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The Form of the Dispersion Equation Under Recharge and Variable Velocity, 
and Its Analytical Solution 
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In this article an attempt is made to describe field scale solute transport parameters in terms of 
regional hydrologic and aquifer hydraulic properties, such as recharge rate, transmissivity, hydraulic 
gradient, aquifer thickness and soil porosity. Aquifers subject to natural recharge from rainfall exhibit 
groundwater velocities which vary with distance and with the recharge intensity. This in turn generates 
an evolving transport dispersion coefficient which increases with distance even in a homogeneous 
aquifer with constant dispersivity. The dispersion equation in an aquifer subject to recharge and 
variable groundwater velocity is one with coefficients given as variable functions of distance. A new 
stable analytical solution of this equation is presented along with numerical comparisons with the 
classical convection dispersion equation and sensitivity tests on the effect of hydrologic-hydraulic 
variables on the contaminant evolution. It was found that the recharge rate substantially affects the 
contaminant distribution and may partially explain the scale dependence of dispersion parameters. 
Transmissivity and hydraulic gradient values also determine the velocity distribution and therefore the 
rate of migration. It would appear that constant, laboratory scale, dispersivities may be sufficient for 
the modeling of field scale concentrations if an equation which accounts for the effects of hydrologic 
and hydraulic variables is used. 

1. INTRODUCTION 

It has become evident that the classical form of the 
convection dispersion equation (CDE) with constant coeffi- 
cients is inadequate for describing field scale transport of 
inert solutes in aquifers. Fitted dispersion coefficients of the 
CDE are sometimes several orders of magnitude greater than 
those at the laboratory scale for the same porous media [e.g., 
Fried, 1975]. Field experiments, as well as many theoretical 
studies, have demonstrated that the dispersion coefficients 
are functions of time or travel distance [e.g., Sudicky, 1986; 
Dagan, 1984], and that new techniques must be developed in 
order to provide a representation of the concentration field 
with a clear predictive capability. 

Many efforts have been devoted to perfect an understand- 
ing of the dispersion phenomena at large scales. Stochastic 
analyses have been major contributors in this area with a 
variety of studies investigating the effect of field scale 
heterogeneities on the dispersion phenomena. Researchers 
have focused on representations of the hydraulic conductiv- 
ity tensor as realizations of a random field, and its influence 
on the groundwater velocity variability and the dispersion 
parameters. For a summary and a critical review of stochas- 
tic methods to derive transport equations the reader is 
referred to Cushman [1987] and Sposito and Jury [1986]. 
Recent approaches have concentrated on the definition of 
the velocity field and the dispersion coefficient as time or 
spatial random functions [Serrano, 1988a, b; Rubin, 1990]. 

Alternatively, deterministic approaches that account for 
the scale dependence of dispersion parameters are beginning 
to appear. For instance, Pickens and Grisak [1981] devel- 
oped a finite element model with a dispersivity parameter as 
a time function. Gupta and Bhattacharya [1986] presented 
an analysis for the case of periodic porous media. Even less 
abundant are the analytical solutions of scale dependent 
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dispersion equations. Barry and Sposito [1989] introduced 
an analytical solution of a CDE with time dependent coeffi- 
cients. Recently, Yates [1990] developed an analytical solu- 
tion with a spatially dependent dispersivity. These encour- 
aging results could be enhanced if the constants and 
functions involved in the arbitrary representations of the 
temporal or spatial transport parameters were given a phys- 
ical interpretation. 

