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ABSTRACT
The authors present additional independent verification and a validation of the new approximate analytical solution

to the nonlinear kinematic wave equation (Serrano, 2006), and the new analytical solution to the nonlinear dynamic wave
equation in rivers (Serrano, 2016). Specifically, the new solutions are compared with independent simulations using the
modified finite-element method and with field data at the Schuylkill River near Philadelphia for the hydrologic year of 2004.
The new solutions are further validated in the same watershed, without changing the parameters, for the hydrologic years of
2011and 2012, when Hurricane Irene and Hurricane Sandy, respectively, touched down in the region. The new solutions
compared favorably. The solutions have been derived by combining Adomian’s Decomposition Method (ADM), the method
of characteristics, the concept of double decomposition, and successive approximation. The new analytical solutions are easy
to apply, permit an efficient preliminary forecast under scarce data, and an analytic description of flow rates continuously over
the spatial and temporal domains. They may also serve as a potential source of reference data for testing new numerical
methods and algorithms proposed for the open channel flow equations. The ADM nonlinear kinematic and nonlinear dynamic
wave solutions exhibit the usual features of nonlinear hydrographs, namely their asymmetry with respect to the center of mass,
with sharp rising limbs and flatter recession limbs. Linear methods usually miss these characteristics. The greatest portion of
the magnitude of discharge is given by the initial nonlinear kinematic wave component, which implies that in the lower
Schuylkill river the translational components dominate the propagation of flood waves, in agreement with previous research.
The nonlinear dynamic wave better predicts the flow rate, during peak times and especially during recession and low-flow
periods. Thus, while the new approximate analytical solutions to the nonlinear kinematic and the nonlinear dynamic wave
models are easier to implement than numerical solutions, the nonlinear kinematic wave equation model requires less data and
less computational effort.  This article presents, to our knowledge, the first analytical solution to this complex problem. It
overcomes most restrictions of existing numerical models (e.g., no need for a grid, specialized software, complex
discretization, special smoothing of the front wave end, small perturbation, numerical instability, linearization, replacement
of momentum equation by empirical relationships, etc.). It represents a physically-based solution of the true nonlinear
combined mass and momentum equations. The flood wave is continuous in space and time. Its implementation is extremely
simple with any standard mathematics program (e.g., Matlab).

Keywords: Nonlinear kinematic and dynamic flood waves, analytical solutions, mathematical models, Adomian’s
Decomposition Method.

INTRODUCTION
The propagation of flood waves in rivers is governed by the nonlinear Saint Venant equations. Under certain

simplified assumptions, many models have been developed over the last several decades (e.g., de Almeida,  and Bates, 2013;
de Almeida et al., 2012;  Philipp et al., 2012; Bates et al., 2010; Moramarco et al., 2008; Tsai and Yen, 2004; Tsai, 2003;
Aronica et al., 1998; Cappelaere, 1997;  Lamberti and Pilati, 1996; Singh and Aravamuthan, 1996;  Xia, 1995; Dooge and
Napiorkowski, 1987;  Hromadka and Yen, 1986; Ponce, 1986; Ferrick, 1985; Ferrick et al., 1984; Vieira, 1983; Morris and
Woolhiser, 1980;  Ponce et al., 1978; Ponce and Simons, 1977; Di Silvio, 1969;  Woolhiser and Liggett, 1967; Lighthill and
Whitham, 1955). Most approaches to solve the resulting nonlinear equations use numerical methods or analytical solutions
of the linearized equations (e.g., Kazezyilmaz-Alhan and Medina, 2007; Jin and Fread,1997). Recent refinements in the linear
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approximations of the flood routing equations successfully simulate the nonlinear features of flood waves. Examples of these
approaches include the variable parameter Muskingum-Cunge method (Ponce and Chaganti, 1994), the variable parameter
Muskingum-Cunge-Todini method (Todini, 2007) and the variable parameter Muskingum-Price method (Price, 2009). In
addition, these methods also implement various approaches to overcome the loss of mass conservation inherent in nonlinear
versions of the Saint Venant equations (Reggiani et al., 2014). The variable parameter Muskingum  methods satisfy mass
conservation only, since the momentum conservation equation is replaced by empirical equations. The resulting equations are
solved via complex numerical procedures that require finite difference schemes, small perturbation assumptions, optimization,
and stability control of spatial and temporal intervals (e.g., Reggiani et al., 2014; Price 2009). 

