• Proposition 15.
Let \mathcal{B} be a basis for a topology on a set X. Then a subset U of X is open if and only if for each $x \in U$ there exists a $B \in \mathcal{B}$ such that $x \in B \subset U$.

Proof.
$(\Rightarrow): U$ is open. Hence U is the union of members B_j of \mathcal{B}. For any $x \in U$, there exists B_j such that $x \in B_j \subset U$.
(\Leftarrow): For each $x \in U$ there exists a $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$. Hence U is the union of B_x's which by definition shows that U is open. □

• Proposition 16.
Let \mathcal{B}_1 and \mathcal{B}_2 be bases for topologies τ_1 and τ_2, respectively, on a non-empty set X. Then $\tau_1 = \tau_2$ if and only if
(I) for each $x \in B$ for $B \in \mathcal{B}_1$, there exists $B' \in \mathcal{B}_2$ such that $x \in B' \subset B$, and
(II) for each $y \in B$ for $B \in \mathcal{B}_2$, there exists $B' \in \mathcal{B}_1$ such that $y \in B' \subset B$.

Proof.
$(\Rightarrow):$ This follows immediately from Proposition 15.
$(\Leftarrow):$ We show that if (I) is true, then $\tau_1 \subset \tau_2$. Then the symmetry proves $\tau_1 = \tau_2$. Let $U \in \tau_1$. By definition U is a union of members of \mathcal{B}_1. Let U be the union of B_j's for $j \in J$. For each $x \in B_j$ there exists $B_j' \in \mathcal{B}_2$ and the union of all B_j''s is equal to U. Hence $U \in \tau_2$. □

• Corollary 17.
Two topologies τ_1 and τ_2 are equal if and only if
(I) for each $x \in U$ for $U \in \tau_1$, there exists $V \in \tau_2$ such that $x \in V \subset U$, and
(II) for each $y \in V$ for $V \in \tau_2$, there exists $U \in \tau_1$ such that $y \in U \subset V$.

• Remark.
The Euclidean topology on \mathbb{R}^n can use open balls as basis or use open rectangles as basis.

• Definition 18.
Let (X, τ) be a topological space. A non-empty collection S of open subsets of X is said to be a subbasis for τ if the collection of all finite intersections of members of S forms a basis for τ.

• Examples.
(a) τ is a subbasis. \mathcal{B} is a subbasis.
(b) $(-\infty, a)$ and (b, ∞) form a subbasis for the Euclidean topology on \mathbb{R}.
(c) $X = \{1, 2, 3\}$, $S = \{\emptyset, X, \{1, 2\}, \{1, 3\}\}$ is a subbasis.
(d) Mistake in class! Every collection of subsets is a subbasis of some topology! Terribly sorry!

• Remark.
A motivating space X that people introduced topology to study is the space $C[0, 1]$, the space of continuous functions on $[0, 1]$. See Exercise 2.3.4.

• Definition 19.
Let A be a subset of a topological space (X, τ). A point $x \in X$ is said to be a limit point of A if every open set, U, containing x contains a point of A different from x.

• Examples.
(a) For \mathbb{R} with Euclidean topology, the set of limit points of $(a, b]$ is $[a, b]$.

(b) For \mathbb{R} with Euclidean topology, the set of limit points of \mathbb{Z} is \emptyset.

(c) For the discrete topology on any space X, the set of limit points of any set A is \emptyset.

(d) For the indiscrete topology on any space X, the set of limit points of any set A with more than one elements is X. The set of limit points of $A = \{x\}$ is the set $X \setminus \{x\}$.

(e) For the finite-closed topology on \mathbb{Z}, the set of limit points of the set of all even numbers is \mathbb{X}.

• Proposition 20.

Let A be a subset of a topological space (X, τ). Then A is closed in (X, τ) if and only if A contains all of its limit points.

Proof.

(\Rightarrow): every point in the complement of A is not a limit point because the complement of A is an open set that does not intersect A.

(\Leftarrow): the complement of A is the union of all open sets that arise from the definition of limit points, hence open. Therefore A is closed.

• Proposition 21.

Let A be a subset of a topological space (X, τ) and A' the set of all limit points of A. Then $A \cup A'$ is a closed set. This set is called the closure of A and is denoted \overline{A}.

• Proposition 22.

Let A be a subset of a topological space (X, τ). Then $\overline{A} = X$ if and only if every non-empty open subset of X intersects A non-trivially. A is said to be dense in X.

2