GT-shadows for the gentle version of the Grothendieck-Teichmueller group

Vasily Dolgushev

Temple University

University of Pennsylvania, Algebra/Galois Seminar, September 12, 2022

Loosely based on papers in preparation with Jacob Guynee, Jessica Radford and Jingfeng Xia

The absolute Galois group $G_{\mathbb{Q}}$ of rationals and $\widehat{\mathsf{GT}}$

 $G_{\mathbb{Q}}$ is the group of (field) automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of the field \mathbb{Q} of rational numbers. This group is uncountable. For every finite Galois extension $E\supset\mathbb{Q}$, any element $g\in \mathrm{Gal}(E/\mathbb{Q})$ can be extended (in infinitely many ways) to an element of $G_{\mathbb{Q}}$. The group $G_{\mathbb{Q}}$ is one of the most mysterious objects in mathematics!

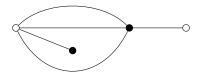
In 1990, Vladimir Drinfeld introduced yet another mysterious group $\widehat{\mathsf{GT}}$ (the Grothendieck-Teichmuelller group). $\widehat{\mathsf{GT}}$ consists pairs (\hat{m},\hat{f}) in $\widehat{\mathbb{Z}}\times\widehat{\mathsf{F}}_2$ satisfying some conditions and it receives a one-to-one homomorphism

$$G_{\mathbb{Q}} \hookrightarrow \widehat{\mathsf{GT}}$$
.

Only two elements of $G_{\mathbb{Q}}$ are known explicitly: the identity element and the complex conjugation $a + bi \mapsto a - bi$. The corresponding images in $\widehat{\mathsf{GT}}$ are (0,1) and (-1,1).

A child's drawing of degree d is . . .

An isom. class of a connected bipartite ribbon graph with *d* edges.



An equiv. class of a pair (g_1, g_2) of permutations in S_d for which the group $\langle g_1, g_2 \rangle$ acts transitively on $\{1, 2, \dots, d\}$.

A conjugacy class of an index d subgroup of $F_2 := \langle x, y \rangle$.

A conjugacy class of a group homomorphism $\psi: F_2 \to S_d$ (with the subgroup $\psi(F_2) \leq S_d$ being transitive.)

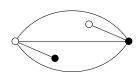
An isom. class of a (non-constant) holomorphic map $\varphi: \Sigma \to \mathbb{CP}^1$ from a compact connected Riemann surface (without boundary) that does not have branch points above every $w \in \mathbb{CP}^1 - \{0, 1, \infty\}$.

The action of $G_{\mathbb{Q}}$ on child's drawings

Given a child's drawing D, we can find a smooth projective curve X defined over $\overline{\mathbb{Q}}$ and an algebraic map $\varphi:X\to\mathbb{P}^1_{\overline{\mathbb{Q}}}$ that does not have branch points above every $w\in\mathbb{P}^1_{\overline{\mathbb{Q}}}-\{0,1,\infty\}$. (X,φ) is called a **Belyi pair** representing D.

The coefficients defining the curve X and the map φ lie in some finite Galois extension E of \mathbb{Q} . Given $g \in \operatorname{Gal}(E/\mathbb{Q})$, the child's drawing g(D) is represented by the new Belyi pair $(g(X),g(\varphi))$. We simply act by g on the coefficients defining X and φ !

The $G_{\mathbb{Q}}$ -orbit of the above child's drawing has two elements. It's 'Galois conjugate' is



Basic invariants of child's drawings

- the **degree** d of a child's drawing $[F_2 \xrightarrow{\psi} S_d]$;
- the conjugacy class of the subgroup ψ(F₂) ≤ S_d is call the monodromy group of [ψ];
- for a child's drawing represented by (g₁, g₂) ∈ S_d × S_d, its
 passport is the triple of partitions (ct(g₁), ct(g₂), ct(g₂⁻¹g₁⁻¹)) of
 d, where ct(h) denotes the cycle type of a permutation h ∈ S_d;
- the cartographic group and more...

