Lecture Note 11

• **Proposition 63.**
 If $x_n \to x$ and $x_n \to y$ in a metric space (X, d), then $x = y$.

 Proof.
 By the definition of (X, d) being a metric space, it suffices to show that $d(x, y) = 0$.
 If $d(x, y) = \delta \neq 0$, consider $B_{\delta/2}(x)$. By definition of $x_n \to x$, there exists n_0 such that $n \geq n_0 \Rightarrow x_n \in B_{\delta/2}(x)$.

 Consider $B_{\delta/2}(y)$. By definition of $x_n \to y$, there exists n'_0 such that $n \geq n'_0 \Rightarrow x_n \in B_{\delta/2}(y)$.

 Let $N = \max(n_0, n'_0)$. Then $x_N \in B_{\delta/2}(x) \cap B_{\delta/2}(y) = \emptyset$ by triangular inequality. Therefore a contradiction to our assumption, $d(x, y) = 0 \Rightarrow x = y$. □

• **Proposition 64.**
 Let (X, d) be a metric space. A subset A of X is closed in (X, τ) induced by (X, d) if and only if every convergent sequence of points in A converges to a point in A.

 Proof.
 We need to prove both directions.

 (\Rightarrow): We have a subset A of X is closed in (X, τ) induced by a metric space (X, d). Let \{ x_n \} be a sequence in A and $x_n \to x$ with $x \in X$. We want to show that x is in A.

 Consider any $U \in \tau$ with $x \in U$. By the definition of induced topology from the metric d, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$. By the definition of $x_n \to x$, there exists n_0 such that whenever $n \geq n_0$, we have $x_n \in B_{\varepsilon}(x)$. Alternatively we have just shown that any open set containing x contains some point $x_n \in A$. Therefore if $x \notin A$ then x is a limit point of A. However, A is closed implies that A contains all limit points of A, which leads to $x \in A$.

 (\Leftarrow): We are given that every convergent sequence of points in A converges to a point in A. We want to show that A is closed.

 Suppose that A is not closed. Then there exists $x \notin A$ that is a limit point of A. We use the fact that the open balls form a basis of τ. Consider $B_{1/n}(x)$ for all $n \geq 1$.

 By the definition of x being a limit point of A and $x \notin A$, there exists $x_n \in B_{1/n}(x)$ for each n with $x_n \in A$. For all $\varepsilon > 0$, we can pick $n_0 \geq 1/\varepsilon$ to satisfy the definition of $x_n \to x$. Since every convergent sequence of points in A converges to a point in A, the point x is in A contradicting our assumption. Therefore A is closed. □

• **Proposition 65.**
 Let (X, d) and (Y, d_1) be metric spaces and f a mapping of X into Y. Let τ and τ_1 be the topologies determined by d and d_1, respectively. Then $f : (X, \tau) \to (Y, \tau_1)$ is continuous if and only if

 $x_n \to x \Rightarrow f(x_n) \to f(x)$.

 Proof.
 We need to prove both directions.

 (\Rightarrow): Let $f : (X, \tau) \to (Y, \tau_1)$ be continuous and $x_n \to x$ in (X, d). We consider $B_{\varepsilon}(f(x))$. By the definition of continuity, the preimage $U = f^{-1}(B_{\varepsilon}(f(x)))$ is an open set and $x \in U$. Since open balls form a basis of τ, there exists $\varepsilon_1 > 0$ such that $B_{\varepsilon_1}(x)$
is a subset of U. We use the fact that $x_n \to x$ to find n_0 such that whenever $n \geq n_0$ implies $x_n \in B_{\varepsilon_1}(x)$. This automatically implies that $f(x_n) \in B_{\varepsilon}(f(x))$, which shows that $f(x_n) \to f(x)$ in (Y, d_1).

(\Leftarrow): We know that for every convergent sequence $x_n \to x$ in (X, d), the sequence \{\f(x_n)\} converges to $f(x)$ in (Y, d_1). Let A be a closed set in (Y, τ_1). Consider $f^{-1}(A)$ as a subset of (X, τ). By Proposition 64 we know that if every convergent sequence of points in $f^{-1}(A)$ converges to a point in $f^{-1}(A)$, then $f^{-1}(A)$ is closed. Suppose that $\{x_n\} \subset f^{-1}(A)$ and $x_n \to x$ in (X, d). By our assumption we know that $f(x_n) \to f(x)$ in (Y, d_1). Also since A is closed, $f(x) \in A$. Therefore $x \in f^{-1}(A)$ which implies that $f^{-1}(A)$ is closed. Hence f is continuous. \hfill \Box