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Abstract 

Existing theories of flow and contaminant transport in aquifers are either based on Monte 
Carlo simulations or small perturbation solutions of the governing stochastic partial 
differential equations, which limit the applications to cases of small variances in the physical 
parameters. In this article scale-dependent models to predict mean contaminant concentration 
from point sources (well injection), and non-point sources (ground surface spills) in hetero- 
geneous aquifers are developed and tested. A general analytic technique, the Neumann 
expansion, is used in the solution of the equations. This method does not require the assump- 
tions of small perturbation, logarithmic transformations, or a specific probability law in the 
random quantities. In addition, aquifer parameters such as the mean pore velocity are 
functionally defined in terms of the underlying groundwater flow problem, and field- 
measurable aquifer hydrogeologic properties such as mean transmissivity, mean hydraulic 
gradient, mean porosity and aquifer thickness. Comparison with theoretical models, and 
verification with field tracer tests at the Borden aquifer indicated that the proposed models 
reproduced the enhanced longitudinal dispersion as a function of distance reported in the 
literature. 

1. Introduction 

Predicting the propagation of contaminants as a result of accidental spills requires 
the implementation of the solution of a differential equation governing solute 
dispersion in porous media. If the contaminant is injected directly in the saturated 
zone, the saturated media dispersion equation subject to a point source is needed. If 
the contaminant is applied at the ground surface, the unsaturated media dispersion 
equation is needed to describe the concentration in the soil, and the space-time 
contaminant distribution at the interface between the saturated and the saturated 
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zone near the water table. The contaminant distribution at the interface is then used 
as a non-point source for the saturated zone. 

The point or the non-point source contaminant migration requires a fundamental 
solution (Green’s function) of an appropriate dispersion equation. Traditionally the 
convection dispersion equation (CDE) with constant coefficients has been used for 
that purpose. However, recent theoretical and field studies have demonstrated that 
the movement of inert solutes in aquifers is governed by a dispersion equation whose 
dispersion coefficients are functions of the spatial coordinate or travel time, and that 
only under ideal circumstances, i.e. usually at the laboratory scale, the classical form 
of the CDE with constant coefficients is adequate for describing contaminant 
transport (Fried, 1975; Dagan, 1984). This scale dependency of the dispersion 
parameters raises a number of obstacles for the applied modeler who wishes to 
predict the time and space evolution of a contaminant concentration in a 
heterogeneous aquifer. 

In the search for the definition of transport equations which adequately represent 
the evolving nature of the dispersion parameters at large scales, some researchers have 
conceived the variability of the dispersion parameters as deterministic evolving or 
periodic functions of space or time (Pickens and Grisak, 1981; Gupta and 
Bhatthacharya, 1986; Barry and Sposito, 1989; Yates, 1990). Recently Serrano 
(1992b, 1993) attempted to incorporate aquifer physical variables in the definition 
of the functional form of dispersion parameters. An equation of dispersion in one- 
and two-dimensional homogeneous and heterogeneous aquifers with scale-dependent 
parameters given as functions of natural recharge rate from rainfall, aquifer 
transmissivity, head hydraulic gradient, aquifer thickness and aquifer soil porosity 
were derived. It was found that aquifer recharge partially explains the scale 
dependency of aquifer parameters, even in homogeneous aquifers, and that its 
inclusion implies the solution of difficult equations with spatially variable coefficients. 

