GT-shadows and their action on Grothendieck's child's drawings

Vasily Dolgushev

Temple University

Seminar talk at the University of Angers, May 27, 2022

Loosely based on papers "What are GT-shadows?" (joint with Khanh Q. Le and Aidan Lorenz) and "The action of GT-shadows on child's drawings."

Vasily Dolgushev (Temple University)

The absolute Galois group $G_{\mathbb{Q}}$ of rationals and $\widehat{\mathrm{GT}}$

 $G_{\mathbb{Q}}$ is the group of (field) automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of the field \mathbb{Q} of rational numbers. This group is uncountable. For every finite Galois extension $E \supset \mathbb{Q}$, any element $g \in \text{Gal}(E/\mathbb{Q})$ can be extended (in infinitely many ways) to an element of $G_{\mathbb{Q}}$. The group $G_{\mathbb{Q}}$ is one of the most mysterious objects in mathematics!

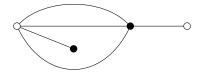
In 1990, Vladimir Drinfeld introduced yet another mysterious group $\widehat{\text{GT}}$ (the Grothendieck-Teichmuelller group). $\widehat{\text{GT}}$ consists pairs (\hat{m}, \hat{f}) in $\widehat{\mathbb{Z}} \times \widehat{\mathsf{F}}_2$ satisfying some conditions and it receives a one-to-one homomorphism

 $G_{\mathbb{Q}} \hookrightarrow \widehat{\operatorname{GT}}.$

Only two elements of $G_{\mathbb{Q}}$ **are known explicitly**: the identity element and the complex conjugation $a + bi \mapsto a - bi$. The corresponding images in $\widehat{\text{GT}}$ are (0, 1) and (-1, 1).

A child's drawing of degree d is ...

An isom. class of a connected bipartite ribbon graph with *d* edges.



An equiv. class of a pair (g_1, g_2) of permutations in S_d for which the group $\langle g_1, g_2 \rangle$ acts transitively on $\{1, 2, ..., d\}$.

A conjugacy class of an index *d* subgroup of $F_2 := \langle x, y \rangle$.

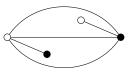
An isom. class of a degree *d* connected covering of $\mathbb{CP}^1 - \{0, 1, \infty\}$. An isom. class of a (non-constant) holomorphic map $f : \Sigma \to \mathbb{CP}^1$ from a compact connected Riemann surface (without boundary) that does not have branch points above every $w \in \mathbb{CP}^1 - \{0, 1, \infty\}$.

The action of $G_{\mathbb{Q}}$ on child's drawings

Given a child's drawing *D*, we can find a smooth projective curve *X* defined over $\overline{\mathbb{Q}}$ and an algebraic map $f : X \to \mathbb{P}^{1}_{\overline{\mathbb{Q}}}$ that does not have branch points above every $w \in \mathbb{P}^{1}_{\overline{\mathbb{Q}}} - \{0, 1, \infty\}$. (*X*, *f*) is called a **Belyi pair** corresponding to *D*.

The coefficients defining the curve *X* and the map *f* lie in some finite Galois extension *E* of \mathbb{Q} . Given any $g \in \text{Gal}(E/\mathbb{Q})$, the child's drawing g(D) is the one corresponding to the new Belyi pair (g(X), g(f)). We simply act by *g* on the coefficients defining *X* and *f*!

The $G_{\mathbb{Q}}$ -orbit of the above child's drawing has two elements. It's 'Galois conjugate' is



The action of $\widehat{\text{GT}}$ on child's drawings

Let (\hat{m}, \hat{f}) be an element of $\widehat{\text{GT}}$ and *D* be a child's drawing. It is convenient to represent *D* by a group homomorphism

 $\varphi:\mathsf{F_2}\to \mathcal{S}_{\mathcal{d}}\,,$

where $\varphi(F_2)$ is transitive. (*D* corresponds to the conjugacy class of the stabilizer of 1.)

 φ extends, by continuity, to a (continuous) group homomorphism $\hat{\varphi}: \hat{F}_2 \to S_d$. The child's drawing $D^{(\hat{m},\hat{f})}$ corresponds to the group homomorphism

$$\hat{\varphi} \circ \hat{T}\big|_{\mathsf{F}_2} : \mathsf{F}_2 \to \mathcal{S}_d$$
,

where

$$\hat{T}(x) := x^{2\hat{m}+1}$$
 and $\hat{T}(y) := \hat{f}^{-1} y^{2\hat{m}+1} \hat{f}$.

