\hat{m}, \hat{f}}\right|_{F_{2}}: F_{2} \rightarrow S_{d} . \\
E_{\hat{m}, \hat{f}}(x):=x^{2 \hat{m}+1} \quad \text { and } \quad E_{\hat{m}, \hat{f}}(y):=\hat{f}^{-1} y^{2} \hat{m}+1 \hat{f} .
\end{gathered}
$$

See Y . Ihara's paper "On the embedding of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ into $\widehat{\mathrm{GT}}$ " + the appendix by M. Emsalem and P. Lochak.

The Artin braid group B_{3} and PB_{3}

B_{3} (resp. PB_{3}) denotes the Artin braid group (resp. the pure braid group) on 3 strands. σ_{1}, σ_{2} are the standard generators of B_{3}

We set $\Delta:=\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$.
PB_{3} is generated by

$$
x_{12}:=\sigma_{1}^{2}, \quad x_{23}:=\sigma_{2}^{2}, \quad c:=\Delta^{2} .
$$

It is known that $\mathcal{Z}\left(\mathrm{B}_{3}\right)=\mathcal{Z}\left(\mathrm{PB}_{3}\right)=\langle c\rangle \cong \mathbb{Z}$, the subgroup $\left\langle x_{12}, x_{23}\right\rangle$ is isomorphic to F_{2}. In fact, $\mathrm{PB}_{3} \cong \mathrm{~F}_{2} \times\langle c\rangle$.

A bit more about $\mathrm{F}_{2}, \mathrm{~PB}_{3}$ and B_{3}

We tacitly identify F_{2} with the subgroup $\left\langle x_{12}, x_{23}\right\rangle \leq \mathrm{PB}_{3}$. We also set

$$
x:=x_{12} \quad \text { and } \quad y:=x_{23} .
$$

We denote by θ and τ the following automorphisms of F_{2} :

$$
\theta(x):=y, \quad \theta(y):=x, \quad \tau(x):=y, \quad \tau(y):=y^{-1} x^{-1}
$$

We set

$$
\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right):=\left\{\mathrm{N} \unlhd \mathrm{~B}_{3}\left|\mathrm{~N} \leq \mathrm{PB}_{3},\left|\mathrm{~B}_{3}: \mathrm{N}\right|<\infty\right\}\right.
$$

and abbreviate $\mathrm{NFI}:=\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$.

Preparation

For $N \in N F I$, we set

$$
\mathrm{N}_{\mathrm{F}_{2}}:=\mathrm{F}_{2} \cap \mathrm{~N}, \quad N_{\text {ord }}:=\operatorname{lcm}\left(\operatorname{ord}\left(x_{12} \mathrm{~N}\right), \operatorname{ord}\left(x_{23} \mathrm{~N}\right), \operatorname{ord}(c \mathrm{~N})\right) .
$$

We say that $(m, f) \in \mathbb{Z} \times \mathrm{F}_{2}$ satisfies the hexagon relations modulo N if

$$
\begin{aligned}
& \sigma_{1}^{2 m+1} f^{-1} \sigma_{2}^{2 m+1} f \mathrm{~N}=f^{-1} \sigma_{1} \sigma_{2} x_{12}^{-m} c^{m} \mathrm{~N} \\
& f^{-1} \sigma_{2}^{2 m+1} f \sigma_{1}^{2 m+1} \mathrm{~N}=\sigma_{2} \sigma_{1} x_{23}^{-m} c^{m} f \mathrm{~N}
\end{aligned}
$$

Proposition

If $(m, f) \in \mathbb{Z} \times \mathrm{F}_{2}$ satisfies the hexagon relations modulo N , then the formulas

$$
T_{m, f}\left(\sigma_{1}\right):=\sigma_{1}^{2 m+1} \mathrm{~N}, \quad T_{m, f}\left(\sigma_{2}\right):=f^{-1} \sigma_{2}^{2 m+1} f \mathrm{~N}
$$

define a group homomorphism $T_{m, f}: \mathrm{B}_{3} \rightarrow \mathrm{~B}_{3} / \mathrm{N}$.