The present article attempts to derive a new transport 
equation with scale dependent parameters given as functions 
of the regional hydrologic and aquifer hydraulic variables. 
Under the hypothesis that aquifer physical variables control 
not only the flow regime but also the concentration evolution 
and the scale dependence of the dispersion parameters, an 
effort is made to investigate the effect of some key aquifer 
properties on the functional form of transport dispersion 
parameters. The properties considered included natural re- 
charge rate from rainfall, aquifer transmissivity, head hy- 
draulic gradient, aquifer thickness, and aquifer soil porosity. 
Given the apparent absence of recharge rates in most 
groundwater dispersion studies and the importance, in prin- 
ciple, of this fundamental hydrologic input function in most 
regions of the globe, one should feel motivated to consider 
the effect of recharge from rainfall on dispersion. A hypo- 
thetical phreatic aquifer at the regional scale was considered 
IDagan, 1986] with the usual assumptions of planar dimen- 
sions much larger than its thickness, formation properties of 
interest averaged over the depth and regarded as functions of 
the horizontal dimensions only, and Dupuit assumptions of 
shallow flow. A differential equation governing the flow in 
this aquifer with the above properties was written and solved 
for the groundwater pore velocity (section 2). Subsequently, 
the solute transport dispersion coefficient was written in 
terms of the above hydrologic and hydraulic properties 
(section 3), and the corresponding dispersion equation was 
derived (section 4). Finally, a stable analytical solution of the 
dimensionless version of the dispersion equation was ob- 
tained by using a particular solution in combination with the 
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Laplace transform (section 5), and comparison tests with the 
classical CDE as well as a numerical illustration of the effect 

of hydrologic and hydraulic properties on the concentration 
evolution were given (section 6). 

2. THE GROUNDWATER FLOW VELOCITY 

UNDER STEADY RECHARGE 

In the past, many studies of dispersion in aquifers have 
based their theoretical analyses on assumptions of the re- 
gional groundwater flow regime. Typical representations 
include a steady state velocity in the absence of recharge. In 
this section we intend to derive a simple expression of the 
groundwater flow velocity in a phreatic aquifer under steady 
recharge. This expression will in turn help in the definition of 
the solute dispersion coefficient in terms of measurable 
aquifer hydraulic parameters (such as the mean transmissiv- 
ity, the boundary head and hydraulic gradient, the aquifer 
thickness, the soil porosity) and the regional hydrologic 
recharge regime. Initially, a homogeneous aquifer is consid- 
ered, but as will be seen, the effect of recharge on the 
velocity distribution and the contaminant distribution may 
be as important as that of aquifer heterogeneity in the 
hydraulic conductivity. 

Consider a long (as compared with its thickness) hypothet- 
ical unconfined alluvial aquifer exhibiting mild slopes. The 
governing flow equation with Dupuit assumptions is [Bear, 
1979] 

m T + T =-I (1) ox 

0<x< oo, 0<_y <oo, 

where h(x, y) is the hydraulic head (m) above a specified 
datum; T is the aquifer transmissivity (m2/month); x, y are 
the planar Cartesian coordinates (m); and I is the mean 
aquifer recharge rate from precipitation (m/month). Al- 
though in practice a potential constraint is present in the flow 
system at some distance, the assumption of a semi-infinite 
aquifer is adopted in order to minimize the number of 
parameters involved and to reflect the fact that a far-field 
boundary condition would have little effect on the solute 
distribution. For a homogeneous aquifer, a regional ground- 
water velocity coinciding with x and negligible net velocity 
in the y direction, the flow equation reduces to 

I 

hx•= r' (2) 
where the notation hxx = a Zh/ax 2 convenient for partial 
differential equations has been adopted. The boundary con- 
ditions imposed on (2) will affect the form of the solution. A 
practical situation occurs when the observer is located at x = 
0, a piezometer at that point reads a head value of h0, and 
the hydraulic gradient is approximated with the aid of this 
and a nearby piezometer as equal to h [. Presumably x = 0 
is the location of a hazardous waste spill and the hydrologist 
is investigating the flow and transport conditions at the 
origin. Thus the boundary conditions imposed on (2) are 

h(O) = h o hx(O) = h•. (3) 

The solution of (2), subject to (3) is 

I 

h(x) = h0 + h •x - •-• x 2. (4) 

ff the hydraulic gradient is negative in the x direction, (4) 
indicates that h decreases with x. The specific discharge, q, 
everywhere in the domain of the aquifer is given by 

q = -Thx = -Th[ + Ix, (5) 

which indicates that the groundwater velocity will increase 
linearly with distance at a rate given by the recharge rate I. 
Note also that the transmissivity, T, and the hydraulic 
gradient at the origin, h [, are scaling parameters having the 
property of uniformly changing the velocity in the entire 
aquifer. 