There is a cogent need for analytical solutions of the nonlinear kinematic wave and the nonlinear dynamic wave
equations in rivers for preliminary analyses under scarce data, and for verification of numerical models. Most approaches
reported in the literature use numerical solutions of the relevant equations. Compared to analytical solutions, numerical
solutions yield the state variables at discrete nodes only (i.e., they require a grid), are computationally intensive, are difficult
to program (i.e., they require specialized computer software), and often have difficulties with numerical instabilities and
roundoff errors. There exists a tacit belief that the only possible way to solve a nonlinear equation is to linearize it, to solve
it numerically (i.e., numerical linearization), or both. Until recently, linearization of most problems was adopted in order to
make the equations tractable with the existing linear methods of solution. Recent advances in applied mathematics have
produced new systematic analytic methods of solution to nonlinear equations. They have opened the way to revisit the true
nonlinear behavior of many physical systems. One of the few analytical solutions of the nonlinear kinematic wave was
proposed by Serrano (2006). This work was discussed by Litrico and Guinot (2007), who presented an alternative solution
that required linearization, the introduction of new arbitrary parameters, small perturbation assumptions, and numerical
optimization. Litrico and Guinot (2007) is a good linear model. However, an analytical solution to the true nonlinear equation,
if available, is easier to implement in many practical scenarios. This discussion was limited to the kinematic wave equation,
which is only one aspect of the dynamic wave presented in this paper. Without repeating the details here, this discussion and
its subsequent closure (Serrano, 2007) exemplifies the point view of numerical modeling: An objection to physically-based
nonlinear models and analytical solutions, in favor of linearized models, empirical equations, small perturbation, and complex 
numerical solutions. There is no resolution to this philosophical debate. In our view, an analytical solution to an equation, if
available, is easier than a numerical solution to the same equation. Indeed, many complex problems with large sets of data
available only admit a numerical solution. Also, until now linearization and numerical discretization were justified in the
absence of appropriate analytical methods to solve nonlinear equations. In the absence of data in many practical scenarios,
and with the advent of new analytical solutions to physically-based nonlinear equations, the need for linearization and complex
numerical methods is unjustified. In the spirit of science, we should endeavor to develop mathematical methods that consider
the true nonlinear behavior of nature, rather than force nature to conform to the limitations of a favorite method. 

In the present work, we use Adomian’s Decomposition Method (ADM) (Adomian, 1994, 1991, 1986, 1983), which
offers the simplicity, stability, and spatial and temporal continuity of analytical solutions, in addition to the ability to handle
system nonlinearities of numerical solutions. For a detailed introduction of the ADM, practical examples in hydrology, and
computer programs, see Serrano (2011, 2010). Many studies have reported new solutions to a wide class of equations
(ordinary, partial, differential, integral, integro-differential, linear, nonlinear, deterministic or stochastic) in a variety of fields
of mathematical physics, science, and engineering (see, for example, Rach, Wazwaz, and Duan, 2013; Duan and Rach, 2011;
Rach, 2012, 2008; Wazwaz, 2000; Adomian, 1994, 1991). For nonlinear equations in particular, decomposition is one of the
few systematic solution procedures available (Adomian, 1994). 