Let us restrict $T_{m, f}$ to PB_{3} and to F_{2}

Restricting the above homomorphism $T_{m, f}: \mathrm{B}_{3} \rightarrow \mathrm{~B}_{3} / \mathrm{N}$ to PB_{3} and to F_{2}, we get

$$
\begin{gathered}
T_{m, f}^{\mathrm{PB}_{3}}: \mathrm{PB}_{3} \rightarrow \mathrm{~PB}_{3} / \mathrm{N}, \quad T_{m, f}^{\mathrm{F}_{2}}: \mathrm{F}_{2} \rightarrow \mathrm{~F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}, \\
T_{m, f}^{\mathrm{PB}_{3}}\left(x_{12}\right)=x_{12}^{2 m+1} \mathrm{~N}, \quad T_{m, f}^{\mathrm{PB}_{3}}\left(x_{23}\right)=f^{-1} x_{23}^{2 m+1} f \mathrm{~N}, \\
T_{m, f}^{\mathrm{PB}_{3}}(c)=c^{2 m+1} \mathrm{~N}, \\
T_{m, f}^{\mathrm{F}_{2}}(x)=x^{2 m+1} \mathrm{~N}_{\mathrm{F}_{2}}, \quad T_{m, f}^{\mathrm{F}_{2}}(y)=f^{-1} y^{2 m+1} f \mathrm{~N}_{\mathrm{F}_{2}},
\end{gathered}
$$

$T_{m, f}$ is onto $\Longleftrightarrow T_{m, f}^{\mathrm{PB}_{3}}$ is onto $\Longleftrightarrow T_{m, f}^{\mathrm{F}_{2}}$ is onto.
$\operatorname{ker}\left(T_{m, f}\right)=\operatorname{ker}\left(T_{m, f}^{\mathrm{PB}_{3}}\right)$. Hence $\operatorname{ker}\left(T_{m, f}\right) \in \mathrm{NFI}$.

A GT-shadow is . . .

Definition

Let $\mathrm{N} \in \mathrm{NFI}$. A GT-shadow with the target N is a pair

$$
[m, f]:=\left(m+N_{\text {ord }} \mathbb{Z}, f \mathrm{~N}_{\mathrm{F}_{2}}\right) \in \mathbb{Z} / N_{\text {ord }} \mathbb{Z} \times \mathrm{F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}
$$

satisfying the hexagon relations (modulo N) and such that

- $2 m+1$ represents a unit in the ring $\mathbb{Z} / N_{\text {ord }} \mathbb{Z}$,
- $f \mathrm{~N}_{\mathrm{F}_{2}} \in\left[\mathrm{~F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}, \mathrm{~F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}\right]$, or equivalently $\exists w \in\left[\mathrm{~F}_{2}, \mathrm{~F}_{2}\right]$ such that $f \mathrm{~N}_{\mathrm{F}_{2}}=w \mathrm{~N}_{\mathrm{F}_{2}}$, and
- the homomorphism $T_{m, f}: \mathrm{B}_{3} \rightarrow \mathrm{~B}_{3} / \mathrm{N}$ is onto $\left(\Longleftrightarrow T_{m, f}^{\mathrm{PB}_{3}}\right.$ is onto $\Longleftrightarrow T_{m, t}^{\mathrm{F}_{2}}$ is onto).
$\mathrm{GT}(\mathrm{N})$ is the set of GT-shadows with the target N .

The groupoid GTSh

Guess what?!.... GT-shadows form a groupoid GTSh.
$\mathrm{Ob}(\mathrm{GTSh}):=\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right) ;$ for $\mathrm{K}, \mathrm{N} \in \mathrm{NFI}$,

$$
\operatorname{GTSh}(\mathrm{K}, \mathrm{~N}):=\left\{[m, f] \in \mathrm{GT}(\mathrm{~N}) \mid \operatorname{ker}\left(T_{m, f}\right)=\mathrm{K}\right\}
$$