See Y. Ihara's paper "On the embedding of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ into \widehat{GT} ".

The Artin braid group B_n and PB_n

The Artin braid group B_n is generated by element $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ subject to the following relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i-j| \ge 2$,

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
 for $1 \le i \le n-2$.

The formula $\rho(\sigma_i) := (i, i + 1)$ defines an onto homomorphism ρ from B_n to the symmetric group S_n on *n* letters.

$$\mathsf{PB}_n := \mathsf{ker}\left(\mathsf{B}_n \overset{\rho}{\longrightarrow} S_n\right)$$

One can show that PB_n is generated by the elements

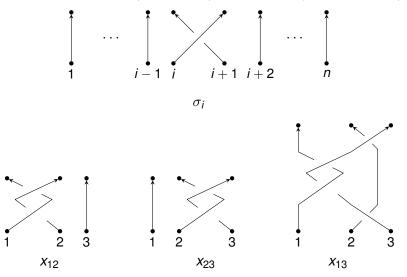
$$\mathbf{x}_{ij} := \sigma_{j-1} \dots \sigma_{i+1} \sigma_i^2 \sigma_{i+1}^{-1} \dots \sigma_{j-1}^{-1} ,$$

where $1 \le i < j \le n$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Pictures for elements of B_n and PB_n

It is known that $\mathsf{PB}_n \cong \pi_1(\mathsf{Conf}(n,\mathbb{C}))$ and $\mathsf{B}_n \cong \pi_1(\mathsf{Conf}(n,\mathbb{C})/S_n)$.



It is known that PB₂ is an infinite cyclic group generated by x_{12} , there are no relations on x_{12} and x_{23} in PB₃, the element

$$c := x_{23}x_{12}x_{13}$$

has infinite order and it generates the center of PB_3 (and the center of B_3).

We tacitly identify the free group F_2 on two generators with the subgroup $\langle x_{12}, x_{23} \rangle \leq PB_3$. We have

$$\mathsf{PB}_3\cong\mathsf{F}_2\times\langle\,c\,\rangle\cong\mathsf{F}_2\times\mathbb{Z}.$$

< □ > < 同 > < 三 > < 三 >

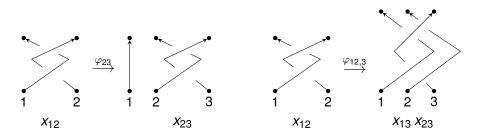
By adding a strand or doubling a stand, we get...

the collection of homomorphisms

$$\varphi_{23}, \varphi_{12,3}, \varphi_{1,23}, \varphi_{12} : \mathsf{PB}_2 \to \mathsf{PB}_3,$$

 $\varphi_{234}, \ \varphi_{12,3,4}, \ \varphi_{1,23,4}, \ \varphi_{1,2,34}, \ \varphi_{123}: \mathsf{PB}_3 \to \mathsf{PB}_4.$

For example,



A D M A A A M M

For a group G and a normal subgroup $H \trianglelefteq G$ of finite index,

 $NFI_H(G)$

denotes the poset of finite index normal subgroups $N \trianglelefteq G$ such that $N \le H$.

For every $N\in\mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4),$ we form this cascade

 $N_{PB_3}, N_{F_2}, N_{ord},$

where $N_{PB_3} \in NFI_{PB_3}(B_3)$, $N_{F_2} \in NFI(F_2)$ and N_{ord} is a positive integer.

Well... what are N_{PB_3} , N_{F_2} , N_{ord} ?