The present work presents a verification of a new set of approximate solutions to the nonlinear kinematic wave
(Serrano, 2006) and the nonlinear dynamic wave equations (Serrano, 2016). As such, it attempts to motivate hydrologists to
study this problem under the light of new advances in nonlinear science. It does not pretend to solve all the problems inherent
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to the Saint Venant equations. For example, it has been known for a long time that the nonlinear kinematic wave equation and
the nonlinear dynamic wave equation do not always satisfy either mass conservation or momentum conservation. It is a
common problem of most nonlinear transport equations in general. This is because the integration of the local nonlinear
equations over spatial and temporal domains yields missing boundary fluxes. This is part of a larger problem in scientific
hydrology. The search for appropriate closure relations of hydrologic fluxes has been declared a major challenge of hydrology
of the 21st  century (Beven,2006, 2001).

In the following sections, we extend the work of Serrano (2006), who used a one-term ADM expansion to derive an
approximate analytical solution to the nonlinear kinematic wave equation, after both acceleration and pressure terms in
momentum equation were neglected and the frictional slope was equated to the channel slope. We introduce several
mathematical modifications to derive a new approximate analytical solution to the nonlinear kinematic wave equation. Instead
of a one-term decomposition, we used the method of double decomposition, and several terms, not just one.  In addition, the
new solution to the nonlinear kinematic wave equation is used as a first term in the solution to the nonlinear dynamic wave
decomposition expansion (Serrano, 2016). The dynamic wave equation includes the acceleration and pressure terms in the
momentum equation. The new solutions are compared with independent simulations (Szymkiewicz, 2010) using the modified
finite-element method, and with field data at the Schuylkill River near Philadelphia for the hydrologic year of 2004. The new
solutions are further validated in the same watershed, without changing the parameters, for the hydrologic years of 2011and
2012, when Hurricane Irene and Hurricane Sandy, respectively, touched down in the region.

ANALYTICAL SOLUTION OF THE NONLINEAR KINEMATIC 
AND THE NONLINEAR DYNAMIC WAVE EQUATIONS
Under certain simplifying assumptions of the flow process in rivers, the Saint Venant equations have been solved via

traditional numerical methods. The most important assumptions are the following: The flow is one dimensional. Water depth
and velocity vary only in the longitudinal direction. This implies that the velocity is constant and the water surface is
horizontal across any section perpendicular to the longitudinal axis. Flow is assumed to vary gradually along the river channel.
Vertical momentum and vertical accelerations are neglected so that hydrostatic pressure prevails. The longitudinal axis of the
river channel is approximated as a straight line. The bottom slope of the channel is small and the channel bed is fixed; the
effects of scour and deposition are negligible. Resistance coefficients for steady uniform turbulent flow are applicable. The
fluid is incompressible and of constant density throughout the flow. Under these assumptions, detailed derivations of the
conservation and non-conservation form of the Saint Venant equations may be consulted in standard treatises. See, for
example,  Szymkiewicz (2010), Martin and McCutcheon (1999); Chow et al. (1988), and Singh (1996) for excellent
descriptions and bibliographic summaries of solution approaches. The conservation form of the continuity equation is given
by

where  is the flow rate ( );  is the lateral flow into the channel per unit length ( ); x is the distance from a
streamflow station with a known hydrograph (L); t is time (T); and A is the flow cross-sectional area ( ). Neglecting the wind
shear, eddy losses, and the momentum of lateral flow, the conservation form of the momentum equation is given by (Chow
et al, 1988)

where y is the water depth (L); g is the gravitational acceleration ( );  is the channel bottom slope; and  is the slope
of the energy line. We initially consider a rectangular channel. Assuming Manning’s formula is valid, the following
expressions are useful (Chow, 1959):

(1)

(2)



New Analytical Solution of the Nonlinear Dynamic Flood Wave Equation in Rivers. Ela Doganay and Sergio E. Serrano. 

HydroScience Inc., Simpsonville, SC. hydroscience70@gmail.com Copyright © 2020 by the authors.

