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Abstract

Boris Shoikhet noticed that the proof of lemma 1 in section 2.3 of [1] contains an error. In this note I
give a correct proof of this lemma which was kindly suggested to me by Dmitry Tamarkin. The correction
does not change the results of [1].

1 Introduction

In this note I give a correct proof of lemma 1 from section 2.3 in [1]. This proof was kindly
suggested to me by Dmitry Tamarkin and it is based on the interpretation of L..-morphisms
as Maurer-Cartan elements of an auxiliary L..-algebra.

The notion of partial homotopy proposed in section 2.3 in [1] is poorly defined and this
note should be used as a replacement of section 2.3 in [1]. The main result of this section
(lemma 1) is used in section 5.2 of [1] in the proof of theorem 6. Since the statement of the
lemma still holds so does the statement of theorem 6 as well as all other results of [1].

In section 2 of this note I recall the notion of an L..-algebra and the notion of a Maurer-
Cartan element. In section 3, I give the interpretation of L.,-morphisms as Maurer-Cartan
elements of an auxiliary L..-algebra and use it to define homotopies between L.-morphisms.
Finally, in section 4 I formulate and prove lemma 1 from section 2.3 of [1].

Notation. I use the notation from [1]. The underlying symmetric monoidal is the category
of cochain complexes. For this reason I sometimes omit the combination “DG” (differential
graded) talking about (co)operads and their algebras. For an operad O I denote by Fp the
corresponding Schur functor. s K denotes the suspension of the complex K. In other words,

sK=s® K,
where s is the one-dimensional vector space placed in degree +1. Similarly,
sTK=s1'0 K,

where s~ is the one-dimensional vector space placed in degree —1. cocomm is the cooperad
of cocommutative coalgebras.
By “suspension” of a (co)operad O I mean the (co)operad A(O) whose m-th space is

AO)(m) = Z™0(m) @ sgn,, (1.1)

where sgn,, is the sign representation of the symmetric group 5, .
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2 L. -algebras and Maurer-Cartan elements

Let me recall from [4] that an L,.-algebra structure on a graded vector space L is a degree
1 codifferential @ on the colagebra Facocomm (L) cogenerated by L. Following [1] I denote
the DG coalgebra (Fpcocomm (L), @) by C(L):

C(‘C) = (FACocomm(£)7 Q) . (2.1)

A morphism F from an L.-algebra (£, Q) to an Ly-algebra (£°,Q°) is by definition a
morphism of (DG) coalgebras
F:CL)— C(L). (2.2)

Since
IF‘ACOCOIIIIII(‘C> - SFCOCOmm(silﬁ)

the vector space of C'(£) can be identified with the exterior algebra A*L and for a graded
vector space V' a map

f . IFAcocomm([') -V

of degree |f| can be identified with the infinite collection of maps
fo: L2 =V n>1,
where each map f, has degree |f| +1 —n and

fn( e 7/777/a e ) = _(_1)‘7”7,|fn(' e 7’7/7’% . )

for every pair of elements v,v" € L.
Due to proposition 2.14 in [3] every coderivation of Fpcocomm(£) is uniquely determined
by its composition with the projection

Pre : IF/\(:ocomm(£) — L (23)

from Fpcocomm (£) onto cogenerators.
In particular, the codifferential @) of the coalgebra C'(£) is uniquely determined by the
infinite collection of maps

Qn=prpoQ E:/\”E—>£, (2.4)
/\TL

such that @, has degree 2 —n. In [1] @, are called structure maps of the L..-algebra L.

The equation Q% = 0 is equivalent to an infinite collection of quadratic equations on the
maps (2.4). The precise form of these equations can be found in definition 4.1 in [2].

One of the obvious equations implies that the structure map of the first level @), is a
degree 1 differential of £. Thus an L.-algebra can be thought of as an algebra over an
operad in the category of cochain complexes.

If £ is a pronilpotent L..-algebra then it makes sense to speak about its Maurer-Cartan
elements:

Definition 1 (Definition 4.3 in [2]) A Maurer-Cartan 7 of a pronilpotent L..-algebra
(L£,Q) is a degree 1 element of L satisfying the equation

Z%Qn(ﬂﬂr, .m)=0. (2.5)

n=1



Let me remark that the infinite sum in (2.5) is well defined since £ is pronilpotent.