Let $\mathrm{N}^{(1)}, \mathrm{N}^{(2)}, \mathrm{N}^{(3)} \in \mathrm{NFI}$ and

$$
\mathrm{N}^{(3)} \xrightarrow{\left[m_{2}, f_{2}\right]} \mathrm{N}^{(2)} \xrightarrow{\left[m_{1}, f_{1}\right]} \mathrm{N}^{(1)} .
$$

The composition of morphisms is defined by the formula:

$$
\left[m_{1}, f_{1}\right] \circ\left[m_{2}, f_{2}\right]:=\left[2 m_{1} m_{2}+m_{1}+m_{2}, f_{1} E_{m_{1}, f_{1}}\left(f_{2}\right)\right]
$$

$\forall N \in N F I,\left[0,1_{F_{2}}\right]$ is the identity morphism in $\operatorname{GTSh}(N, N)$.

A comment

For $(m, f) \in \mathbb{Z} \times \mathrm{F}_{2}$, the formulas

$$
E_{m, f}(x):=x^{2 m+1}, \quad E_{m, f}(y):=f^{-1} y^{2 m+1} f
$$

define an endomorphism of F_{2}.
Moreover, for all $\left(m_{1}, f_{1}\right),\left(m_{2}, f_{2}\right) \in \mathbb{Z} \times \mathrm{F}_{2}$,

$$
E_{m_{1}, f_{1}} \circ E_{m_{2}, f_{2}}=E_{m, f}
$$

where $m:=2 m_{1} m_{2}+m_{1}+m_{2}$ and $f:=f_{1} E_{m_{1}, f_{1}}\left(f_{2}\right)$.
On can show that the set $\mathbb{Z} \times F_{2}$ is a monoid with respect to the binary operation

$$
\left(m_{1}, f_{1}\right) \bullet\left(m_{2}, f_{2}\right):=\left(2 m_{1} m_{2}+m_{1}+m_{2}, f_{1} E_{m_{1}, f_{1}}\left(f_{2}\right)\right)
$$

with $\left(0,1_{F_{2}}\right)$ being the identity element.

Basic facts about GTSh

- GTSh has infinitely many objects. $\left(\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)\right.$ is infinite because PB_{3} is residually finite.)
- GTSh is highly disconnected. However, for every $N \in \operatorname{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$, the connected component $\mathrm{GTSh}_{\text {conn }}(\mathrm{N})$ of N is a finite groupoid.
- If GTSh conn (N) has only one object (i.e. GT(N) is group), then we say that N is isolated.
- For every $\mathrm{N} \in \mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$, the object

$$
\mathrm{N}^{\diamond}:=\bigcap_{\mathrm{K} \in \mathrm{Ob}\left(\operatorname{GTSh}_{\text {conn }}(\mathrm{N})\right)} \mathrm{K}
$$

is isolated. In particular, the subposet $\mathrm{NFI}^{\text {isol. }} \subset \mathrm{NFI}$ of isolated objects is cofinal.

"Reduction modulo" H

Let $\mathrm{N}, \mathrm{H} \in \mathrm{NFI}$ with $\mathrm{N} \leq \mathrm{H}$. We have $\mathrm{N}_{\mathrm{F}_{2}} \leq \mathrm{H}_{\mathrm{F}_{2}}$ and $H_{\text {ord }} \mid N_{\text {ord }}$.
If a pair $(m, f) \in \mathbb{Z} \times \mathrm{F}_{2}$ represents a GT-shadow with the target N , then the same pair also represents a GT-shadow with the target H .

Hence we have a natural map

$$
\mathcal{R}_{\mathrm{N}, \mathrm{H}}: \mathrm{GT}(\mathrm{~N}) \rightarrow \mathrm{GT}(\mathrm{H})
$$

If N, H are isolated (i.e. $\mathrm{GT}(\mathrm{N}), \mathrm{GT}(\mathrm{H})$ are groups) then $\mathcal{R}_{\mathrm{N}, \mathrm{H}}$ is a group homomorphism.