_______________________________________________________________________________________________

4

where B is the channel width at the water surface (L); n is Manning’s roughness coefficient; and R is the hydraulic radius (L).
Neglecting hysteresis, the channel cross-sectional area is often expressed as 

where is a constant with dimensions ( ); and  is a dimensionless constant. Combining (1) and (2), and substituting
(3) and (4) into the resulting equation yields a dynamic wave equation given by

where the operators , ; and  is the inflow hydrograph at x=0. An x-partial decomposition expansion may
be obtained by operating with  on both sides of (5):

where the nonlinear functions

We now define the decomposition series  and the Adomian  polynomials for the nonlinear functions in (7) as
, , , , and . The Adomian polynomials may be calculated

in a variety of ways (Rach, Wazwaz, and Duan, 2013; Duan and Rach, 2011; Rach, 2008; Wazwaz, 2000; Adomian, 1994).
Hence, (6) becomes

Defining the first term in the series, , as composed of the first two terms in the right side of (8),

Clearly,  satisfies the kinematic wave equation given by

To solve (10), we will extend the approach of Serrano (2006). The characteristics equation of (10) is determined by (Jeffrey,
2003)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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and the compatibility condition is

Integrating (12) along a characteristic that passes through the point ( ) yields

Integrating the characteristic equation (11) gives

Using (13) to eliminate , (14) yields an implicit solution  to (10):

To approximate an explicit solution to (15), we use the concept of double decomposition to expand , and the
initial term  in the right side of (15) (Serrano, 2006; Adomian, 1994). Thus, the first term in (15) becomes

Now expand , where  is calculated using one of the many algorithms for the Adomian polynomials (Duan and
Rach, 2011; Rach, 2008, Wazwaz, 2000). Using the traditional Adomian polynomials about an initial term

 (Adomian, 1994), the first few terms are

Combining (16) and (17), we successively approximate : 

Note that each term, , is evaluated at the previous one, . The convergence of decomposition series has been
rigorously established in the mathematical community (Gabet, 1994, 1993, 1992; Abbaoui and Cherruault, 1994, Cherruault,
1989, and Cherruault et al., 1992). A convergent decomposition series made of the first few terms usually provides an effective
model in practical applications. In most applications of the ADM, the convergence rate is so high that only a few terms are
needed to assure an accurate solution. Thus, if, for instance,  is a reasonable approximation to , then

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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(19) is the first approximation to the dynamic wave equations (2) and (8). It also constitutes an approximate analytical solution
to the nonlinear kinematic wave equation (10). Higher-order terms in (8) are given by

Similar to (17), the Adomian polynomials for the nonlinear functions G, H, K, and J in (7), (8), and (20) are sequentially
generated about an initial term. The first term is given by

From (20) and (21), we derive the first term of the solution:

The second term of the nonlinear functions is given by

where . From (20) and (23), we derive the second term of the solution:

The third term of the nonlinear functions is given by

From (20) and (24), we derive the third term of the solution:

The fourth term of the nonlinear functions is given by

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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From (20) and (24), we derive the fourth term of the solution:

If the magnitude of  is smaller than a desired resolution, then . Otherwise the calculation may be continued in
as described above.

VERIFICATION WITH INDEPENDENT NUMERICAL SOLUTIONS
Exact analytical solutions of the nonlinear kinematic wave and the nonlinear dynamic wave equations are rare. We

verify the ADM approximate analytical solutions derived above with the controlled numerical experiments conducted by
Szymkiewicz (2010). Assuming , , , n=0.03, B=25m, ,  and an inflow hydrograph given by