Let σ_1, σ_2 be the standard generators of Artin's braid group B₃. The formulas (here, $g_3 := g_2^{-1}g_1^{-1}$)

$$\sigma_1(g_1,g_2,g_3):=(g_2,g_2^{-1}g_1g_2,g_3), \quad \sigma_2(g_1,g_2,g_3):=(g_1,g_3,g_3^{-1}g_2g_3)$$

define an action of B_3 on child's drawings. Since the pure braid group PB_3 acts trivially, we actually get an action of S_3 on child's drawings. The action of $G_{\mathbb{Q}}$ commutes with this action of S_3 .

A bit about (the gentle version of) $\widehat{\mathsf{GT}}$

For $(\hat{m}, \hat{f}) \in \widehat{\mathbb{Z}} \times \widehat{F}_2$, the formulas

$$E_{\hat{m},\hat{f}}(x) := x^{2\hat{m}+1}, \qquad E_{\hat{m},\hat{f}}(y) := \hat{f}^{-1}y^{2\hat{m}+1}\hat{f}$$

define a continuous endomorphism $E_{\hat{m}\hat{f}}$ of \hat{F}_2 .

 $\widehat{\mathbb{Z}} \times \widehat{F}_2$ is a monoid with the binary operation

$$(\hat{m}_1,\hat{f}_1) \bullet (\hat{m}_2,\hat{f}_2) := \left(2\hat{m}_1\hat{m}_2 + \hat{m}_1 + \hat{m}_2,\,\hat{f}_1 E_{\hat{m}_1,\hat{f}_1}(\hat{f}_2)\right)$$

and the identity element (0,1).

Let σ_1, σ_2 be the standard generators of Artin's braid group B_3 ,

$$c := (\sigma_1 \sigma_2 \sigma_1)^2$$
 and $x_{12} := \sigma_1^2$, $x_{23} := \sigma_2^2$.

The gentle version $\widehat{\mathsf{GT}}_{gen}$ of $\widehat{\mathsf{GT}}$

Let $\widehat{\mathsf{GT}}_{mon}$ be the submonoid of $\widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$ that consists of pairs (\hat{m}, \hat{f}) satisfying the **hexagon relations**:

$$\begin{split} &\sigma_1^{2\hat{m}+1}\hat{f}^{-1}\sigma_2^{2\hat{m}+1}\hat{f} = \hat{f}^{-1}\sigma_1\sigma_2\,X_{12}^{-\hat{m}}c^{\hat{m}}\,,\\ &\hat{f}^{-1}\sigma_2^{2\hat{m}+1}\hat{f}\,\sigma_1^{2\hat{m}+1} = \sigma_2\sigma_1X_{23}^{-\hat{m}}c^{\hat{m}}\hat{f} \end{split}$$

and $\hat{f} \in [\widehat{\mathsf{F}}_2, \widehat{\mathsf{F}}_2]^{\textit{top. cl.}}$.

 $\widehat{\mathsf{GT}}_{\mathit{gen}}$ is the group of invertible elements of the monoid $\widehat{\mathsf{GT}}_{\mathit{mon}}$.

The formula

$$\chi_{vir}(\hat{m},\hat{f}):=2\hat{m}+1$$

defines a (continuous) group homomorphism $\widehat{\mathsf{GT}}_{gen} \to \widehat{\mathbb{Z}}^{\times}$. $\chi_{\textit{vir}}$ is called the **virtual cyclotomic character**.

In the remaining slides, $\widehat{\mathsf{GT}}$ denotes $\widehat{\mathsf{GT}}_{gen} = \widehat{\mathsf{GT}}_0$. *D. Harbater, L. Schneps, (2000).*

The action of GT on child's drawings

Let (\hat{m}, \hat{f}) be an element of $\widehat{\mathsf{GT}}$ and D be a child's drawing. It is convenient to represent D by a group homomorphism

$$\varphi: \mathsf{F_2} \to \mathcal{S}_d$$
,

where $\varphi(F_2)$ is transitive. (*D* corresponds to the conjugacy class of the stabilizer of 1.)