Stochastic analyses have played an important role with a variety of studies that 
investigate the effect of field-scale heterogeneities on the dispersion phenomenon. 
Researchers have focused on representations of the hydraulic conductivity tensor 
as realizations of a random field, and its influence on the groundwater velocity 
variability and the dispersion parameters. For a summary and a critical review of 
stochastic methods to derive transport equations the reader is referred to Sposito and 
Jury (1986) and Cushman (1987). The major advantage of existing solution methods 
of stochastic transport equations is that they have permitted the development of some 
fundamental understanding of the phenomenon of mass transport in aquifers. The 
major disadvantage is that most of them have been built based on excessive 
restrictions and assumptions created for the purpose of making the mathematics of 
the problem tractable and the solution of the equations possible, and not necessarily 
to reflect physical conditions. Except for the Monte Carlo simulation approaches, 
which are empirical and expensive, most of the existing stochastic theories of disper- 
sion are based on the small perturbation assumption, whereby the stochastic terms in 
the differential equation are assumed to be small and thus the truncation of the series 
may be justified. However the size of ‘small’ is usually a subjective statement of the 
modeler since no mathematical criteria restricting the acceptable bounds in the 
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variances is presented. It has become widely acceptable to force the ‘smallness’ in the 
random quantities by assuming the logarithm of the hydraulic conductivity, K, to be 
normally distributed. Considering log(K), rather than K, in the flow equations 
conveniently minimizes the variance in the random term, but eliminates valuable 
information about the parameter, and generates an unbounded function for regions 
of low K. Although some univariate log-normal distributions have been fitted to the 
hydraulic conductivity of some aquifers, the log-normality of this parameter is 
usually assumed to justify the small perturbation solution. Finally, the small 
perturbation solutions claim three-dimensionality in the domains, yet the hydrology 
of the aquifer and the existence of boundary conditions are eliminated from the 
analyses. These assumptions may mean that the equation being solved is no longer 
a proper representation of the physical problem whose solution is desired. 

Several problems in flow and contaminant subsurface hydrology, such as the scale 
dependency of the dispersion parameters, remain to be observed in the light of a 
systematic theory which includes the possibility of using normal, and sometimes 
large, variances in the random parameters, or at least with a rigorous mathematical 
framework that allows the construction of convergence theorems objectively 
restricting the sizes of the variances in the uncertain parameters. 

In the present article I attempt to re-formulate the problem of dispersion in hetero- 
geneous aquifers without the assumptions of small perturbation, logarithmic 
transformations, or specific probability laws in the random quantities. The 
fundamental solution and non-point source solution are derived. In the second 
section statistical measures of the pore velocity are derived in terms of the correspond- 
ing statistical measures of the transmissivity and determinant field measurable bulk 
hydrogeologic properties. Subsequently, in the third section, a large scale dispersion 
equation is derived based on the solute mass conservation and the random nature of 
the pore velocity. The Fickian approximation is avoided except as an initial term for 
the small scale problem, an assumption generally accepted. A solution of the 
dispersion equation in terms of the mean concentration distribution and expressions 
for the equivalent time-dependent dispersion parameters are given. In the fourth 
section we extend the scale-dependent fundamental solution of a point source 
problem in a saturated media to the practical case of a distributed source coming 
from the unsaturated zone. Finally, in the fifth section a comparison with the classical 
theory, the Dagan’s model and field tracer tests in the Borden aquifer are described. 

In order to observe the natural large variability effect of the transmissivity, the 
‘raw’ transmissivity, rather than its logarithm, is considered in the flow equation. For 
the same reasons, The Neumann expansion method (Serrano, 1988a,b), rather than a 
small perturbation scheme, is used for the solutions of the flow and the dispersion 
equation. A specific measure to assure convergence of the series solution is given. This 
measure is based on a theorem with proof (Serrano, 1992a). Assumptions on the 
underlying probability distribution of the transmissivity have been avoided and 
instead information on the mean and spatial correlation structure is used 
(stationarity assumed out of necessity). From the applied point of view, this is the 
only reasonable information obtained from field data banks. In this study, only two 
scales of dispersion are adopted: A small scale of the order of less than ten meters, 
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where the classical convection dispersion equation and the Fickian approximation are 
assumed valid, and a large scale of the order of tens of meters, where the dispersion 
mechanism is controlled by the aquifer heterogeneity. 

