Topology Homework 07

- Remember to reference all resources used. Due end of class on Thursday, 4/2.

1. Determine whether the given topological space is compact.
 (a) \mathbb{R} with the Sorgenfrey topology, that is, the topology with basis being the collection $\{[a, b)\}_{a < b}$.
 (b) \mathbb{Z} with the finite-closed topology.
 (c) (X, τ) where $\tau \subset \tau_1$ and (X, τ_1) is compact.

2. Let (X, τ) be a compact topological space. If $\{F_j : j \in J\}$ is a family of closed subsets of X such that any finite subfamily has nonempty intersection, prove that
 \[\bigcap_{j \in J} F_j \neq \emptyset. \]
 This is called the finite intersection property and it is actually equivalent to compactness.

3. Let (X, τ) be a T_2 topological space. If A is a compact subset and $x \notin A$, prove that there exist disjoint open sets U, V such that $x \in U$ and $A \subset V$. Furthermore, prove that for A, B disjoint compact subsets, there exist disjoint open sets G, H such that $A \subset G$ and $B \subset H$.