3. THE FORM OF THE DISPERSION EQUATION 
UNDER RECHARGE 

In this section we intend to use the equation of variable 
velocity, (5), to derive corresponding expressions for the 
average pore velocity, the dispersion coefficient and ulti- 
mately the dispersion differential equation in the same hy- 
pothetical phreatic aquifer subject to regional recharge. 

The average pore velocity is simply u = q/n, where n is 
the mean aquifer porosity. From (5), the variable pore 
velocity is 

1 

u = - (Ix - hbT). (6) 
n 

If we accept that the fundamental physical principles of 
convection, mechanical dispersion and molecular diffusion 
are indeed the governing processes of transport of inert 
solutes in porous media, then the 1ongit.udinal dispersion 
coefficient, D, is given as D = aq/n,•where a is the 
dispersivity (m), and the molecular diffusion has been ne- 
glected under the assumption that we have advection- 
dominated transport. Using (6), 

D = -- (Ix- h•T). (7) 
n 

Equation (7) indicates that the dispersion coefficient in- 
creases linearly with distance at a rate given by the recharge 
rate, even in a homogeneous aquifer with a constant disper- 
sivity. We remark that in the present case the growth of the 
dispersion coefficient is the result of increased flow veloci- 
ties generated from the recharge to the aquifer and not the 
result of field heterogeneity at a scale larger than the pore 
scale. In addition, the dispersion coefficient does not appear 
to reach an asymptotic value and physically would only 
decrease at the end of the recharge zone. The CDE is given 
by [Bear, !979] 

OnC 
- V(nD. VC) + V. (qC) = O, 

where C represents solute concentration (mg/L); t is the time 
coordinate (months); D is the dispersion tensor (m2/month); 
q is the velocity vector (m/month); V is the gradient opera- 
tor; and the rest of the terms are as before. Under the above 
assumptions this equation reduces to 
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OC q I 
V(D. VC) + -. VC +- C = 0. (8) 

Ot n n 

For a homogeneous isotropic one-dimensional medium, D 
and q reduce to their longitudinal component, D and q, 
respectively, and (8) reduces to 

D + u ---+- C = 0. (9) 
Ot Ox Ox n 

Since D and u are variable functions of x, (9) does not reduce 
to the classical CDE, but instead to one that we prefer to call 
variable dispersion equation (VDE). Substituting (6) and (7) 
into (9) one obtains 

I{(C(•, 7)} = •'(•)= fl e-S•'C(•' r) dr, 
then the transformed (13) can be written as 

a•'•- (• - a)t•e - (s + 1)O = -Ci, tS(e - b). (14) 

= Co/s = 0. 

The solution of (14) is facilitated • one knows a p•icul• 
solution. When • > b, a pmicul• soMtion of the form e me, 
for m constant, exists ß 

a•m:- (e- a)m - (s + 1) = 0. (16) 

a 1 I 
Ct ---(Ix - h•)T)Cxx +-(Ix - h•)T- aI)Cx + -C = 0 

n n n 

0_<x< oo, 0_< t<oo, (10) 

where 

OC OC o2C 
Ct = -- C• = • Cx• = Ot Ox OX 2' 

It is interesting to note that, except for the dispersivity, 
the parameters in (10) are conveniently defined in terms of 
measurable hydrologic and hydraulic variables. 

4. ANALYTICAL SOLUTION OF THE VARIABLE 

DISPERSION EQUATION 

In this section an analytical solution of (!0) is attempted. It 
is convenient to represent the differential equation in dimen- 
sionless form in order to simplify the algebra and to assure 
dynamical similitude between model and field prototype. 
Choosing a dimensionless time coordinate, •' = lt/nho, and 
a dimensionless spatial cordinate, • = x/L, where L is a 
typical distance, (10) reduces to 

C,-• *t - IL jCnn + *t IL Cn + C=O 
0_< •/ < oo, (11) 

Now set a = a/L, the dimensionless dispersivity, T* = T/L, 
b = - h •T*/I, and •: = ,/+ b. Then (11) becomes 

C, - aeCee + (• - a)Ce + C = 0 (12) 

b_< • < o:, 0<_7<00. 

