Lecture Note 13

• Definition 73.
 Let A be a subset of a topological space (X, τ). Then A is said to be compact if for every open cover of A there exists a finite subcover of A.

• Example.
 (a) Any finite set A is compact in (X, τ).
 \begin{proof}
 Let $\{O_j\}_{j \in J}$ be an open cover of A. For each $x \in A$ we can pair it up with an open set in the open cover that contains x. We name the open set O_x. Observe that $\{O_x\}_{x \in A}$ is an open cover of A. Since A is finite and O_x’s are open sets in the open cover we began with, $\{O_x\}_{x \in A}$ is a finite subcover of A.
 \end{proof}

 (b) Any subset $A \subset X$ with the finite-closed topology is compact.
 \begin{proof}
 Let $\{O_j\}_{j \in J}$ be an open cover of A. Let O' be a nonempty open set in the open cover. By the definition of finite-closed topology, $X \setminus O'$ is a finite set. Therefore $A \setminus O'$ is a finite set. Let $A \setminus O' = \{x_1, \ldots, x_n\}$. Since $\{O_j\}_{j \in J}$ is an open cover of A, there exists O_1, \ldots, O_n in the open cover such that $x_i \in O_i$ for all $i = 1, \ldots, n$. The collection of open sets O', O_1, \ldots, O_n is a finite subcover of A.
 \end{proof}

• Remark.
 Let A be a subset of X in a topological space (X, τ). Then A is compact if and only if (A, τ_A) as a subspace with the subspace topology τ_A is compact. This allows us to always work with the subspace topology if we want to show a subset is compact.

• Proposition 74.
 The closed interval $[0, 1]$ is compact in \mathbb{R} with the Euclidean topology.
 \begin{proof}
 Let $\{O_j\}_{j \in J}$ be an open cover of $[0, 1]$. We can obtain a subcover $\{O_x\}_{x \in [0, 1]}$ such that O_x contains x. Furthermore, there exist open intervals U_x such that $x \in U_x \subseteq O_x$. Observe that if there exists a finite subcollection U_{x_1}, \ldots, U_{x_n} that covers $[0, 1]$, then O_{x_1}, \ldots, O_{x_n} will be a finite subcover of $[0, 1]$.
 Consider the set
 \[Z = \{y \in [0, 1] \mid [0, y] \text{ can be covered by a finite collection of } \{U_x\}_{x \in [0, 1]}\}. \]
 Since the singleton $\{0\}$ is covered by U_0, $0 \in Z$ and Z is nonempty. For an arbitrary $y \in Z$, there exists $\varepsilon > 0$ such that $B_\varepsilon(y) \subseteq U_y$. Adding U_y to the finite cover of $[0, y]$ implies that $y + \varepsilon/2 \in Z$. Hence Z is open. For an arbitrary $y \in [0, 1] \setminus Z$, there exists $\delta > 0$ such that $B_\delta(y) \subseteq U_y$. Therefore $y - \delta/2$ cannot be in Z otherwise adding U_y would result in $y \in Z$. Hence $[0, 1] \setminus Z$ is also open. We have disjoint open sets whose union covers $[0, 1]$, by connectedness, $Z = [0, 1]$.
 \end{proof}

• Proposition 75.
 Let $f : (X, \tau) \to (Y, \tau_1)$ be a continuous surjective map. If (X, τ) is compact, then (Y, τ_1) is compact.
 \begin{proof}

 \end{proof}
Let \(\{O_j\}_{j \in J} \) be an open cover of \(Y \). By continuity, \(\{f^{-1}(O_j)\}_{j \in J} \) is an open cover of \(X \). By compactness, there exists a finite subcover \(\{f^{-1}(O_{j_k})\}_{k=1,\ldots,n} \). Since \(f \) is surjective, \(\{O_{j_k}\}_{k=1,\ldots,n} \) is a finite subcover of \(Y \).

Corollary 76.
Compactness is a topological property.

Proposition 77.
Let \((X, \tau)\) be a compact topological space. If \(A \subset X \) is closed, then \(A \) is compact.

Proof.
Let \(\{O_j\}_{j \in J} \) be an open cover of \(A \). Then \(\{O_j\}_{j \in J} \) along with the open set \(X \setminus A \) is an open cover of \(X \). By compactness, there exists a finite subcover. The finite subcover covers \(A \), but it might include \(X \setminus A \). The open sets in the finite subcover that is not disjoint from \(A \) is a finite subcover that does not include \(X \setminus A \). \(\square \)

Proposition 78.
Let \((X, \tau)\) be a \(T_2 \) topological space. If \(A \subset X \) is compact, then \(A \) is closed.

Proof.
Let \(x \) be an arbitrary point in \(X \setminus A \). For each point \(a \in A \), by the property of \(T_2 \), there exists disjoint open sets \(U_a \) and \(V_a \) such that \(a \in U_a \) and \(x \in V_a \). The collection of open sets \(\{U_a\}_{a \in A} \) is an open cover of \(A \). By compactness, there exists \(a_1, \ldots, a_n \) such that \(\{U_{a_i}\}_{i=1,\ldots,n} \) is a finite subcover of \(A \). The finite intersection of the open sets \(\{V_{a_i}\}_{i=1,\ldots,n} \) is an open set that contains \(x \) while being disjoint from \(A \). Therefore \(X \setminus A \) is open and \(A \) is closed. \(\square \)

Theorem 79.
Let \(A \) be a subset of \(\mathbb{R} \) with the Euclidean topology. Then \(A \) is compact if and only if \(A \) is closed and bounded.

Theorem 80.
Let \(f : (X, \tau) \to (\mathbb{R}, \text{Euclidean}) \) be a continuous function. If \(X \) is compact, then there exists \(y, z \in X \) such that \(f(y) \leq f(x) \leq f(z) \) for all \(x \in X \).