where , , and . Figure 1 shows a comparison between a three-term analytical nonlinear
kinematic wave equations (17)-(19) at x=75km, a linearized kinematic wave using an empirically matched coefficient, and
the numerical hydrograph calculated by the modified finite element method according to Szymkiewicz (2010). Strictly
speaking, the kinematic wave (10) becomes linear when  . However, this approach would produces a linear wave which
is completely incorrect, since the predicted hydrograph would appear many hours after the true one (i.e., out of the view
window in Figure 1). For this reason, many hydrologists treat the coefficient in (10), , as a calibration parameter
for an average fixed  by trial and error. A fitted value of a=1/6 was used in Figure 1. This illustrates the difficulties
associated with linearization and linear models: The parameter a in the linear hydrograph is subjectively fitted and not
calculated from the channel properties, which limits the model use as a forecasting tool; the parameter a of the linear
hydrograph has different dimensions from those of  and  in the nonlinear hydrograph, and thus they are not comparable;
the linear hydrograph is simply a pure translation of the inflow hydrograph, that is to say, it does not the gradual
transformation into a sharp rising front and flat recession observed in nature. For a detailed discussion about the effect of
and on the shape of the nonlinear hydrograph see Serrano (2006).  In contrast to the linear hydrograph, the time to peak
calculated by the nonlinear analytical (ADM) and numerical methods is in excellent agreement. The nonlinear analytical
solution seems to better preserve the peak magnitude, in agreement with kinematic wave theory. There appears to be some
minor differences in the recession limb possibly because of numerical dissipation. However, the calculation of the nonlinear
analytical hydrograph is easier and faster than the numerical one; it requires only a few lines in any standard mathematics
software, such as Maple. It is interesting to note that the front of the propagating nonlinear kinematic wave becomes steeper.
This occurs because the advection velocity in (10), , increases with the flow rate, Q, so that the wave peak moves faster
than the lower portions. At some point, the propagating wave may breakdown. For this particular problem, the ADM kinematic
wave solution shows signs of instability at prolonged distances of observation (e.g., greater than 100 km), and no smooth

(27)

(28)

(29)
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profiles of a breaking wave were produced. This is an interesting topic for future research. 

Figure 1: Analytical linear and nonlinear versus numerical nonlinear
kinematic wave hydrograph at x=75km. Finite elements data
kindly provided by Szymkiewicz (2010)

Figure 2: Analytical nonlinear dynamic wave versus numerical
nonlinear diffusive wave hydrograph at x=75km. Finite
elements data kindly provided by Szymkiewicz (2010)
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Figure 2 shows a comparison between a four-term analytical nonlinear dynamic wave, equations (20)-(28), at x=75km
and the numerical diffusive hydrograph calculated by the modified finite element method according to Szymkiewicz (2010).
The numerical hydrograph simulates the diffusion wave equation (i.e., it does not include all the terms of the momentum
equation (2)). Nevertheless, it is interesting to note that the peak flow rate and the peak time are very similar in both
hydrographs. Including the acceleration and pressure terms in the momentum equation causes a decrease in the magnitude of
the flow rate at all times. Except for the flood peak, the nonlinear analytical solution exhibits lower flow rates than the
numerical solution. The numerical solution also shows higher dispersion. In general, the ADM nonlinear kinematic and
nonlinear dynamic wave solutions exemplify the usual features of nonlinear waves, namely its asymmetry with respect to its
center of mass, with a sharp rising limb and a flatter recession limb. These features are usually missed by the linear methods.
It is also interesting to observe that both the numerical and the analytical hydrographs exhibit errors in the balance of the
transported quantity, a fact that has been known for a long time. In other words, the total volume of water leaving the river
reach differs from that entering the channel, by about 6% for nonlinear kinematic wave models, 8% for nonlinear diffusion
wave models, and perhaps greater for nonlinear dynamic wave models (Szymkiewicz, 2010). This is a limitation of the
nonlinear models, independent of the method of solution used here. For more detailed analysis of mass and momentum
conservation errors in simplified nonlinear models, see Szymkiewicz (2010). 