GT versus GTSh

For every $(\hat{m}, \hat{f}) \in \widehat{\mathrm{GT}}$ and $\mathrm{N} \in \mathrm{NFI}$ the pair

$$
\operatorname{PR}_{\mathrm{N}}(\hat{m}, \hat{f}):=\left(\mathcal{P}_{N_{\text {ord }}}(\hat{m}), \mathcal{P}_{\mathrm{N}_{\mathrm{F}_{2}}}(\hat{f})\right) \in \mathbb{Z} / N_{\text {ord }} \mathbb{Z} \times \mathrm{F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}
$$

is a GT-shadow with the target N . (For $\mathrm{K} \in \mathrm{NFI}(G), \mathcal{P}_{\mathrm{K}}$ denotes the standard continuous homomorphism $\widehat{G} \rightarrow G / K$.) $P R R_{N}(\hat{m}, \hat{f})$ is an approximation of the element (\hat{m}, \hat{f}).
A GT-shadow $[m, f] \in \mathrm{GT}(\mathrm{N})$ is called genuine if $\exists(\hat{m}, \hat{f}) \in \widehat{\mathrm{GT}}$ such that $\mathrm{PR}_{\mathrm{N}}(\hat{m}, \hat{f})=[m, f]$. Otherwise, it is called fake.
A GT-shadow $[m, f] \in G T(N)$ survives into $K \in N F I($ with $K \leq N$) if $[m, f] \in \mathcal{R}_{\mathrm{K}, \mathrm{N}}(\mathrm{GT}(\mathrm{K}))$.
Proposition. A GT-shadow $[m, f] \in \mathrm{GT}(\mathrm{N})$ is genuine $\Longleftrightarrow[m, f]$ survives into K for every $K \in \mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$ such that $\mathrm{K} \leq \mathrm{N}$.

The Main Line functor

Let $\mathrm{K}, \mathrm{N} \in \mathrm{NFI}$ be isolated objects of the groupoid GTSh and $\mathrm{K} \leq \mathrm{N}$.
Since $\mathcal{R}_{\mathrm{K}, \mathrm{N}}$ is a group homomorphism

$$
\mathrm{GT}(\mathrm{~K}) \rightarrow \mathrm{GT}(\mathrm{~N}),
$$

the assignments

$$
\mathrm{ML}(\mathrm{~N}):=\mathrm{GT}(\mathrm{~N}), \quad \mathrm{ML}(\mathrm{~K} \leq \mathrm{N}):=\mathcal{R}_{\mathrm{K}, \mathrm{~N}}
$$

define a functor from the poset $\mathrm{NFI}^{\text {isol. }}$ to the category of finite groups.
Theorem. The limit of ML is isomorphic to (the gentle version of) $\widehat{\mathrm{GT}}$.

Can GT-shadows act on child's drawings? Sure!

Recall that a child's drawing of degree d can be represented by a group homomorphism $\psi: \mathrm{F}_{2} \rightarrow S_{d}$ (with the subgroup $\psi\left(\mathrm{F}_{2}\right)$ being transitive). [ψ] denotes the child's drawing represented by a homomorphism $\psi: \mathrm{F}_{2} \rightarrow S_{d}$.

We say that a child's drawing [ψ] is subordinate to $\mathrm{N} \in \mathrm{NFI}$ (or N dominates $[\psi]$), if

$$
\mathrm{N}_{\mathrm{F}_{2}} \subset \operatorname{ker}(\psi) .
$$

Dessin(N) denotes the set of child's drawings subordinate to N . We denote by Dessin the category whose objects are elements of NFI. For $\mathrm{K}, \mathrm{N} \in \mathrm{NFI}$, morphisms from K to N are all functions from Dessin(K) to Dessin(N).