We are particularly interested in two cases of practical 
interest: the case of a constant source boundary condition, 
and the case of an instantaneous point source at the left 
boundary. Therefore the boundary and initial conditions 
imposed on (12) are 

C(b, 7)= Co C(o•, r)= 0 

c(e, 0) = b), 
(13) 

where Co is the concentration magnitude at the left bound- 
ary, Ci is the concentration magnitude at the time of the 
spill, and •( ) is the Dirac's delta function. Defining the 
Laplace transform of C as 

Using the formula for the solution of a quadratic algebraic 
equation, (16) implies that 

(1 - a) _ [(1 - a) 2 + 4a(s + 1)] 1/2 
m .... . (17) 

2a 

We can then express a solution of (14) as one of the form 
= emev, where v is a function of •:. Substituting into (14) and 
simplifying one obtains an ordinary differential equation for 

(18) 

This equation may be reduced to a first-order ordinary 
differential equation by defining p = vg. Thus 

p• + [2m •: - a.]p = 0 (19) ase ' 

with a solution 

p=c• exp -m•+--ln•: =ci 
a 

exp {[(l/a)- 2m]•} 

(20) 

for c l an arbitrary constant. On integrating, 

f exp {[(l/a) - 2m]•:} d•: + c 2, , ,, 

Z• -' Cl • 

for c2 an arbitrary constant. The solution of (14) is 

;•exp {[(l/a)- 2m]p} dp (•(•) = em•v = C l em• ...... • 
p 

(21) 

+ C2 eme. (22) 

Particular solutions for the two cases of interest are as 
follows. 

Case I: Constant Source Boundary Condition 

Using (15), c! = O, and c2 = Coe-rnb/$ ß Substituting into 
(22), 

Co m(•- •) d(•) = -- e . (23) 
$ 
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Substituting (17) with the negative sign option, the only 
bounded one, and taking the inverse Laplace transform, (23) 
becomes 

C(•, •') =/-l{(•(•)) = Co exp 2a (s e - b) 

exp - '1/2 a + 1 +s 
ß l- • a 2a 

s 

(24) 

This equation can be easily inverted with the aid of standard 
tables and using the properties of Laplace transform. Equa- 
tion (24) reduces to 

C(s •, •') = Co exp 2a (s e - b) (4,rau 3) •/2 

exp { •_ 2 _ 2 4au 2 'a + 1)ul} du. 
It is easy to show that this equation reduces to 

C0 

C(g, r) = •- exp 2a (s e - b) 

ß exp {-(•a•52b)[a(12•a)2+l 
1/2 

- 4a +1 •.2 
2a 

ß erfc [ (4r) 1/2 

+ 4a '2a 

ß effc [ (4.) 
+ 1 ,2}1/2 

(25) 

where erfc( ) denotes the "error function complement." 

(26) 

Case 2: Instantaneous Point Source at the Left Boundary 

Using (!5), Co = 0 and c2 = 0 in (22). The particular 
solution for the transformed equation is 

bounded), solving the external integral, and taking the in- 
verse Laplace transform, (27) can be written as 

C(• r) = l-l{•(se)} = Ci exp (s e - b) 
' 2a 

ß --1-1 exp -(s e-b+2p) 
P 

ß a + 1 + s dp (28) 
2a 

This equation can be easily inverted with the use of standard 
Laplace transform tables. Equation (28) reduces to 

C(s e, r) = (4•ra--•3) •/2 exp 2a (s e - b) 

- a 2a +1•' P 

ß - -p dp. 
4at 

(29) 