For $N \in NFI_{PB_4}(B_4)$, we set

$$N_{\mathsf{PB}_3} := \varphi_{123}^{-1}(\mathsf{N}) \cap \varphi_{12,3,4}^{-1}(\mathsf{N}) \cap \varphi_{1,23,4}^{-1}(\mathsf{N}) \cap \varphi_{1,2,34}^{-1}(\mathsf{N}) \cap \varphi_{234}^{-1}(\mathsf{N}),$$

and

$$\mathsf{N}_{\mathsf{PB}_2} := \varphi_{12}^{-1}(\mathsf{N}_{\mathsf{PB}_3}) \cap \varphi_{12,3}^{-1}(\mathsf{N}_{\mathsf{PB}_3}) \cap \varphi_{1,23}^{-1}(\mathsf{N}_{\mathsf{PB}_3}) \cap \varphi_{23}^{-1}(\mathsf{N}_{\mathsf{PB}_3}).$$

It is not hard to show that $N_{PB_3} \in NFI_{PB_3}(B_3)$ and $N_{PB_2} \in NFI_{PB_2}(B_2)$. Moreover, N_{PB_2} is uniquely determined by its index $|PB_2 : N_{PB_2}|$. So we set $N_{ord} := |PB_2 : N_{PB_2}|$.

 N_{ord} is the *least common multiple* of the orders of $x_{12}N_{\text{PB}_3}$, $x_{23}N_{\text{PB}_3}$ and cN_{PB_3} in PB₃/N_{PB3}.

Finally, we set

$$\mathsf{N}_{\mathsf{F}_2} := \mathsf{N}_{\mathsf{PB}_3} \cap \langle \, x_{12}, x_{23} \, \rangle.$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ トー

For $N\in \mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4),$ we consider pairs

$$(m + N_{\text{ord}}\mathbb{Z}, fN_{\text{F}_2}) \in \mathbb{Z}/N_{\text{ord}}\mathbb{Z} \times \text{F}_2/N_{\text{F}_2}$$

satisfying the hexagon relations

$$\sigma_1 x_{12}^m f^{-1} \sigma_2 x_{23}^m f \mathsf{N}_{\mathsf{PB}_3} = f^{-1} \sigma_1 \sigma_2 (x_{13} x_{23})^m \mathsf{N}_{\mathsf{PB}_3},$$

$$f^{-1} \sigma_2 x_{23}^m f \sigma_1 x_{12}^m \mathsf{N}_{\mathsf{PB}_3} = \sigma_2 \sigma_1 (x_{12} x_{13})^m f \mathsf{N}_{\mathsf{PB}_3},$$

the pentagon relation

$$\varphi_{234}(f) \varphi_{1,23,4}(f) \varphi_{123}(f) \mathsf{N} = \varphi_{1,2,34}(f) \varphi_{12,3,4}(f) \mathsf{N}.$$

For an integer *m* and $f \in F_2$, [m, f] denotes the pair $(m + N_{ord}\mathbb{Z}, fN_{F_2})$ in $\mathbb{Z}/N_{ord}\mathbb{Z} \times F_2/N_{F_2}$.

(二回) (二回) (二回)

The hexagon relations imply that the formulas

$$T_{m,f}(\sigma_1) := \sigma_1^{2m+1} \operatorname{N}_{\mathsf{PB}_3}, \qquad T_{m,f}(\sigma_2) := f^{-1} \sigma_2^{2m+1} f \operatorname{N}_{\mathsf{PB}_3}$$

define a homomorphism $T_{m,f}$: $B_3 \rightarrow B_3/N_{PB_3}$.

Restricting $T_{m,f}$ to PB₃, we get a homomorphism PB₃ \rightarrow PB₃/N_{PB₃}. Moreover, we have

Similarly, we have the homomorphism $T_{m,f}$: $B_4 \rightarrow B_4/N$ and its restriction to PB₄ gives us the homomorphism PB₄ \rightarrow PB₄/N.

Definition

A GT-shadow with the target N is a pair

$$\left(m + \mathit{N}_{\mathsf{ord}}\mathbb{Z}, \ \mathit{f}\mathsf{N}_{\mathsf{F}_2}
ight) \ \in \ \mathbb{Z}/\mathit{N}_{\mathsf{ord}}\mathbb{Z} imes \mathsf{F}_2/\mathsf{N}_{\mathsf{F}_2}$$

that satisfies

- the hexagon relations (modulo N_{PB₃}),
- the pentagon relation (modulo N),
- 2m + 1 represents a unit of the ring $\mathbb{Z}/N_{ord}\mathbb{Z}$, and
- the homomorphism $T_{m,f} : PB_3 \rightarrow PB_3/N_{PB_3}$ in onto.

We denote by GT(N), the set of GT-shadows with the target N.