 φ extends, by continuity, to a (continuous) group homomorphism $\hat{\varphi}: \hat{\mathsf{F}}_2 \to \mathcal{S}_d$. The child's drawing $D^{(\hat{m},\hat{f})}$ corresponds to the group homomorphism

$$\hat{\varphi} \circ \hat{T}|_{\mathsf{F}_2} : \mathsf{F}_2 \to \mathcal{S}_d$$
,

where

$$\hat{T}(x) := x^{2\hat{m}+1}$$
 and $\hat{T}(y) := \hat{f}^{-1} y^{2\hat{m}+1} \hat{f}$.

See Y. Ihara's paper "On the embedding of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ into \widehat{GT} ".

The Artin braid group B₃ and PB₃

 B_3 (resp. PB_3) denotes the Artin braid group (resp. the pure braid group) on 3 strands. σ_1, σ_2 are the standard generators of B_3

We set $\Delta := \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$. PB₃ is generated by

$$x_{12} := \sigma_1^2, \qquad x_{23} := \sigma_2^2, \qquad c := \Delta^2.$$

It is known that $\mathcal{Z}(\mathsf{B}_3)=\mathcal{Z}(\mathsf{PB}_3)=\langle\,c\,\rangle\cong\mathbb{Z}$, the subgroup $\langle\,x_{12},x_{23}\,\rangle$ is isomorphic to F_2 . In fact, $\mathsf{PB}_3\cong\mathsf{F}_2\times\langle\,c\,\rangle$.

A bit more about F₂, PB₃ and B₃

We tacitly identify F_2 with the subgroup $\langle x_{12}, x_{23} \rangle \leq PB_3$. We also set

$$x := x_{12}$$
 and $y := x_{23}$.

We denote by θ and τ the following automorphisms of F_2 :

$$\theta(x) := y, \quad \theta(y) := x, \qquad \tau(x) := y, \quad \tau(y) := y^{-1}x^{-1}.$$

We set

$$NFI_{PB_3}(B_3) := \{\, N \unlhd B_3 \mid N \le PB_3, \ |B_3:N| < \infty \,\}$$

and abbreviate $NFI := NFI_{PB_3}(B_3)$.

Preparation

For $N \in NFI$, we set

$$\mathsf{N}_{\mathsf{F}_2} := \mathsf{F}_2 \cap \mathsf{N}, \quad \mathit{N}_{\mathsf{ord}} := \mathsf{lcm} \, \big(\, \mathsf{ord}(\mathit{x}_{12}\mathsf{N}), \mathsf{ord}(\mathit{x}_{23}\mathsf{N}), \mathsf{ord}(\mathit{c}\mathsf{N}) \big).$$

We say that $(m, f) \in \mathbb{Z} \times F_2$ satisfies the **hexagon relations** modulo N if

$$\sigma_1^{2m+1} f^{-1} \sigma_2^{2m+1} f \, \mathcal{N} = f^{-1} \sigma_1 \sigma_2 X_{12}^{-m} c^m \, \mathcal{N}$$
$$f^{-1} \sigma_2^{2m+1} f \sigma_1^{2m+1} \, \mathcal{N} = \sigma_2 \sigma_1 X_{23}^{-m} c^m f \, \mathcal{N}.$$

Proposition

If $(m,f) \in \mathbb{Z} \times F_2$ satisfies the hexagon relations modulo N, then the formulas

$$T_{m,f}(\sigma_1) := \sigma_1^{2m+1} \, \mathbf{N}, \qquad T_{m,f}(\sigma_2) := f^{-1} \sigma_2^{2m+1} f \, \mathbf{N}$$

define a group homomorphism $T_{m,f}: B_3 \to B_3/N$.