5. APPLICATION EXAMPLES AND COMPARISON 
WITH EXISTING RESULTS 

In this section the solution of the VDE for cases 1 and 2, 
(26) and (29) respectively, will be used to illustrate the effect 
of aquifer hydraulic and hydrologic parameters on the spatial 
distribution of contaminants within the aquifer. We will also 
attempt a comparison between the well-known CDE with 
constant coefficients and the VDE. In the CDE the effect of 

recharge rates and other hydrologic-hydraulic elements is 
neglected, the pore velocity is assumed constant throughout 
the aquifer, and the dispersion coefficient is constant and 
usually estimated as a "calibration" parameter. Since in the 
VDE the dispersion parameters are explicit functions of the 
recharge rate and other hydrologic-hydraulic elements, the 
objective of a comparison between the CDE and the VDE is 
to observe the sensitivity of the concentration field to those 
elements, and to assess the magnitude of the error generated 
when the hydrologic regime is not included in the model. In 
order to establish a uniform basis for comparison between 
the CDE and the VDE, we will try to derive the constant 
dispersion parameters of the CDE in terms similar to those 
of the VDE. The classical CDE written for the same hypo- 
thetical aquifer under constant dispersion coeffcient,/5, and 
constant pore velocity, a, resulting from neglecting recharge 
is given by [Bear, 1979] 

Ct- DCxx + aCx = 0 O•x<oo, (30) 

(7(•:) = •• em(e- Y) ;•, •- • exp {[(1/a) - 2m]p} P 

' CttS(y- b) dp dy. (27) 

Substituting (17) for m with the minus option for the external 
integral and with the plus option for the internal integral (the 
only combination of options which makes the integrands 

C(O, t) = Co C(oo, t) = 0 C(x, O) = Ci8(x). (31) 

For comparison purposes, and for consistency, we will use 
the same expressions for pore velocity and dispersion coef- 
ficient derived in sections 3 and 4. Since the CDE assumes 
these parameters as constants, we will define their values at 
a typical fixed distance, •. Thus from (6), t7 = (1/n)(Iœ - 
h•T), and from (7),/5 = (a/n), (!)Z -h•r). Thus the CDE 
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Fig. 1. Comparison between the CDE and the VDE for case 1. 

with parameters in terms of aquifer hydraulic and hydrologic 
properties becomes 

a ! 
Ct-- (Iœ- h[T)Cxx + - (Ig- hr)c = o. (32) 

This is an improved version of the CDE since it uses the 
aquifer recharge, average thickness, average porosity, and 
average transmissivity in the definition of its parameters. 

In order to preserve dynamic similitude between the CDE 
and the VDE we reduce (32) into a dimensionless from by 
definifig again •' = It/nh o, rl = x/L, • = g/L, T* = T/L, • 
= - (hhr*/D, = - (h•r*/l), a = a/L, and b = 
- h • T*/I. Thus the dimensionless version of (32) is 

C• - as•-C• + •:-C• = 0 b -< •: < oo, 0 < r < oo. (33) 

C(b, r) = f C(oo, r) = 0 C(•:, O) = O, •: > b, (34) 

where f will vary for cases 1 and 2. 

Case I: Constant Source Boundary Condition 

In this case f = Co in (34) and the well-known solution to 
the CDE, (33), is [Ogata and Banks, !961] 

C(•, r) = -•- effc (4a•r)1/2J 

+ee/aerfc j. (35) 
Next a comparison between the VDE, (26), and the CDE, 
(35), was done by assuming typical values for the aquifer 
hydrologic and hydraulic properties and then calculating 
breakthrough curves of concentration versus distance at 
specified times. Figure ! illustrates one of those tests with 
the following adopted parameters' I = 20.0 mm/month, 
which is a moderate recharge rate; t = 24.0 months; h0 = 1.0 
m; h• = -0.001 m/m; T* = 1.0 m 2 m -• month-q; a = 0.5, 
which is by design a high relative dispersivity; and Co = 1.0 
mg/L. For the CDE, besides the above values, the pore 

velocity was taken as that at .• = 0.0 m. Since our objective 
is to compare the VDE and the classical CDE, which 
neglects recharge, the obvious choice that eliminates the 
recharge is g = 0.0. This implies that the pore velocity and 
the dispersion coefficient in the CDE is based on a constant 
(and linear) hydraulic gradient. 

