Lecture Note 14

- **Theorem 79.**
 Let A be a subset of \mathbb{R} with the Euclidean topology. Then A is compact if and only if A is closed and bounded.

 Sketch of proof.

 Step 1: Compact implies closed since \mathbb{R} is a T_2-space.

 Step 2: Compact implies bounded follows from considering the open cover $\{(−n, n)\}_{n \in \mathbb{N}}$.

 Step 3: Closed and bounded implies compactness because closed intervals are compact and closed subsets of compact spaces are compact. □

- **Theorem 80.**
 Let $f : (X, \tau) \to (\mathbb{R}, \text{Euclidean})$ be a continuous function. If X is compact, then there exists $y, z \in X$ such that $f(y) \leq f(x) \leq f(z)$ for all $x \in X$.

 Sketch of proof.

 Step 1: $f(X)$ is compact in \mathbb{R}, hence closed and bounded.

 Step 2: Bounded subsets in \mathbb{R} have a least upper bound and a greatest lower bound.

 Step 3: Closed subsets contain the limit points, which includes the least upper bound and the greatest lower bound. □

- **Definition 81.**
 A subset A in (X, τ) is said to be countably compact if every countable open covering of A has a finite subcovering. The subset A is said to be pseudocompact if every continuous function $f : A \to \mathbb{R}$ is bounded. The subset A is said to be sequentially compact if every sequence in A has a subsequence and a point x such that every open set containing x also contains the tail of the subsequence.

- **Theorem 82.**
 Let (X, τ) be a metrizable topological space. The following are equivalent.

 (1) X is compact.

 (2) X is countably compact.

 (3) X is pseudocompact.

 (4) X is sequentially compact.

 Remark.

 The last thing to mention before we move on is compactification. There are two common methods. The one-point compactification adds a point with open sets containing that point to be complements of compact closed sets. The Stone-Čech compactification uses continuous functions into $[0, 1]$.

 This is the end of Chapter 7. Chapter 8 is on finite products.

- **Definition 83.**
 Let $(X_i, \tau_i)_{i=1,\ldots,n}$ be topological spaces. The product topology τ on $X_1 \times \cdots \times X_n$ is the topology with the basis $\{O_1 \times \cdots \times O_n\}_{O_i \in \tau_i}$.

- **Definition 90.**
 A topological space (Y, τ_1) is said to be a quotient space of a topological space (X, τ) if there exists a surjective mapping $f : X \to Y$ such that $U \in \tau_1 \iff f^{-1}(U) \in \tau$.