Let us restrict $T_{m,f}$ to PB₃ and to F₂

Restricting the above homomorphism $T_{m,f}: B_3 \to B_3/N$ to PB₃ and to F₂, we get

$$T_{m,f}^{PB_3}: PB_3 \to PB_3/N,$$
 $T_{m,f}^{F_2}: F_2 \to F_2/N_{F_2},$

$$T_{m,f}^{\mathsf{PB}_3}(x_{12}) = x_{12}^{2m+1} \,\mathsf{N}, \qquad T_{m,f}^{\mathsf{PB}_3}(x_{23}) = f^{-1}x_{23}^{2m+1} f\,\mathsf{N},$$

$$T_{m,f}^{\mathsf{PB}_3}(c) = c^{2m+1} \,\mathsf{N},$$

$$T_{m,f}^{\mathsf{F}_2}(x) = x^{2m+1} \, \mathsf{N}_{\mathsf{F}_2}, \qquad T_{m,f}^{\mathsf{F}_2}(y) = f^{-1} y^{2m+1} f \, \mathsf{N}_{\mathsf{F}_2},$$

 $T_{m,f}$ is onto $\iff T_{m,f}^{\mathsf{PB}_3}$ is onto $\iff T_{m,f}^{\mathsf{F}_2}$ is onto.

 $\ker(T_{m,f}) = \ker(T_{m,f}^{\mathsf{PB}_3})$. Hence $\ker(T_{m,f}) \in \mathsf{NFI}$.

A GT-shadow is ...

Definition

Let N ∈ NFI. A GT-shadow with the target N is a pair

$$[\textit{m},\textit{f}] \,:=\, (\textit{m} + \textit{N}_{\text{ord}}\mathbb{Z},\textit{f}N_{F_2}) \in \mathbb{Z}/\textit{N}_{\text{ord}}\mathbb{Z} \times F_2/N_{F_2}$$

satisfying the hexagon relations (modulo N) and such that

- 2m + 1 represents a unit in the ring $\mathbb{Z}/N_{\text{ord}}\mathbb{Z}$,
- $fN_{F_2}\in [F_2/N_{F_2},F_2/N_{F_2}]$, or equivalently $\exists~w\in [F_2,F_2]$ such that $fN_{F_2}=wN_{F_2},$ and
- the homomorphism $T_{m,f}: \mathsf{B}_3 \to \mathsf{B}_3/\mathsf{N}$ is onto ($\iff T_{m,f}^{\mathsf{PB}_3}$ is onto $\iff T_{m,f}^{\mathsf{F}_2}$ is onto).

GT(N) is the set of GT-shadows with the target N.

The groupoid GTSh

Guess what?!.... GT-shadows form a groupoid GTSh.

$$\textit{Ob}(\mathsf{GTSh}) := \mathsf{NFI}_{\mathsf{PB}_3}(\mathsf{B}_3); \quad \mathrm{for} \quad \mathsf{K}, \mathsf{N} \in \mathsf{NFI},$$

$$\mathsf{GTSh}(\mathsf{K},\mathsf{N}) := \Big\{ \, [m,f] \in \mathsf{GT}(\mathsf{N}) \, | \, \, \mathsf{ker}(\mathcal{T}_{m,f}) = \mathsf{K} \, \Big\}.$$

Let $N^{(1)},N^{(2)},N^{(3)}\in NFI\,$ and

$$N^{(3)} \xrightarrow{[m_2, f_2]} N^{(2)} \xrightarrow{[m_1, f_1]} N^{(1)}.$$

The composition of morphisms is defined by the formula:

$$[m_1, f_1] \circ [m_2, f_2] := [2m_1m_2 + m_1 + m_2, f_1E_{m_1, f_1}(f_2)]$$

 $\forall \; N \in NFI, \, [0,1_{F_2}] \text{ is the identity morphism in } GTSh(N,N).$

A comment

For $(m, f) \in \mathbb{Z} \times F_2$, the formulas

$$E_{m,f}(x) := x^{2m+1}, \qquad E_{m,f}(y) := f^{-1}y^{2m+1}f$$

define an endomorphism of F₂.

