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Abstract

Boris Shoikhet noticed that the proof of lemma 1 in section 2.3 of [1] contains an error. In this note I
give a correct proof of this lemma which was kindly suggested to me by Dmitry Tamarkin. The correction
does not change the results of [1].

1 Introduction

In this note I give a correct proof of lemma 1 from section 2.3 in [1]. This proof was kindly
suggested to me by Dmitry Tamarkin and it is based on the interpretation of L∞-morphisms
as Maurer-Cartan elements of an auxiliary L∞-algebra.

The notion of partial homotopy proposed in section 2.3 in [1] is poorly defined and this
note should be used as a replacement of section 2.3 in [1]. The main result of this section
(lemma 1) is used in section 5.2 of [1] in the proof of theorem 6. Since the statement of the
lemma still holds so does the statement of theorem 6 as well as all other results of [1].

In section 2 of this note I recall the notion of an L∞-algebra and the notion of a Maurer-
Cartan element. In section 3, I give the interpretation of L∞-morphisms as Maurer-Cartan
elements of an auxiliary L∞-algebra and use it to define homotopies between L∞-morphisms.
Finally, in section 4 I formulate and prove lemma 1 from section 2.3 of [1].

Notation. I use the notation from [1]. The underlying symmetric monoidal is the category
of cochain complexes. For this reason I sometimes omit the combination “DG” (differential
graded) talking about (co)operads and their algebras. For an operad O I denote by FO the
corresponding Schur functor. sK denotes the suspension of the complex K. In other words,

sK = s⊗K ,

where s is the one-dimensional vector space placed in degree +1. Similarly,

s−1K = s−1 ⊗K ,

where s−1 is the one-dimensional vector space placed in degree −1 . cocomm is the cooperad
of cocommutative coalgebras.

By “suspension” of a (co)operad O I mean the (co)operad Λ(O) whose m-th space is

Λ(O)(m) = Σ1−mO(m)⊗ sgnm , (1.1)

where sgnm is the sign representation of the symmetric group Sm .

Acknowledgment. I would like to thank E. Getzler, B. Shoikhet, and D. Tamarkin for
useful discussions.
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2 L∞-algebras and Maurer-Cartan elements

Let me recall from [4] that an L∞-algebra structure on a graded vector space L is a degree
1 codifferential Q on the colagebra FΛcocomm(L) cogenerated by L . Following [1] I denote
the DG coalgebra (FΛcocomm(L), Q) by C(L):

C(L) = (FΛcocomm(L), Q) . (2.1)

A morphism F from an L∞-algebra (L, Q) to an L∞-algebra (L¦, Q¦) is by definition a
morphism of (DG) coalgebras

F : C(L) → C(L¦) . (2.2)

Since
FΛcocomm(L) = s Fcocomm(s−1L)

the vector space of C(L) can be identified with the exterior algebra ∧•L and for a graded
vector space V a map

f : FΛcocomm(L) → V

of degree |f | can be identified with the infinite collection of maps

fn : L⊗n → V , n ≥ 1 ,

where each map fn has degree |f |+ 1− n and

fn(. . . , γ, γ′, . . . ) = −(−1)|γ||γ
′|fn(. . . , γ′, γ, . . . )

for every pair of elements γ, γ′ ∈ L .
Due to proposition 2.14 in [3] every coderivation of FΛcocomm(L) is uniquely determined

by its composition with the projection

prL : FΛcocomm(L) → L (2.3)

from FΛcocomm(L) onto cogenerators.
In particular, the codifferential Q of the coalgebra C(L) is uniquely determined by the

infinite collection of maps

Qn = prL ◦Q
∣∣∣
∧nL

: ∧nL → L , (2.4)

such that Qn has degree 2− n . In [1] Qn are called structure maps of the L∞-algebra L .
The equation Q2 = 0 is equivalent to an infinite collection of quadratic equations on the

maps (2.4). The precise form of these equations can be found in definition 4.1 in [2].
One of the obvious equations implies that the structure map of the first level Q1 is a

degree 1 differential of L . Thus an L∞-algebra can be thought of as an algebra over an
operad in the category of cochain complexes.