From the simulations a few points should be noted, as 
follows. 

1. The CDE largely underestimates the concentration, 
especially at large distances and long simulation times. In 
Figure !, the CDE only approaches the VDE after the 
relative dispersivity, a, has been increased by a factor of 10. 
These observations coincide with recent results of the CDE 
which state that the values of dispersivity in the CDE must 
be increased several orders of magnitude when attempting to 
simulate field concentrations. 

2. Hydraulic gradients, aquifer thickness, aquifer trans- 
missivity, and especially infiltration rates have an important 
effect on the contaminant distribution, because of the func- 
tional relationship between these parameters and the flow 
velocities. This is illustrated more in detail in case 2. In 

particular, recharge rates drastically increase the velocities 
with distance, making the migration of solutes more efficient. 
The effect of these hydrogeological characteristics on con- 
taminant transport has been known for a long time, only here 
the VDE numerically and specifically accounts for them. 

3. The calculation of concentration breakthrough curves 
using the VDE requires a similar effort as that used for the 
CDE. In fact, a simple microcomputer routine will do the 
job. An important advantage with the VDE is the definition 
of the parameters in terms of measurable aquifer properties 
and the hydrologic regime. This should make the simulation 
efforts a little more objective, and a little easier, than trying 
to obtain the values of dispersion coefficients by conven- 
tional estimation techniques. By using a transport model, 
such as the VDE, traditional transmissivity values derived 
from pumping tests, recharge estimations based on rainfall 
measurements, and hydraulic gradients based on piezomet- 
ric monitoring may be incorporated into the transport model. 
Furthermore, those characteristics could be directly related 
to the contaminant distribution. 

4. An interesting feature of the VDE is that it uses a 
constant dispersivity value and yet the breakthrough curves 
reflect the evolving nature of the velocity field and its effect 
on the concentration distribution observed via typical appli- 
cations of the CDE with arbitrary fitted dispersivities which 
increase with the domain scale. The difficulty in defining the 
relationship between scale and dispersivity has prompted 
much research in the last 20 years. A question naturally 
arises here, Is the dispersivity a true function of scale or is 
the relationship a practical necessity when using the CDE 
without recharge? Field verifications of the VDE will have to 
be done before any attempt is made at answering this 
question, but for the moment the VDE poses an open 
alternative which suggests that the use of a constant, labo- 
ratory scale (only related to the chemical constituent in 
question) dispersivity may prove a fruitful modeling solu- 
tion. 

5. The use of a dimensionless differential equation for 
the solution is a convenient device to assure dynamic 
similitude between prototype and model, and a useful tech- 
nique to generalize the model to multiple dimensions. 

6. One limitation of the VDE, as with any other model, is 
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Fig. 2. Comparison between the CDE and the VDE for case 2. Fig. 3. Effect of infiltration rate on contaminant distribution. 

that the choice of the parameters should satisfy certain 
stability constraints. Although a stability analysis was not 
done, preliminary observations indicate that the values of 
the parameters must not be unbounded, as one might expect. 
For instance, it is known that the values of transmissivity are 
a direct function of the typical domain scale and if, for 
example, a transmissivity of 1000.0 m2/month is measured in 
the field, it should be related to a typical length L -- 1000.0 
m to obtain a parameter T* = !.0 m 2 m -• month -•. 

Case 2: Instantaneous Point Source at the Left Boundary 

In this case f = CitS(r) in (34), and the solution to the 
classical CDE is given by [Serrano, 1988a] 

•:-b 

(47ra•-) 1/2 

f0 o- p))- - exp 4a•'(r- p) (r - p)3 dp. (36) 
Solving, 

Ci(•-b) { (•:-•'-b) 2} C(•:, r) (4•ra•r3) 1/2 exp - 4a•:r (37) 
Once again, a comparison between the VDE, (29), and the 
CDE, (37), was done along with an investigation of the 
sensitivity of the contaminant distribution to the individual 
hydrologic and hydraulic properties. The parameter values 
assumed were the same as those adopted for case 1, except 
that t = 12.0 month. 