Moreover, for all $(m_1, f_1), (m_2, f_2) \in \mathbb{Z} \times F_2$,

$$E_{m_1,f_1}\circ E_{m_2,f_2}=E_{m,f},$$

where $m := 2m_1m_2 + m_1 + m_2$ and $f := f_1E_{m_1,f_1}(f_2)$.

On can show that the set $\mathbb{Z}\times\mathsf{F}_2$ is a monoid with respect to the binary operation

$$(m_1, f_1) \bullet (m_2, f_2) := (2m_1m_2 + m_1 + m_2, f_1E_{m_1, f_1}(f_2))$$

with $(0, 1_{F_2})$ being the identity element.

Basic facts about GTSh

- GTSh has infinitely many objects. (NFI_{PB3}(B₃) is infinite because PB₃ is residually finite.)
- GTSh is highly disconnected. However, for every $N \in NFI_{PB_3}(B_3)$, the connected component $GTSh_{conn}(N)$ of N is a finite groupoid.
- If GTSh_{conn}(N) has only one object (i.e. GT(N) is group), then we say that N is isolated.
- For every $N \in NFI_{PB_3}(B_3)$, the object

$$\mathsf{N}^{\diamond} \; := \; \bigcap_{\mathsf{K} \in \mathit{Ob}(\mathsf{GTSh}_\mathsf{conn}(\mathsf{N}))} \mathsf{K}$$

is isolated. In particular, the subposet $NFI^{\textit{isol.}} \subset NFI$ of isolated objects is cofinal.

"Reduction modulo" H

Let $N, H \in NFI$ with $N \leq H$. We have $N_{F_2} \leq H_{F_2}$ and $H_{ord} | N_{ord}$.

If a pair $(m, f) \in \mathbb{Z} \times F_2$ represents a GT-shadow with the target N, then **the same pair** also represents a GT-shadow with the target H.

Hence we have a natural map

$$\mathcal{R}_{N,H}: GT(N) \to GT(H)$$

If N, H are isolated (i.e. GT(N), GT(H) are groups) then $\mathcal{R}_{N,H}$ is a group homomorphism.

GT versus GTSh

For every $(\hat{m}, \hat{t}) \in \widehat{\mathsf{GT}}$ and $\mathsf{N} \in \mathsf{NFI}$ the pair

$$\mathsf{PR}_\mathsf{N}(\hat{m},\hat{f}) := \left(\left. \mathcal{P}_{\mathsf{N}_\mathsf{ord}}(\,\hat{m}\,) \,,\, \mathcal{P}_{\mathsf{N}_{\mathsf{F}_2}}(\,\hat{f}\,) \,\right) \,\in\, \mathbb{Z}/\mathsf{N}_\mathsf{ord}\mathbb{Z} \times \mathsf{F}_2/\mathsf{N}_{\mathsf{F}_2}$$

is a GT-shadow with the target N. (For $K \in NFI(G)$, \mathcal{P}_K denotes the standard continuous homomorphism $\widehat{G} \to G/K$.) $PR_N(\widehat{m}, \widehat{f})$ is an **approximation** of the element $(\widehat{m}, \widehat{f})$.

A GT-shadow $[m, f] \in GT(N)$ is called **genuine** if $\exists (\hat{m}, \hat{t}) \in \widehat{GT}$ such that $PR_N(\hat{m}, \hat{t}) = [m, f]$. Otherwise, it is called **fake**.

A GT-shadow $[m, f] \in GT(N)$ survives into $K \in NFI$ (with $K \leq N$) if $[m, f] \in \mathcal{R}_{K,N}(GT(K))$.

Proposition. A GT-shadow $[m, f] \in GT(N)$ is genuine $\iff [m, f]$ survives into K for every $K \in NFl_{PB_3}(B_3)$ such that $K \leq N$.