Let $N \in NFI_{PB_4}(B_4)$, $[m, f] \in GT(N)$ and

$$\mathsf{K} := \mathsf{ker}\,\big(\mathsf{B}_4 \xrightarrow{T_{m,f}} \mathsf{B}_4/\mathsf{N}\big).$$

One can show that $K = \ker \left(\mathsf{PB}_4 \xrightarrow{T_{m,f}} \mathsf{PB}_4 / \mathsf{N} \right)$ and $K \in \mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4)$.

We say that K is the *source* of [m, f] and consider [m, f] as a *morphism* from K to N in the groupoid GTSh.

In other words, the set of objects of GTSh is the poset $NFI_{PB_4}(B_4).$ For, $N,K\in NFI_{PB_4}(B_4),$ we set

$$\mathsf{GTSh}(\mathsf{K},\mathsf{N}) := \big\{ [m,f] \in \mathsf{GT}(\mathsf{N}) \mid \ker \big(\mathsf{B_4} \overset{T_{m,f}}{\longrightarrow} \mathsf{B_4}/\mathsf{N} \big) = \mathsf{K} \big\}.$$

Wait! How do we compose such bizarre morphisms?

Well... if $[m_1, f_1] \in GTSh(N^{(1)}, N^{(2)}), [m_2, f_2] \in GTSh(N^{(2)}, N^{(3)})$ and

$$m := 2m_1m_2 + m_1 + m_2,$$

$$f(x,y) := f_2(x,y) f_1(x^{2m_2+1}, f_2(x,y)^{-1}y^{2m_2+1}f_2(x,y)),$$

then the pair (m, f) represents the GT-shadows

$$[m_2, f_2] \circ [m_1, f_1] \in \text{GTSh}(N^{(1)}, N^{(3)}).$$

Remark. It is natural to consider the operad PaB of parenthesized braids. Then GT-shadows in GT(N) with the source K can be identified with isomorphisms of operads (in the category of finite groupoids):

$$\mathsf{PaB}/\sim_{\mathsf{K}} \stackrel{\sim}{\longrightarrow} \mathsf{PaB}/\sim_{\mathsf{N}}.$$

The composition of morphisms in GTSh comes from the composition of isomorphisms of operads.

Vasily Dolgushev (Temple University)

Let $(\hat{m}, \hat{f}) \in \widehat{\text{GT}}$ and $N \in NFI_{PB_4}(B_4)$. Let $m + N_{ord}\mathbb{Z}$ (resp. fN_{F_2}) be the image of \hat{m} (resp. \hat{f}) in $\mathbb{Z}/N_{ord}\mathbb{Z}$ (resp. in F_2/N_{F_2}).

Then [m, f] is a GT-shadow with the target N and we say that [m, f] comes from the element $(\hat{m}, \hat{f}) \in \widehat{GT}$.

If a GT-shadow comes from an element of \widehat{GT} , then this GT-shadow is called **genuine**. Otherwise, this GT-shadow is called **fake**.

If a GT-shadow $[m, f] \in GT(N)$ comes from an element $(\hat{m}, \hat{f}) \in \widehat{GT}$, then we denote by $N^{(\hat{m}, \hat{f})}$ the source of [m, f]. One can show that the assignment $N \mapsto N^{(\hat{m}, \hat{f})}$ is a *right action* of \widehat{GT} on the poset $NFI_{PB_4}(B_4)$. We denote by \widehat{GT}_{NEL}

the corresponding transformation groupoid.

One can show that "passing from elements of $\widehat{\text{GT}}$ to GT-shadows" gives us a functor

 $\text{PR}: \widehat{\text{GT}}_{\text{NFI}} \to \text{GTSh}\,.$

Informally, we may call it the **approximation functor**.

The action of GT-shadows on child's drawings

Let $N \in NFI_{PB_4}(B_4)$ and $H \leq F_2$ be a subgroup that represents a child's drawing *D*. We say that *D* is **subordinate** to N if $N_{F_2} \subset H$.

Dessin(N) denotes the set of child's drawings subordinate to N.

We denote by Dessin the category whose objects are elements of NFI_{PB4}(B₄). For N⁽¹⁾, N⁽²⁾ \in NFI_{PB4}(B₄), morphisms from N⁽¹⁾ to N⁽²⁾ are all functions from Dessin(N⁽¹⁾) to Dessin(N⁽²⁾).