Every Maurer-Cartan element 7 of £ can be used to modify the L..-algebra structure on
L . This modified structure is called the L.-structure twisted by the Maurer-Cartan 7 and
its structure maps are given by

— 1
Qz(f}/b77”)22%Qm+n(777ﬂ-771777”)7 Yi €£ (26)
m=1 ’

It is equation (2.5) which implies that the maps (2.6) define an L..-algebra structure on L.
Two Maurer-Cartan elements 7y and 7, are called equivalent if there is an element & € £°
such that the solution of the equation

d o
Em = Q1) 27)
connects 7y and 7y:
7Tt = 7T0 s 7Tt = 7{‘1 .

t=0 t=1

3 L,-morphisms and their homotopies

I will need the following auxiliary statement:

Proposition 1 Let O be an operad and A be an algebra over O. If B is a (DG) cocommu-
tative coalgebra then the cochain complex

Hp.a = Hom(B, A) (3.1)
of all linear maps from B to A has a natural structure of an algebra over O .

Proof. The O-algebra structure on A is by definition the map (of complexes)

making the following diagrams commutative:

! po(A) | na (3_3)

Fo (A) 4, A ,

2 Fo(A)
\, 4 | pa (3.4)

A

where po and uep are the transformation of functors
to :FooFo — Fo,

up :Id — Fp

defined by the operad structure on O. The map u, is called the multiplication.



For every n > 1 the comultiplication A in B provides me with the following map
A . B - pBon

AVX = (A®1°07) (A1 1)(A®1)AX (3.5)
Using this map and the O-algebra structure on A I define the O-algebra structure on Hp 4
(3.1) by

PO s X) = pa(0)n @ - @ (AW X)), (3.6)

where v € O(n), v; € Hom(B, A), and X € B.

The equivariance with respect to the action of the symmetric group follows from the
cocommutativity of the comultiplication on B.

The commutativity of the diagram

FoFo(Hpa)) 2% Fo(Hpa)

| ro(Hp,a) L# (3.7)
Fo(Hp.a) 5 Hpa,

follows from the commutativity of (3.3) and the associativity of the comultiplication in B.
The commutativity of the diagram

Hp, a noHe.4) Fo(Hp.a)
\ |~ (3.8)

Hp,a

and the compatibility of u (3.6) with the differential are obvious. [
Since

IFAcoccomm(£> = S}Fcocomm(sil‘c)

for every L..-algebra L° proposition 1 gives me a L..-structure on the cochain complex
U = sHom(C(L),L°). (3.9)
This algebra U can be equipped with the following decreasing filtration:
U=FUDFUD---DFUD...

Ffu = {f e Hom(A*L,L°) | f US (3.10)

It is not hard to see that this filtration is compatible with the L..-algebra structure on i .
Furthermore, since U = F'U, for every k the L,-algebra U /F*U is nilpotent. On the other
hand,

U= liinZ/I/]-"kLl, (3.11)

and hence, the L..-algebra U is pronilpotent and the notion of a Maurer-Cartan element of
U makes sense.

My next purpose is identify the Maurer-Cartan elements of the L..-algebra U (3.9) with
L,-morphisms from £ to L :



Proposition 2 L. -morphisms from L to L° are identified with Maurer-Cartan elements of
the Loo-algebra U (3.9)

Proof. Since C(L°) is a cofree coalgebra, the map F' (2.2) is uniquely determined by its
composition pr ..o F with the projection pr . (2.3). This composition is a degree zero element
of Hom(C(L), £°). Thus, since U (3.9) is obtained from Hom(C(L), £L°) by the suspension,
every morphism F' (2.2) is identified with a degree 1 element of U .

It remains to prove that the compatibility condition

Q°F = FQ (3.12)

of F with the codifferentials ) and Q° on C (L) and C(L°), respectively, is equivalent to the
Maurer-Cartan equation (2.5) on pr. o F' viewed as an element of U .
It is not hard to see that

pre. o (Q°F — FQ) =0. (3.13)
is equivalent to the Maurer-Cartan equation on the composition pr .o F viewed as an element
of U (3.9).

Thus, T have to show that equation (3.13) is equivalent to the compatibility condition
(3.12).
For this, I denote by W the difference:
U =QF—FQ
and remark that
AV = -V F+ FU)A, (3.14)

where A denotes the coproduct both in C'(£) and C(L°).

The latter follows from the fact that () and Q¢ are coderivations and F' is a morphism of
cocommutative coalgebras.