The Main Line functor

Let $K, N \in NFI$ be isolated objects of the groupoid GTSh and $K \leq N$. Since $\mathcal{R}_{K,N}$ is a group homomorphism

$$GT(K) \rightarrow GT(N)$$
,

the assignments

$$ML(N) := GT(N), \qquad ML(\ K \leq N\) := \mathcal{R}_{K,N}$$

define a functor from the poset NFI^{isol.} to the category of finite groups.

Theorem. The limit of ML is isomorphic to (the gentle version of) $\widehat{\mathsf{GT}}$.

Can GT-shadows act on child's drawings? Sure!

Recall that a child's drawing of degree d can be represented by a group homomorphism $\psi: \mathsf{F}_2 \to \mathcal{S}_d$ (with the subgroup $\psi(\mathsf{F}_2)$ being transitive). $[\psi]$ denotes the child's drawing represented by a homomorphism $\psi: \mathsf{F}_2 \to \mathcal{S}_d$.

We say that a child's drawing $[\psi]$ is **subordinate** to $N \in NFI$ (or N dominates $[\psi]$), if

$$N_{F_2} \subset \ker(\psi)$$
.

 $\label{eq:decomposition} \begin{aligned} & \text{Dessin}(N) \text{ denotes the set of child's drawings subordinate to } N. \\ & \text{We denote by Dessin the category whose objects are elements of NFI.} \\ & \text{For } K, N \in \text{NFI, morphisms from } K \text{ to } N \text{ are all functions from } \\ & \text{Dessin}(K) \text{ to Dessin}(N). \end{aligned}$

The action of GTSh on child's drawings

Proposition

Let $K, N \in NFI$ and $[m, f] \in GTSh(K, N)$. Let $\psi : F_2 \to S_d$ be a homomorphism that represents $[\psi] \in Dessin(N)$. Then

ullet the homomorphism $ilde{\psi}: \mathsf{F_2} o \mathcal{S}_{\mathsf{d}}$

$$\tilde{\psi}(x) := \psi(x^{2m+1}), \qquad \tilde{\psi}(y) := \psi(f^{-1}y^{2m+1}f)$$

represents a child's drawing subordinate to K and

• the assignments $\mathscr{A}^{\sharp}(\mathsf{N}) := \mathsf{N}, \, [\psi]^{[m,f]} := [\psi \circ \mathsf{E}_{m,f}]$ define a cofunctor $\mathscr{A}^{\sharp} : \mathsf{GTSh} \to \mathsf{Dessin}.$

What can be proved about the action of GTSh?

- The action of GTSh on child's drawings is compatible with the action of S_3 . Hence the passport of a child's drawing is invariant with respect to the GTSh-action.
- The GTSh-action is compatible with the partial order on the set of child's drawings. (We say that [H
] ≤ [H] if ∃ w ∈ F2 such that H ≤ w H w⁻¹, i.e the child's drawing [H
] "covers" [H].)
- If a child's drawing $D \in \text{Dessin}(N)$ is Galois, then so is $D^{[m,f]}$ for every $[m,f] \in \text{GT}(N)$.
- The GTSh-action commutes with the operation of taking the Galois (normal) closure of a child's drawing.
- If a child's drawing $[\psi] \in \text{Dessin}(N)$ is abelian (i.e. the monodromy group $\psi(F_2)$ is abelian), then the orbit $GT(N)([\psi])$ is a singleton.

GT-shadows for the dihedral subposet

Let $n \in \mathbb{Z}_{\geq 3}$ and $D_n := \langle r, s \mid r^n, s^2, rsrs \rangle$ be the dihedral group of order 2*n*. Let φ be the following homomorphism PB₃ $\to D_n^3$

$$\varphi(x_{12}) := (r^{-1}, s, s), \qquad \varphi(x_{23}) := (rs, r, rs), \qquad \varphi(c) := id$$

and

$$\mathsf{K}^{(n)} := \mathsf{ker}(\mathsf{PB}_3 \overset{\varphi}{\longrightarrow} D_n^3).$$

One can show that $K^{(n)} \subseteq B_3$, i.e. $K^{(n)} \in NFl_{PB_3}(B_3)$.