Theorem (V.D., 2021)

Let $N^{(1)}, N^{(2)} \in NFI_{PB_4}(B_4)$ and $[m, f] \in GTSh(N^{(1)}, N^{(2)})$. Let $\varphi : F_2 \rightarrow S_d$ be a homomorphism that represents $D \in Dessin(N^{(2)})$ and $\tilde{\varphi}$ be a homomorphism $F_2 \rightarrow S_d$ defined by

$$\tilde{\varphi}(\mathbf{x}) := \varphi(\mathbf{x}^{2m+1}), \qquad \tilde{\varphi}(\mathbf{y}) := \varphi(f^{-1}\mathbf{y}^{2m+1}f).$$

The assignment $\varphi \mapsto \tilde{\varphi}$ gives us a functor $\mathscr{A}^{\sharp} : \mathsf{GTSh} \to \mathsf{Dessin}$.

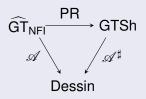
ヘロン 人間と 人間と 人間と

The actions are compatible!

Using the action of \widehat{GT} on child's drawings, we define a functor $\mathscr{A}: \widehat{GT}_{NFI} \rightarrow Dessin$. Wait! We also have the approximation functor $PR: \widehat{GT}_{NFI} \rightarrow GTSh$. And the good news is that...

Theorem (V.D., 2021)

The diagram



commutes.

< ロ > < 同 > < 回 > < 回 >

Consider a chain in the poset $NFI_{PB_4}(B_4)$

$$\mathsf{N}^{(1)}\supset\mathsf{N}^{(2)}\supset\mathsf{N}^{(3)}\supset\ldots$$

and a child's drawing $D \in \text{Dessin}(N^{(1)})$. It is clear that D is subordinate to $N^{(i)}$ for every $N^{(i)}$ in this chain.

Recall that GT(N) denotes the set of all GT-shadows with the target N. (GT(N) is finite!)

For every child's drawing *D*, we have the following *hierarchy of orbits*:

 $\operatorname{GT}(\operatorname{N}^{(1)})(D) \supset \operatorname{GT}(\operatorname{N}^{(2)})(D) \supset \operatorname{GT}(\operatorname{N}^{(3)})(D) \supset \cdots \supset \widehat{\operatorname{GT}}(D) \supset G_{\mathbb{Q}}(D).$

It is very hard to compute $G_{\mathbb{Q}}(D)$; there are no tools in modern mathematics to compute orbits $\widehat{GT}(D)$; it is relatively easy to compute orbits GT(N)(D).

Jointly with students, I have been developing a software package 'GT' for working with GT-shadows and their action on child's drawings. The final version of this package is available at https:

//math.temple.edu/~vald/PackageGT/PackageGT.zip

- Let D be a child's drawing for which the G_Q-orbit and a GTSh-orbit are computed. Then these orbits coincide!
- There is no "Furusho phenomenon" for GT-shadows: there are examples *f* ∈ F₂ that satisfy the pentagon relation modulo N but at least one hexagon fails for (*m*, *f*) for every *m* ∈ {0, 1, ..., N_{ord} − 1}.
- The connected components of GTSh we found have a very small number of objects:
 2. So far, we could **not** find a connected component of GTSh with > 2 objects!
- So far, we did **not** find **any** example of a fake GT-shadow.

Is it possible to find $K, N \in NFI_{PB_4}(B_4)$ such that $K \leq N$ and the natural map

 $GT(K) \to GT(N)$

is **not onto**? In other words, can we produce an example of a (charming) GT-shadow that is also **fake**? Is the situation easier when the quotient N/K is Abelian?

- ⁽²⁾ Can we produce an example of a **genuine** GT-shadow (different from $[0, 1_{F_2}]$ and $[-1, 1_{F_2}]$) in the non-Abelian setting? Can we get such examples using (non-Abelian) Galois child's drawings?
- On the end of the

- [1] V. A. Dolgushev, The Action of GT-shadows on child's drawings, https://arxiv.org/abs/2106.06645
- [2] V. A. Dolgushev, K.Q. Le and A. Lorenz, What are GT-shadows? https://arxiv.org/abs/2008.00066
- [3] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Algebra i Analiz 2, 4 (1990) 149–181.
- [4] D. Harbater and L. Schneps, Approximating Galois orbits of dessins, *Geometric Galois actions*, 1, 205–230, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997.
- [5] Y. Ihara, On the embedding of Gal(Q/Q) into GT, with an appendix by M. Emsalem and P. Lochak, LMS Lecture Note Ser., 200, Cambridge Univ. Press, 1994.