From the simulations a few points very similar in nature 
from the ones drawn for case 1 should be noted. 

1. The CDE tends to underestimate the concentration at 

large distances and long simulation times. Figure 2 shows a 
comparison between the CDE and the VDE. Note that the 
CDE only approaches the VDE after the relative dispersiv- 
ity, a, has been increased by a factor of 10. 

2. Infiltration rate increases the efficiency in which the 

contaminant migrates through the aquifer. Figure 3 is an 
example illustrating the concentration distribution after in- 
creasing the recharge rate to 30.0 mm/month as compared to 
that for a 20.0 mrn/month rate of recharge. 

3. The dispersivity tends to behave as a scaling param- 
eter of the concentration distribution, reflecting the ability of 
a key contaminant to travel in porous media. Figure 4 shows 
the concentration distributions for relative dispersivities a = 
0.5 and a = 0.1 respectively. 

4. Higher transmissivity tends to increase the migration 
efficiency of the contaminant. Figure 5 shows the concentra- 
tion distributions for relative transmissivity values of T* = 
1.0 m2 m- 1 month- • and T* = 0.5 m2 m-1 month-1. 

5. Higher hydraulic gradients also tend to increase the 
velocities of flow and therefore the efficiency of migration of 
the contaminant. Figure 6 is an example of the effect of 
increasing the hydraulic gradient by an order of magnitude 
from h•) = -0.0001 rn/m to hb = -0.001 m/m. Clearly, all of 
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Fig. 4. Effect of aquifer dispersivity on contaminant distribution. 



SERRANO: DISPERSION EQUATION UNDER RECHARGE AND VARIABLE VELOCITY 1807 

0.7 

0.6 

0.5 

0.4 

(mg/1) 
0.3 

0.2 

0.1 

ß VDE, T*=I.0 m/too 
- VDE, T*=0.5 m/too 

ß } 1 •" ' 

DIMENSIONLESS DISTANCE, x/L 

Fig. 5. Effect of aquifer transmissivity on contaminant distribu- 
tion. 

these hydraulic and hydrologic properties of the aquifer have 
a direct impact on the concentration distribution because of 
the intrinsic relationship between them and the spatial dis- 
tribution of groundwater velocities (i.e., (6)). 

6. The calculation of concentration breakthrough curves 
using the VDE requires a simple numerical integration 
procedure, which can be easily implemented with a micro- 
computer. In the present example a 24-point Gaussian 
quadrature was employed in the approximation of (26) with 
a short code in C requiring minimal computer space and 
execution time. This is to say that, as for comment 3 in case 
1, the use of the VDE as a transport model does not require 
much extra effort and yet the advantages of having a model 
with parameters defined in terms of aquifer hydrologic and 
hydraulic properties could be beneficial. 

7. All of the calculations for case 2, as well as for case 1, 
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Fig. 6. Effect of hyd•ulic gradient ma•itude on contaminant 
distribution. 

assumed a constant recharge rate through the period of 
simulation. Given the important effects of recharge rate, as 
well as those of other hydraulic parameters, on the time and 
space distribution of the contaminant, one should conclude 
that there is a need for an investigation into the effects of 
time and space variability of these parameters on transport 
models. Including the effects of spatial variability as well as 
the true transient behavior of the groundwater flow system 
on the analysis of solute transport should prove a most 
interesting research aim for the future. 

6. SUMMARY AND CONCLUSIONS 

An investigation of the effect of aquifer hydrologic and 
hydraulic parameters (such as recharge rate, transmissivity, 
hydraulic gradients, and aquifer thickness) on the time and 
space evolution of solute concentration at the field scale was 
conducted. The investigation involved a solution of the 
groundwater flow equation for the velocity field in terms of 
relevant aquifer properties, the definition of dispersion pa- 
rameters as functions of the same aquifer properties, the 
derivation of the corresponding transport differential equa- 
tion, its analytical solution, and a few application examples 
and comparison with the classical CDE. The results of the 
research could be summarized as follows. 