FIELD VERIFICATION IN THE SCHUYLKILL RIVER 
IN SOUTHEAST PENNSYLVANIA
The new approximate analytical solutions to the nonlinear kinematic wave and the nonlinear dynamic wave equations

were tested using data from the Schuylkill River in Southeast Pennsylvania. Major towns in the watershed include Pottsville,
Reading, Pottstown, Norristown, Conshohocken, and Philadelphia. The river travels approximately 210 km from its headwaters
at Tuscarora Springs in Schuylkill County to its mouth at the Delaware River in Philadelphia. The Schuylkill River is the
largest tributary of the Delaware River and is a major contributor to the Delaware Estuary. Major tributaries of the Schuylkill,
in downstream order, are Mill Creek, the West Creek, Perkiomen Creek, Wissahikon Creek, French Creek, and Tulpehocken
Creek. The watershed encompasses an area of approximately 5,200 . The Schuylkill River has been an important source
of drinking water in the region for over two centuries. Approximately 1.5 million people receive their drinking water from
the Schuylkill River and its tributaries. For the purpose of this application, flow between the station at Norristown, with a
watershed drainage area of 4,558 , and the station at Philadelphia, located 21km downstream and a drainage area of
4,903  are used. In this section, the river flows through a predominantly urban environment that includes residential,
industrial, and commercial development. Discharge rate data at these stations are provided online by the U.S. Geological
Survey, as described in the bibliography (U.S. Geological Survey, 2005). The same source provided individual discharge
versus cross-sectional area data for the above stations. Using the information at these stations, we adopted the following
average parameters: B=150; n=0.014, from the range of values suggested by Chow (1959) for rivers; , as the
average channel slope between the upstream and downstream stations; a rating-curve relationship of the form , where
A is the channel wetted area ( ), was fitted with average parameter values , and . The period of
analysis included an unusually wet hydrologic year, beginning July 1, 2004.

To account for variable lateral flow, while maintaining a manageable, yet nonlinear, model, the lateral flow
representation could be modified so as to account for the time variability of effective precipitation during high-intensity
storms.  For small sub-watersheds, the lateral inflow may be given as

where  is the constant lateral flow contribution from the groundwater flow estimated from the difference
between average baseflow values at the downstream and the upstream stations, respectively;  is the watershed
area between the monitoring stations; L=21km is the distance along the stream between the upstream and downstream stations;

(30)
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is a dimensions  conversion factor; and  is the spatially-averaged effective precipitation
rate in the sub-watershed obtained from daily rainfall rate estimates after the infiltration rate has been subtracted (mm/hour).
Daily precipitation from rainfall was provided online by NOAA’s National Climatic Data Center as described in the
bibliography (National Oceanic and Atmospheric Administration NOAA, 2005). A constant loss rate of 75mm/day was
subtracted from the total daily rainfall values. In (30), consideration was not given to overland flow storage or surface routing
effects.

Since the simulations used daily discharges reported at Norristown (inflow hydrograph, ), a simplified version of
the nonlinear kinematic and nonlinear dynamic wave equations was used. In other words, discharges at Philadelphia were
approximated with a one-term decomposition term from (18) and (22):

where the initial nonlinear functions , and  are given by (7), (17) and (21). Figure 3 displays a comparison
between observed and predicted daily flow rates at Philadelphia for variable lateral inflow, according to the nonlinear dynamic
wave (31), for the hydrologic year of 2004-2005. The inflow hydrograph at Norristown is not included for clarity. In general,
agreement between the observed and predicted flow rates is reasonable. The inclusion of estimates of effective precipitation
significantly improved the accuracy of the model with respect to observed flow rates, especially during peak times. The mean
absolute error between observed and predicted discharge is 8.687  for the hydrologic year of 2004-2005. It is interesting
to know that the greatest portion of the magnitude of discharge is given by the initial nonlinear kinematic wave component,

, which implies that in the lower Schuylkill river the translational components dominated the propagation of flood waves,
in agreement with previous research (FEMA,, 2014; Snyder Environmental Engineering Associates , 2007; Serrano, 2006).
To better see this, a magnified detail of Figure 3 is depicted in Figure 4 illustrating the observed versus predicted discharge
at Philadelphia with the nonlinear kinematic wave (19), using a one-term decomposition term in (18), and the nonlinear
dynamic wave (31). The inflow at Norristown is not shown. In general, the nonlinear dynamic wave better predicts the flow
rate, during peak times and especially during recession and low-flow periods. Thus, while both models are based on
approximate analytical solutions and their implementation is easier than numerical solutions, the nonlinear kinematic wave
equation model requires less data and could be useful in preliminary analyses with scarce data. 