If L is a pronilpotent L∞-algebra then it makes sense to speak about its Maurer-Cartan
elements:

Definition 1 (Definition 4.3 in [2]) A Maurer-Cartan π of a pronilpotent L∞-algebra
(L, Q) is a degree 1 element of L satisfying the equation

∞∑
n=1

1

n!
Qn(π, π, . . . , π) = 0 . (2.5)
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Let me remark that the infinite sum in (2.5) is well defined since L is pronilpotent.
Every Maurer-Cartan element π of L can be used to modify the L∞-algebra structure on

L . This modified structure is called the L∞-structure twisted by the Maurer-Cartan π and
its structure maps are given by

Qπ
n(γ1, . . . , γn) =

∞∑
m=1

1

m!
Qm+n(π, . . . , π, γ1, . . . , γn) , γi ∈ L . (2.6)

It is equation (2.5) which implies that the maps (2.6) define an L∞-algebra structure on L .
Two Maurer-Cartan elements π0 and π1 are called equivalent if there is an element ξ ∈ L0

such that the solution of the equation

d

dt
πt = Qπt

1 (ξ) (2.7)

connects π0 and π1:

πt

∣∣∣
t=0

= π0 , πt

∣∣∣
t=1

= π1 .

3 L∞-morphisms and their homotopies

I will need the following auxiliary statement:

Proposition 1 Let O be an operad and A be an algebra over O. If B is a (DG) cocommu-
tative coalgebra then the cochain complex

HB,A = Hom(B,A) (3.1)

of all linear maps from B to A has a natural structure of an algebra over O .

Proof. The O-algebra structure on A is by definition the map (of complexes)

µA : FO(A) → A (3.2)

making the following diagrams commutative:

FO(FO(A))
FO(µA)−→ FO(A)

↓ µO(A) ↓ µA

FO(A)
µA−→ A ,

(3.3)

A
uO(A)−→ FO(A)

↘ id ↓ µA

A

(3.4)

where µO and uO are the transformation of functors

µO : FO ◦ FO → FO ,

uO : Id → FO

defined by the operad structure on O . The map µA is called the multiplication.
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For every n > 1 the comultiplication ∆ in B provides me with the following map

∆(n) : B → B⊗n

∆(n)X = (∆⊗ 1⊗ (n−2)) . . . (∆⊗ 1⊗ 1)(∆⊗ 1)∆ X (3.5)

Using this map and the O-algebra structure on A I define the O-algebra structure on HB,A

(3.1) by
µ(v, γ1, . . . , γn; X) = µA(v)[γ1 ⊗ · · · ⊗ γn (∆(n)X)] , (3.6)

where v ∈ O(n) , γi ∈ Hom(B, A) , and X ∈ B .
The equivariance with respect to the action of the symmetric group follows from the

cocommutativity of the comultiplication on B .
The commutativity of the diagram

FO(FO(HB,A))
FO(µ)−→ FO(HB,A)

↓ µO(HB,A) ↓ µ

FO(HB,A)
µ−→ HB,A ,

(3.7)

follows from the commutativity of (3.3) and the associativity of the comultiplication in B .
The commutativity of the diagram

HB,A

uO(HB,A)−→ FO(HB,A)

↘ id ↓ µ

HB,A

(3.8)

and the compatibility of µ (3.6) with the differential are obvious. ¤
Since

FΛcocomm(L) = s Fcocomm(s−1L)

for every L∞-algebra L¦ proposition 1 gives me a L∞-structure on the cochain complex

U = s Hom(C(L),L¦) . (3.9)

This algebra U can be equipped with the following decreasing filtration:

U = F1U ⊃ F2U ⊃ · · · ⊃ FkU ⊃ . . .