1. Hydrologic and hydraulic aquifer properties, and in 
particular recharge, have a strong effect on the magnitude 
and distribution of the groundwater velocity field. It was 
found that even moderate recharge rates generate a variable 
velocity field, one with an increasing magnitude with dis- 
tance, which significantly impacts the solute transport con- 
ditions in the aquifer. 

2. Aquifers subject to natural recharge, which in turn 
generate variable velocity fields, exhibit evolving (increas- 
ing) dispersion coefficients with distance, even if constant 
(laboratory scale) values of dispersivities and homogeneity 
assumptions are adopted. This may be one of the reasons, 
along with the aquifer heterogeneities at the field scale, for 
the increasing value of the dispersion coefficient with the 
spatial and temporal scale so frequently reported in the 
literature. In the present study a physical interpretation 
based on a hydrologic-hydraulic functional dependence is 
given. 

3. The form of the dispersion equation in aquifers subject 
to recharge exhibits a dispersion coefficient and advection as 
variable (increasing) functions of space (VDE), and an extra 
term involving the dependent variable with a coefficient 
given by the recharge rate. Stable solutions of this equation 
can be obtained, in particular after transforming it into a 
dimensionless equation, which at the same time helps in the 
reproduction of the model dynamic similitude. Although the 
solution of the VDE is more involved than that for the CDE, 
its implementation in practical simulation models does not 
appear to require much more computational effort, and yet 
the advantages of having a dispersion equation in terms of 
measurable hydrologic and hydraulic properties may prove 
beneficial. 

4. It was found that higher transmissivity values and 
higher hydraulic gradient values tend to increase the veloc- 
ities of flow and therefore the solute transport efficiency as 
expected. On the other hand, values of dispersivity tend to 
have a scaling effect on the entire contaminant plume. 

5. The results indicated that the VDE with constant 
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dispersivity values may be able to reproduce the evolving 
nature of the velocity field and its effect on the concentration 
distribution observed via typical applications of the CDE 
with arbitrary fitted dispersivities which increase with the 
domain scale. This suggests that a constant, laboratory 
scale, dispersivity included in a dispersion equation which 
accounts for other aquifer hydraulic properties might be 
sufficient to model dispersion at the field scale. Substantial 
research and field verification will have to be done in order to 

determine if this is the case, but for the moment the 
possibility of using laboratory tests of dispersivity and their 
association with individual contaminants is encouraging. 

6. Comparisons between the VDE and the classical CDE 
under similar conditions indicated that the CDE largely 
underestimates concentration values, especially as distance 
and time increase. Dispersivity values in the CDE must be 
increased substantially in order to make its concentration 
distribution comparable to that of the VDE. 

7. The effect of regional hydrologic and hydraulic param- 
eters on the evolution of contaminants is important since 
they substantially affect the magnitude and distribution of 
the velocity and that of the concentration. Even moderate 
recharge rates drastically increase the efficiency of the flow 
and that of the contaminant evolution. Given the apparent 
absence of recharge considerations in most of the existing 
field investigations on the scale dependence of transport 
parameters, and the fact that the scale dependence could 
partially be explained by the influence of this important input 
function, the present study suggests that the aquifer hydro- 
logic regime should be included in the analyses. The relative 
importance of the hydrologic regime with respect to the field 
heterogeneity in explaining the scale dependence of aquifer 
parameters remains to be investigated. Because of the sen- 
sitivity of contaminant migration to recharge and to other 
hydrologic-hydraulic parameters, future research should be 
devoted to the inclusion of temporal and spatial variability of 
these parameters in the form of the dispersion equation (i.e., 
the effect of time-space variability of recharge). 

8. The above results are based on the adoption of Dupuit 
assumptions in the flow field. Since the governing differential 
equation is different in a deep aquifer, and since the presence 
of a nonlinear dynamic free surface boundary condition 
constitutes a new element in the analysis, efforts should be 
directed toward the theoretical analysis of three-dimensional 
flow problems and their effect on contaminant transport. 
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