Given a cooperad C, a pair of cochain complexes V', W, a degree zero map

f:V-w
and an arbitrary map

b:V—-W
I denote by d(b, f) the following map*

(b, f) : Fe(V) — Fe(W)

o, f) (v, v1, 02, ..., 0y) =

" (3.15
(_1)|b|("Y‘+‘U1|+"'+|’Uz‘—1‘) Z(V: f(vl)a teey f(vi—l)a b(vi)7 f(vi+1)7 cey f(v’rL)) ) )
i=1
S C(n) ) v € V7
where |v|, |b], |v;| are, respectively, degrees of 7, b, and v, . The equivariance of (3.15) with
respect to permutations is obvious.

LA similar construction was introduced at the beginning of section 2.2 in [3].



It is not hard to see that condition (3.14) is equivalent to commutativity of the following
diagram

IE‘Acocomm (L) l’ IFAcocomm (£0>
L I (3.16)
O(,F)

FAcocomm (FAcocomm (E) ) — FAcocomm (FAcocomm (EQ) ) )

where v is the coproduct of the cotriple Fcocomm -
Since the functor Fcocomm With the transformations v : Facocomm — FAcocomm ©FAcocomm
and pr : Fococomm — 1d form a cotriple?, the following diagram

FAcocomm (EQ)
1 N (3.17)
IFAcocomm (FAcocomm (»CO) ) i) IE?Acocomm (*CQ) )

with p being Facocomm (PTze), commutes.
Attaching this diagram to (3.16) I get the commutative diagram

N4

FAcocomm (E) — FAcocomm (EO)
l v l v \ id (3 18)
(U, F o N
FAcocomm (FAcocomm (‘C) ) (—> ) FAcocomm (FAcocomm (E ) ) L FAcocomm (E ) ;

where, as above, p = Facocomm (PIzo) -
Hence,
U= IE‘Acocomm(prﬁo) o a(‘l’, F) ov.

On the other hand
IE‘Acocomm(prﬁo) o a(\lja F) = a(prﬁ<> © \Ij) prL<> © F) .

Therefore,
W = 9d(pro oW, preeo F)ov

and W vanishes if and only if so does the composition pr . o U.

This concludes the proof of the proposition. [J

The identification proposed in the above proposition allows me to introduce a notion of
homotopy between two L.,-morphisms. Namely,

Definition 2 L..-morphisms F' and F from L to L° are called homotopic if the correspond-
ing Maurer-Cartan elements of the Ly-algebra U (3.9) are equivalent.

4 Lemma 1 from [1]

Let me denote by F), the components

EF,:\"L — L°

2See, for example, section 1.7 in [3].



F,=prp.oF (4.1)

AL
of the composition prp. o F', where pr . is the projection from Fycocomm(£°) onto cogener-
ators. In [1] the maps (4.1) are called structure maps of the L..-morphism (2.2).
The compatibility condition (3.12) implies that the structure map Fj of the first level is
morphism of complexes:

Fi:L— L%, QTF = F1Q1 .

By definition, an L.,-morphism F is a L.-quasi-isomorphism if the map Fj is a quasi-
isomorphism of the corresponding complexes.
I can now prove the following lemma:

Lemma 1 Let
F:C(L)— C(L%)

be a quasi-isomorphism from an Loo-algebra (£, Q) to an Lo-algebra (L°,Q°). Forn > 1
and any map B
H:N\"Lo— L° (4.2)

of degree —n one can construct a quasi-isomorphism
F:C(L) — C(L%)

such that for any m < n

Fn=F, : \""Lw— L° (4.3)

and

Fn(’}/l,..-,’}/n) :Fn<71777n)+

QSH(1, .- vn) — (=) "H(Q1(): 92 ¥n) — - (4.4)
(_)n+k1+---+knf1 f[(

Y155 Tn—1, Q1(7n>> )
where v; € L

Proof. Let QY denote the L..-algebra structure on U (3.9). Let o be the Maurer-Cartan
elements of U corresponding to the L.,-morphism F'.

By setting
_JH, itm=n, (4.5)
ame |0, otherwise '

I define an element & € U of degree —1. By definition of the filtration (3.10) the element &
belongs to F"U
Let oy be the unique path of Maurer-Cartan elements defined by

d

7= (@5 (), o

= . (4.6)

t=0

The unique solution «; of (4.6) can be found by iterating the following equation in degrees
int

o =a+t / (@2 (€)dr (4.7)

Since the L..-algebra U is pronilpotent the recurrent procedure (4.7) converges.



It is not hard to see that, since £ € F"U,

and

o — (a+tQH(€)) € FMU. (4.9)

Let F be the Lo.-morphism from L to £° corresponding to the Maurer-Cartan element

Equation (4.8) implies (4.3) and equation (4.9) implies (4.4) . It is obvious that, since F

is a quasi-isomorphism, so is F'.
The lemma is proved. [
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