イロト イヨト イヨト イヨ

- [1] D. Bar-Natan, On associators and the Grothendieck-Teichmuller group. I, Selecta Math. (N.S.) (1998)
- [2] B. Fresse, Homotopy of operads and Grothendieck-Teichmueller groups. Part 1. The algebraic theory and its topological background, AMS, Providence, RI, 2017.
- [3] P. Boavida de Brito, G. Horel and M. Robertson, Operads of genus zero curves and GT, Geom. Topol. (2019)
- [4] R.A. Hidalgo, Homology closed Riemann surfaces. Q. J. Math. (2012)
- [5] G. Horel, Profinite completion of operads and the Grothendieck-Teichmueller group, Adv. Math. (2017)
- [6] D.E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. (2003)

イロト イヨト イヨト イヨト

What?!... Even more references?!

- [1] N. C. Combe and Y. I. Manin, "Genus zero modular operad and absolute Galois group" and "Symmetries of genus zero modular operad" https://arxiv.org/abs/1907.10313 and https://arxiv.org/abs/1907.10317
- [2] N. C. Combe, Y. I. Manin, M. Marcolli, Dessins for modular operad and Grothendieck-Teichmueller group, https://arxiv.org/abs/2006.13663
- [3] P. Guillot, The Grothendieck-Teichmueller group of a finite group and *G*-dessins d'enfants, arXiv:1407.3112.
- [4] M. Musty, S. Schiavone, and J. Voight, A very useful database of Belyi maps, http://beta.lmfdb.org/Belyi/
- [5] F. Pop, Finite tripod variants of I/OM: on Ihara's question/Oda-Matsumoto conjecture, Invent. Math. (2019)

These people worked with me on GT-shadows for the "gentle version" $\widehat{\text{GT}}_{gen}$ of the Grothendieck-Teichmueller group:

- Jacob Guynee (Temple University, undergraduate, then graduate...)
- Jessica Radford (Temple University, undergraduate)
- Jingfeng Xia (Temple University, graduate)
- Hm... your name can be here! :-)
- Are you an "adult mathematician"? Your name can be here too! :-)

In the literature, \widehat{GT}_{gen} is often denoted by \widehat{GT}_0 .

THANK YOU!

æ

イロト イヨト イヨト イヨト

Proposition

For $N\in\mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4),$ the following conditions are equivalent:

- a) the quotient group PB₄/N is Abelian;
- **b)** the quotient group PB_3/N_{PB_3} is Abelian;
- c) the quotient group F_2/N_{F_2} is Abelian.

Theorem

If we are in the Abelian setting, then

 $\mathsf{GT}(\mathsf{N}) = \{(\overline{m},\underline{1}) \mid 0 \leq m \leq \mathit{N}_{\mathsf{ord}} - 1, \ \mathsf{gcd}(2m + 1, \mathit{N}_{\mathsf{ord}}) = 1\},$

where $\overline{m} := m + N_{\text{ord}}\mathbb{Z}$, <u>1</u> is the identity element of PB_3/N_{PB_3} . Furthermore, **every** GT-shadow in GT(N) is **genuine**.

э

Let $\varphi : F_2 \to S_d$ be a homomorphism that represents a child's drawing D. Recall that (the conjugacy class of) the permutation group $\varphi(F_2) \leq S_d$ is called the **monodromy group** of D.

A child's drawing *D* is called **Abelian** if its monodromy group is Abelian. One can show that every Abelian child's drawing is Galois.

Here is what we know about Abelian child's drawings:

Theorem (R. Hidalgo 2012, V.D. 2021)

Let D be an Abelian child's drawing and $N\in \mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4)$ such that D is subordinate to N. Then the orbits

$$\operatorname{GT}(\mathsf{N})(D)\supset \widehat{\operatorname{GT}}(D)\supset G_{\mathbb{Q}}(D)$$

are singletons.

• • • • • • • • • • • •