FkU = {f ∈ Hom(∧•L,L¦) | f
∣∣∣
∧<kL

= 0} . (3.10)

It is not hard to see that this filtration is compatible with the L∞-algebra structure on U .
Furthermore, since U = F1U , for every k the L∞-algebra U/FkU is nilpotent. On the other
hand,

U = lim
k
U/FkU , (3.11)

and hence, the L∞-algebra U is pronilpotent and the notion of a Maurer-Cartan element of
U makes sense.

My next purpose is identify the Maurer-Cartan elements of the L∞-algebra U (3.9) with
L∞-morphisms from L to L¦ :
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Proposition 2 L∞-morphisms from L to L¦ are identified with Maurer-Cartan elements of
the L∞-algebra U (3.9)

Proof. Since C(L¦) is a cofree coalgebra, the map F (2.2) is uniquely determined by its
composition prL¦◦F with the projection prL¦ (2.3). This composition is a degree zero element
of Hom(C(L),L¦) . Thus, since U (3.9) is obtained from Hom(C(L),L¦) by the suspension,
every morphism F (2.2) is identified with a degree 1 element of U .

It remains to prove that the compatibility condition

Q¦F = FQ (3.12)

of F with the codifferentials Q and Q¦ on C(L) and C(L¦), respectively, is equivalent to the
Maurer-Cartan equation (2.5) on prL¦ ◦ F viewed as an element of U .

It is not hard to see that
prL¦ ◦ (Q¦F − FQ) = 0 . (3.13)

is equivalent to the Maurer-Cartan equation on the composition prL¦◦F viewed as an element
of U (3.9).

Thus, I have to show that equation (3.13) is equivalent to the compatibility condition
(3.12).

For this, I denote by Ψ the difference:

Ψ = Q¦F − FQ

and remark that
∆Ψ = −(Ψ⊗ F + F ⊗Ψ)∆ , (3.14)

where ∆ denotes the coproduct both in C(L) and C(L¦) .
The latter follows from the fact that Q and Q¦ are coderivations and F is a morphism of

cocommutative coalgebras.
Given a cooperad C, a pair of cochain complexes V , W , a degree zero map

f : V → W

and an arbitrary map
b : V → W

I denote by ∂(b, f) the following map1

∂(b, f) : FC(V ) → FC(W )

∂(b, f)(γ, v1, v2, . . . , vn) =

(−1)|b|(|γ|+|v1|+···+|vi−1|)
n∑

i=1

(γ, f(v1), . . . , f(vi−1), b(vi), f(vi+1), . . . , f(vn)) ,
(3.15)

γ ∈ C(n) , vi ∈ V ,

where |γ|, |b|, |vj| are, respectively, degrees of γ, b, and vj . The equivariance of (3.15) with
respect to permutations is obvious.

1A similar construction was introduced at the beginning of section 2.2 in [3].
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It is not hard to see that condition (3.14) is equivalent to commutativity of the following
diagram

FΛcocomm(L)
Ψ−→ FΛcocomm(L¦)

↓ ν ↓ ν

FΛcocomm(FΛcocomm(L))
∂(Ψ,F )−→ FΛcocomm(FΛcocomm(L¦)) ,

(3.16)

where ν is the coproduct of the cotriple FΛcocomm .
Since the functor FΛcocomm with the transformations ν : FΛcocomm → FΛcocomm◦FΛcocomm

and pr : FΛcocomm → Id form a cotriple2, the following diagram

FΛcocomm(L¦)
↓ ν ↘ id

FΛcocomm(FΛcocomm(L¦)) p−→ FΛcocomm(L¦) ,

(3.17)

with p being FΛcocomm(prL¦), commutes.
Attaching this diagram to (3.16) I get the commutative diagram

FΛcocomm(L)
Ψ−→ FΛcocomm(L¦)

↓ ν ↓ ν ↘ id

FΛcocomm(FΛcocomm(L))
∂(Ψ,F )−→ FΛcocomm(FΛcocomm(L¦)) p−→ FΛcocomm(L¦) ,

(3.18)

where, as above, p = FΛcocomm(prL¦) .
Hence,

Ψ = FΛcocomm(prL¦) ◦ ∂(Ψ, F ) ◦ ν .