An additional set of tests of the new solutions was conducted in the same watershed during two different hydrologic
years. The year of 2011 was an unusually wet year in the region and included the occurrence of Hurricane Irene. The next year,
2012, was not as wet, but it brought Hurricane Sandy to portions of the area. Figure 5 displays a comparison between observed
and predicted daily flow rates at Philadelphia, according to the nonlinear dynamic wave (31), for the hydrologic year of 2011.
The inflow hydrograph at Norristown is not shown for clarity. It is important to remark that no adjustment was made to the
magnitude of any of the parameters.  The mean absolute error between observed and predicted discharge was 16.490 
for the year of 2011. Figure 6 shows a comparison between observed and predicted daily flow rates at Philadelphia, according
to the nonlinear dynamic wave (31), for the year of 2012. The inflow hydrograph at Norristown is not shown for clarity. The
mean absolute error between observed and predicted discharge was 8.540  for the year of 2012. Similar observations as
those of the initial verification year of 2004 are noted. 

(31)
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Figure 3: Observed versus predicted discharge at Philadelphia according to ADM analytical nonlinear
dynamic wave during one hydrologic year beginning July, 2004 

Figure 4: Detail of Figure 3 illustrating a comparison between observed versus predicted
discharge at Philadelphia with the nonlinear kinematic wave and the nonlinear
dynamic wave 
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Figure 5: Observed versus predicted discharge at Philadelphia according to ADM analytical nonlinear
dynamic wave during one hydrologic year beginning January, 2011

Figure 6: Observed versus predicted discharge at Philadelphia according to ADM analytical nonlinear
dynamic wave during one hydrologic year beginning January, 2012 
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SUMMARY AND CONCLUSIONS
New approximate analytical solutions to the nonlinear kinematic wave equation and the nonlinear dynamic wave

equation in rivers are compared with independent simulations using the modified finite-element method and with field data
at the Schuylkill River near Philadelphia for the hydrologic year of 2004. The new solutions are further validated in the same
watershed, without changing the parameters, for the hydrologic years of 2011and 2012, when Hurricane Irene and Hurricane
Sandy, respectively, touched down in the region. The new solutions compared favorably. The solutions were derived by
combining Adomian’s Decomposition Method (ADM), the method of characteristics, the concept of double decomposition,
and successive approximation. The new solutions are easier to apply than numerical solutions, and permit the efficient forecast
of nonlinear kinematic and nonlinear dynamic flood waves. Advantages include a simplified approach for preliminary
hydrologic forecast under scarce data; an analytic description of flow rates and gradients; a description of state variables
continuously over the spatial and temporal domain; minimal complications from stability and numerical roundoff; no need
of a numerical grid or the handling of large sparse matrices; no need of specialized software, since all calculations may be done
with standard mathematics or spreadsheet programs.  The new solutions may also serve  as a potential source of reference data
for testing new numerical methods and algorithms proposed for the open channel flow equations. In general, the ADM
nonlinear kinematic and nonlinear dynamic wave solutions exhibit the usual features of nonlinear waves, namely its
asymmetry with respect to its center of mass, with sharp rising limbs and flatter recession limbs. Linear approximations of
the governing equations usually miss these important features of nonlinear waves. The greatest portion of the magnitude of
discharge is given by the initial nonlinear kinematic wave component, , which implies that in the lower Schuylkill river
the translational components dominate the propagation of flood waves, in agreement with previous research. The nonlinear
dynamic wave better predicts the flow rate, during peak times and especially during recession and low-flow periods. Thus,
while both the nonlinear kinematic and the nonlinear dynamic wave models are based on approximate analytical solutions and
their implementation is easier than numerical solutions, the nonlinear kinematic wave equation model requires less data and
less computational effort.   
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