Lecture Note 08

• Remark.
 Examples of local homeomorphisms ($\mathbb{R} \rightarrow S^1$ and $\mathbb{R}^2 \rightarrow T^2$). Comments on HW2 and HW3. HW3 is handed back for people to polish/finish.

• Example.
 A constant function between any topological spaces is continuous.

• Proposition 49.
 Let (X, τ_X) and (Y, τ_Y) be topological spaces and $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ surjective and continuous. If (X, τ_X) is connected, then (Y, τ_Y) is connected.

 Proof.
 This is the same as proving that if (Y, τ_Y) is disconnected, then (X, τ_X) is disconnected. Let A be a clopen set in (Y, τ_Y) that is not Y or \emptyset. The preimage of A is clopen in (X, τ_X) by definition. Since f is surjective, we obtain that $f^{-1}(A)$ cannot be X or \emptyset.

 (Note: above is different from the proof in class.)

• Definition 50.
 A topological space (X, τ) is said to be path-connected if for each pair of distinct points a and b of X there exists a continuous mapping $f : [0, 1] \rightarrow (X, \tau)$, such that $f(0) = a$ and $f(1) = b$. The mapping f is said to be a path joining a to b.

• Examples.
 (a) \mathbb{R}^n with the Euclidean topology is path-connected via the linear map $f(t) = (1 - t)a + tb$
 (b) Discrete spaces are path-connected if and only if X has only one point.
 (c) Indiscrete spaces are always path-connected. The function $f([0, 1]) = \{a\}$ and $f(1) = b$ is continuous.
 (d) Moore plane is path-connected since we can build paths in the upper-half-plane. (where the topology coincides with the Euclidean topology.)

• Proposition 51.
 Every path-connected space is connected.

• Remark.
 Converse is not true. The famous example being $y = \sin(1/x)$ along with the y-axis. Draw the picture and try to prove this carefully.

• Remark.
 Beforehand, we didn’t have a way to prove that \mathbb{R}^2 minus a point is connected. Now we do.