The action of GTSh on child's drawings

Proposition

Let $\mathrm{K}, \mathrm{N} \in \mathrm{NFI}$ and $[m, f] \in \operatorname{GTSh}(\mathrm{K}, \mathrm{N})$. Let $\psi: \mathrm{F}_{2} \rightarrow S_{d}$ be a homomorphism that represents $[\psi] \in \operatorname{Dessin}(\mathrm{N})$. Then

- the homomorphism $\tilde{\psi}: \mathrm{F}_{2} \rightarrow S_{d}$

$$
\tilde{\psi}(x):=\psi\left(x^{2 m+1}\right), \quad \tilde{\psi}(y):=\psi\left(f^{-1} y^{2 m+1} f\right)
$$

represents a child's drawing subordinate to K and

- the assignments $\mathscr{A}^{s h}(\mathrm{~N}):=\mathrm{N},[\psi]^{[m, f]}:=\left[\psi \circ E_{m, f}\right]$ define a cofunctor $\mathscr{A}^{\text {sh }}:$ GTSh \rightarrow Dessin.

One can show that the action of GTSh on child's drawing is compatible with the action of $\widehat{\mathrm{GT}}$.

What can be proved about the action of GTSh?

- The action of GTSh on child's drawings is compatible with the action of S_{3}. Hence the passport of a child's drawing is invariant with respect to the GTSh-action.
- The GTSh-action is compatible with the partial order on the set of child's drawings. (We say that $[\tilde{H}] \leq[H]$ if $\exists w \in \mathrm{~F}_{2}$ such that $\tilde{H} \leq w H w^{-1}$, i.e the child's drawing $[\tilde{H}]$ "covers" $[H]$.)
- If a child's drawing $D \in \operatorname{Dessin}(N)$ is Galois, then so is $D^{[m, f]}$ for every $[m, f] \in \operatorname{GT}(\mathrm{N})$.
- The GTSh-action commutes with the operation of taking the Galois (normal) closure of a child's drawing.
- If a child's drawing $[\psi] \in \operatorname{Dessin}(\mathrm{N})$ is abelian (i.e. the monodromy group $\psi\left(\mathrm{F}_{2}\right)$ is abelian $)$, then the orbit $\mathrm{GT}(\mathrm{N})([\psi])$ is a singleton.

GT-shadows for the dihedral subposet

Let $n \in \mathbb{Z}_{\geq 3}$ and $D_{n}:=\left\langle r, s \mid r^{n}, s^{2}, r s r s\right\rangle$ be the dihedral group of order $2 n$. Let φ be the following homomorphism $\mathrm{PB}_{3} \rightarrow D_{n}^{3}$

$$
\varphi\left(x_{12}\right):=\left(r^{-1}, s, s\right), \quad \varphi\left(x_{23}\right):=(r s, r, r s), \quad \varphi(c):=\mathrm{id}
$$

and

$$
\mathrm{K}^{(n)}:=\operatorname{ker}\left(\mathrm{PB}_{3} \xrightarrow{\varphi} D_{n}^{3}\right) .
$$

One can show that $\mathrm{K}^{(n)} \unlhd \mathrm{B}_{3}$, i.e. $\mathrm{K}^{(n)} \in \mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$.
We call

$$
\left\{\mathrm{K}^{(n)}: n \in \mathbb{Z}_{\geq 3}\right\} \subset \mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)
$$

the dihedral subposet of $\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$.

Basic facts about GTSh ${ }_{\text {conn }}\left(\mathrm{K}^{(n)}\right)$

- For every $n \geq 3, \mathrm{~K}^{(n)}$ is isolated. Hence $\mathrm{GT}\left(\mathrm{K}^{(n)}\right)$ is a (finite) group and the Galois child's drawing represented by $K_{F_{2}}^{(n)} \leq F_{2}$ admits a Belyi pair defined over \mathbb{Q}.
- If $q, n \geq 3$ are odd and $q \mid n$ then the group homomorphism

$$
\mathcal{R}_{\mathrm{K}^{(n)}, \mathrm{K}^{(q)}}: \mathrm{GT}\left(\mathrm{~K}^{(n)}\right) \rightarrow \mathrm{GT}\left(\mathrm{~K}^{(q)}\right)
$$

is onto. I do not think that one can find fake GT-shadows using the dihedral subposet.

