Practice Midterm

- Work as a group. Each student writes the solution to one problem. Solutions will be collected, graded, and emailed to everyone.

1. Let τ be a topology on the set of integers \mathbb{Z}. Determine whether τ_1 defined below is a topology on $\mathbb{Z} \times \mathbb{Z}$.

 $\tau_1 = \{ U \subset \mathbb{Z} \times \mathbb{Z} \mid \forall n \in \mathbb{Z}, U \cap \{n\} \times \mathbb{Z} = \{n\} \times V \text{ for some } V \in \tau \}$.

2. Let \mathcal{B}, described below, be a collection of subsets of \mathbb{R}. Show that \mathcal{B} is not a topology. Determine whether \mathcal{B} is a basis for some topology on \mathbb{R}.

 $\mathcal{B} = \{ [a, b) \mid a \in \mathbb{Z}, b \in \mathbb{R}, a < b \}$.

3. Let S and T be non-empty subsets of a topological space (X, τ) with $S \subset T$. Show that if S is dense in X, then T is dense in X.

4. Prove that the T_2-space property is a topological property. As a result, give an example of a pair of non-homeomorphic topological spaces.

5. Let (X, τ) and (Y, τ_1) be topological spaces and $f : (X, \tau) \to (Y, \tau_1)$ a continuous map. If f is injective, prove that

 (i) (Y, τ_1) is a T_2-space implies that (X, τ) is a T_2-space.
 (ii) (Y, τ_1) is a T_1-space implies that (X, τ) is a T_1-space.