On the other hand

FΛcocomm(prL¦) ◦ ∂(Ψ, F ) = ∂(prL¦ ◦Ψ, prL¦ ◦ F ) .

Therefore,
Ψ = ∂(prL¦ ◦Ψ, prL¦ ◦ F ) ◦ ν

and Ψ vanishes if and only if so does the composition prL¦ ◦Ψ .
This concludes the proof of the proposition. ¤
The identification proposed in the above proposition allows me to introduce a notion of

homotopy between two L∞-morphisms. Namely,

Definition 2 L∞-morphisms F and F̃ from L to L¦ are called homotopic if the correspond-
ing Maurer-Cartan elements of the L∞-algebra U (3.9) are equivalent.

4 Lemma 1 from [1]

Let me denote by Fn the components

Fn : ∧n L → L¦
2See, for example, section 1.7 in [3].
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Fn = prL¦ ◦ F
∣∣∣
∧n L

(4.1)

of the composition prL¦ ◦ F , where prL¦ is the projection from FΛcocomm(L¦) onto cogener-
ators. In [1] the maps (4.1) are called structure maps of the L∞-morphism (2.2).

The compatibility condition (3.12) implies that the structure map F1 of the first level is
morphism of complexes:

F1 : L → L¦ , Q¦
1F1 = F1Q1 .

By definition, an L∞-morphism F is a L∞-quasi-isomorphism if the map F1 is a quasi-
isomorphism of the corresponding complexes.

I can now prove the following lemma:

Lemma 1 Let
F : C(L) 7→ C(L¦)

be a quasi-isomorphism from an L∞-algebra (L, Q) to an L∞-algebra (L¦, Q¦). For n ≥ 1
and any map

H̃ : ∧nL 7→ L¦ (4.2)

of degree −n one can construct a quasi-isomorphism

F̃ : C(L) 7→ C(L¦)
such that for any m < n

F̃m = Fm : ∧mL 7→ L¦ (4.3)

and
F̃n(γ1, . . . , γn) = Fn(γ1, . . . , γn)+

Q¦
1H̃(γ1, . . . , γn)− (−)nH̃(Q1(γ1), γ2, . . . , γn)− . . . (4.4)

· · · − (−)n+k1+···+kn−1H̃(γ1, . . . , γn−1, Q1(γn)) ,

where γi ∈ Lki .

Proof. Let QU denote the L∞-algebra structure on U (3.9). Let α be the Maurer-Cartan
elements of U corresponding to the L∞-morphism F .

By setting

ξ
∣∣∣
∧mL

=

{
H̃ , if m = n ,

0 , otherwise
(4.5)

I define an element ξ ∈ U of degree −1. By definition of the filtration (3.10) the element ξ
belongs to FnU

Let αt be the unique path of Maurer-Cartan elements defined by

d

dt
αt = (QU)αt

1 (ξ) , αt

∣∣∣
t=0

= α . (4.6)

The unique solution αt of (4.6) can be found by iterating the following equation in degrees
in t

αt = α +

∫ t

0

(QU)ατ
1 (ξ)dτ . (4.7)

Since the L∞-algebra U is pronilpotent the recurrent procedure (4.7) converges.
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It is not hard to see that, since ξ ∈ FnU ,

αt − α ∈ FnU (4.8)

and
αt − (α + tQU

1 (ξ)) ∈ Fn+1U . (4.9)

Let F̃ be the L∞-morphism from L to L¦ corresponding to the Maurer-Cartan element

α̃ = αt

∣∣∣
t=1

.

Equation (4.8) implies (4.3) and equation (4.9) implies (4.4) . It is obvious that, since F

is a quasi-isomorphism, so is F̃ .
The lemma is proved. ¤
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