- For odd $n \geq 3$, the group $\operatorname{GT}\left(\mathrm{K}^{(n)}\right)$ can be described explicitly and the limit of the corresponding functor $\mathrm{K}^{(n)} \mapsto \mathrm{GT}\left(\mathrm{K}^{(n)}\right)$ can be also computed explicitly.

Greetings to a distant mathematical ancestor! :-)

$$
d=3
$$

$$
d=5
$$

$$
T_{0}(z):=1, \quad T_{1}(z):=z, \quad T_{2}(z):=2 z^{2}-1
$$

$$
T_{3}(z):=4 z^{3}-3 z, \quad T_{4}(z):=8 z^{4}-8 z^{2}+1
$$

$$
T_{5}(z):=16 z^{5}-20 z^{3}+5 z
$$

$$
T_{d+1}(z):=2 z T_{d}(z)-T_{d-1}(z), \quad \varphi_{d}(z):=\frac{1}{2}\left(T_{d}(z)+1\right)
$$

More child's drawings? Sure!

GTSh-orbits of the following child's drawings are singletons:

Weeeeell... I would not try to draw child's drawings from the following family (here n is odd):

$$
G:=\left\langle g_{12}, g_{23}\right\rangle \leq D_{n}^{3}, \quad g_{12}:=\left(r^{-1}, s, s\right), \quad g_{23}:=(r s, r, r s)
$$

Let C_{n} be the child's drawing corresponding to the action of g_{12} and g_{23} on the set G / H of left cosets, where

$$
H:=\langle(r, 1,1),(1, s, s)\rangle \leq G
$$

A bit more about the family $C_{n}, n \geq 3$, odd

- The degree of C_{n} is $2 n^{2}$.
- C_{n} is not Galois.
- C_{n} is subordinate to $\mathrm{K}^{(n)}$ and $\mathrm{GT}\left(\mathrm{K}^{(n)}\right)\left(C_{n}\right)=\left\{C_{n}\right\}$.
- C_{3} is represented by this permutation pair

$$
\begin{aligned}
& (3,5)(4,6)(7,18)(8,17)(9,15)(10,16)(11,14)(12,13) \\
& (1,7,15,3,9,13)(2,8,16,4,10,14)(5,11,18,6,12,17)
\end{aligned}
$$

Its passport is $\left(2^{8} 1^{2}, 6^{3}, 6^{3}\right)$. Its genus is 2 .

Dear Collaborators! Thank you!

These people worked (are working) with me on GT-shadows for the gentle version of the Grothendieck-Teichmueller group:

- Jacob Guynee (currently, a PhD student at Georgia Tech)
- Jessica Radford (currently, a PhD student at the University of Oklahoma)
- Jingfeng Xia (currently, a PhD student at Temple University)
- Hm... your name can be here! :-)
- Are you an "adult mathematician"? Your name can be here too! :-)

Hierarchy of orbits

Consider a chain in the poset $\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$

$$
\mathrm{N}^{(1)} \supset \mathrm{N}^{(2)} \supset \mathrm{N}^{(3)} \supset \ldots
$$

and a child's drawing $D \in \operatorname{Dessin}\left(\mathrm{~N}^{(1)}\right)$. It is clear that D is subordinate to $\mathrm{N}^{(i)}$ for every $\mathrm{N}^{(i)}$ in this chain.
Recall that $\mathrm{GT}(\mathrm{N})$ denotes the set of all GT-shadows with the target N . (GT(N) is finite!)
For every child's drawing D, we have the following hierarchy of orbits:

$$
\mathrm{GT}\left(\mathrm{~N}^{(1)}\right)(D) \supset \mathrm{GT}\left(\mathrm{~N}^{(2)}\right)(D) \supset \mathrm{GT}\left(\mathrm{~N}^{(3)}\right)(D) \supset \cdots \supset \widehat{\mathrm{GT}}(D) \supset \mathrm{G}_{\mathbb{Q}}(D)
$$

It is very hard to compute $G_{\mathbb{Q}}(D)$; there are no tools in modern mathematics to compute orbits $\widehat{\mathrm{GT}}(D)$; it is relatively easy to compute orbits $\mathrm{GT}(\mathrm{N})(D)$.