We call

$$\left\{\mathsf{K}^{(n)} \ : \ n \in \mathbb{Z}_{\geq 3}\right\} \ \subset \ \mathsf{NFI}_{\mathsf{PB}_3}(\mathsf{B}_3)$$

the dihedral subposet of $NFI_{PB_3}(B_3)$.

Basic facts about $GTSh_{conn}(K^{(n)})$

- For every $n \ge 3$, $\mathsf{K}^{(n)}$ is isolated. Hence $\mathsf{GT}(\mathsf{K}^{(n)})$ is a (finite) group and the Galois child's drawing represented by $\mathsf{K}^{(n)}_{\mathsf{F}_2} \le \mathsf{F}_2$ admits a Belyi pair defined over \mathbb{Q} .
- If $q, n \ge 3$ are odd and q|n then the group homomorphism

$$\mathcal{R}_{\mathsf{K}^{(n)},\mathsf{K}^{(q)}}:\mathsf{GT}(\mathsf{K}^{(n)}) o\mathsf{GT}(\mathsf{K}^{(q)})$$

is **onto**. I do not think that one can find fake GT-shadows using the dihedral subposet.

• For **odd** $n \ge 3$, the group $GT(K^{(n)})$ can be described explicitly and the limit of the corresponding functor $K^{(n)} \mapsto GT(K^{(n)})$ can be also computed explicitly.

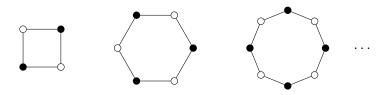
Greetings to a distant mathematical ancestor! :-)

$$T_0(z) := 1,$$
 $T_1(z) := z,$ $T_2(z) := 2z^2 - 1,$ $T_3(z) := 4z^3 - 3z,$ $T_4(z) := 8z^4 - 8z^2 + 1,$ $T_5(z) := 16z^5 - 20z^3 + 5z,$...

$$T_{d+1}(z) := 2zT_d(z) - T_{d-1}(z), \qquad \varphi_d(z) := \frac{1}{2}(T_d(z) + 1).$$

More child's drawings? Sure!

GTSh-orbits of the following child's drawings are singletons:



Weeeeell... I would not try to draw child's drawings from the following family (here *n* is odd):

$$G := \langle g_{12}, g_{23} \rangle \leq D_n^3, \quad g_{12} := (r^{-1}, s, s), \quad g_{23} := (rs, r, rs),$$

Let C_n be the child's drawing corresponding to the action of g_{12} and g_{23} on the set G/H of left cosets, where

$$H := \langle (r, 1, 1), (1, s, s) \rangle \leq G$$

A bit more about the family C_n , $n \ge 3$, odd

- The degree of C_n is $2n^2$.
- C_n is not Galois.
- C_n is subordinate to $K^{(n)}$ and $GT(K^{(n)})(C_n) = \{C_n\}$.
- C₃ is represented by this permutation pair

$$(3,5)(4,6)(7,18)(8,17)(9,15)(10,16)(11,14)(12,13),\\$$

$$(1,7,15,3,9,13)(2,8,16,4,10,14)(5,11,18,6,12,17).$$

Its passport is $(2^8 1^2, 6^3, 6^3)$. Its genus is 2.

Dear Collaborators! Thank you!

These people worked (are working) with me on GT-shadows for the gentle version of the Grothendieck-Teichmueller group:

- Jacob Guynee (currently, a PhD student at Georgia Tech)
- Jessica Radford (currently, a PhD student at the University of Oklahoma)
- Jingfeng Xia (currently, a PhD student at Temple University)
- Hm... your name can be here! :-)
- Are you an "adult mathematician"? Your name can be here too! :-)