(1) For each of the pairs given, check whether the pair is a topological space.
 (a) $X_1 = \{1, 2, 3, 4\}$, τ_1 consists of all sets whose elements total to an even number.
 (b) $X_2 = \mathbb{Z}$ (the set of integers), τ_2 consists of \mathbb{Z}, \emptyset, and every set $\{n, n+1, n+2, \ldots\}$ for all $n \in \mathbb{Z}$.
 (c) $X_3 = \mathbb{N}$ (the set of natural numbers), τ_3 consists of \emptyset and every set that contains all positive even numbers.
 (d) $X_4 = \mathbb{Q}$ (the set of rational numbers), τ_4 consists of \mathbb{Q}, \emptyset, and every set $\{\frac{1}{n}, \frac{2}{n}, \ldots, 1\}$ for all nonzero integer n.

(2) Find a topological space with the property that every open set is clopen but the topology is neither discrete nor indiscrete.

(3) If (X, τ) is a topological space, the interior of $S \subset X$ is the set

$$S^\circ = \bigcup\{G \subset X \mid G \text{ is open and } G \subset S\}.$$

In other words, S° is the largest open set contained by S. Prove the following properties.
 (a) $A^\circ \subset A$
 (b) If $A \subset B$, then $A^\circ \subset B^\circ$
 (c) $(A \cap B)^\circ = A^\circ \cap B^\circ$
 (d) A is open if and only if $A = A^\circ$

(4) Let τ_1 and τ_2 be two topologies on X. Prove the following.
 (a) If τ_3 is defined by $\tau_1 \cap \tau_2$, then τ_3 is a topology on X.
 (b) If τ_4 is defined by $\tau_1 \cup \tau_2$, then τ_4 is not necessarily a topology on X. (Justify this by finding an example.)
 (c) Describe the smallest topology that contains τ_4 for your example above.

(5) Prove the following statements with respect to the Euclidean topology.
 (a) The set \mathbb{N} is a closed set in $X = \mathbb{R}$.
 (b) The set $\{(x, y, z) \mid x^2 + y^2 + z^2 < 1\}$ is open in $X = \mathbb{R}^3$.
 (c) The set $\{(x, y) \mid x \in \mathbb{Q}, y \in \mathbb{Z}\}$ is neither open nor closed in $X = \mathbb{R}^2$.
 (d) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, then the set $\{x \mid f(x) = 0\}$ is closed in $X = \mathbb{R}$.