2. The velocity field in a heterogeneous aquifer 

In this section we investigate the form of the groundwater velocity in a 
heterogeneous, long as compared with its thickness, hypothetical unconfined 
aquifer exhibiting mild slopes and with the usual assumptions of planar dimensions 
much larger than its thickness, formation properties of interest averaged over the 
depth and regarded as functions of the horizontal dimensions only, and Dupuit 
assumptions of shallow flow (Dagan, 1986). The governing flow equation is 
(Bear, 1979) 

?t[,,,, y)c!] +$,. y)$] =o, o<x< 00, - 00 <Y< m (1) 

where h(x, y) is the hydraulic head (m) above a specified datum; T(x, y) is the 
aquifer transmissivity (m* month-‘); and x, y are the spatial Cartesian coordinates 

(m). 
Consider an aquifer with a regional hydraulic gradient along x and negligible along 

y. This condition generates a mean groundwater velocity along x and negligible mean 
velocity along y. Since only random, zero mean, velocity fluctuations exist along y, a 
significantly greater variability in the longitudinal pore velocity than in the transverse 
pore velocity is expected. As a result the field-scale longitudinal dispersion coefficients 
will be greater than those in the transverse direction. This is the reason why some field 
studies report a strong scale dependency in the longitudinal dispersion coefficient, 
while a relatively small increase in the transverse one. In this study, we will assume 
that the effect of the random variability in the transverse pore velocity on the random 
variability of the longitudinal pore velocity is negligible. Under preparation is an 
analysis of the full three-dimensional random velocity field. 

We further represent the transmissivity as T = T + T', where T = E{ T}, E{ } is 
the expectation operator, the random field T' has the properties E{ T'} = 0, 
E{T'(xl, YVI)T'(-Q, ~2)) = &exd-pl xl - x21)exp(-plyi - y21), a+ is the trans- 
missivity variance parameter ((m2 month)2), and p is a correlation decay parameter 
(m-l). The abo ve simplified representation of aquifer heterogeneity in the trans- 
missivity attempts to be in line with current research in the stochastic analysis of 
groundwater flow and contaminant transport, while reducing the mathematical 
complexity. 

Without loss of generality we assume knowledge of the boundary conditions at a 
point in the aquifer, h(0, 0) = ho, 
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and 

$0, 0) =o 

The flow equation becomes 

d*h 

8x2 

1 dT’dh 
T dx dx’ 

0 6x < co, h(0) = ho, E(O) = h,‘, (2) 

In deriving Eq. (2) the term 

T’@J 
dX2 

has been neglected, since numerical calculations indicate it is very small compared 
with others in the equation. The solution to Eq. (2) is 

h(x) = ho + h;x - f 1 G(x; 
aT’([) dh 

<) -- 
a[ atd’ 

0 

(3) 

where G(x; 6) is the Green’s function associated with Eq. (2). It is given by (Serrano, 
1992b) 

G(x) 8 = W, I)(x - I) (4) 

where U is the unit step function. Substituting Eq. (4) into Eq. (3) 
Y 

h(x) = ho + h;x - f 
aT’(<) dh 

(x - I) -- 
a[ aEde 

0 

(5) 

A Neumann expansion of Eq. (5) could be built as (Serrano, 1992a) 
h(x) = ho + hl + h2 + . . ., where ho is again 
the aquifer at the origin 

h,(x) = h;x 

the head with respect‘to the bottom of 

h2(X) z -+1(x _ ,)!$?!!@,, 
0 

and in general 

hi(x) = -~jx_~)!?$!%$d~ 
0 

(6) 

(7) 

(8) 

The convergence of the Neumann expansion of Eq. (5) requires that max[T’(x)] < 1 
for the sample functions, where max( ) is the maximum operator, and that 

C,=F<l 
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for the expected heads, where C, is the coefficient of variability of the transmissivity 
(Serrano, 1992a). Unless the transmissivity is assumed to follow a Gaussian random 
field, its third moment is usually unknown. Usually, however, only the first two 
moments are available from field measurements conducted with reasonable detail, 
and therefore it is only possible to calculate the first three terms in the Neumann 
expansion. It is known that this represents an accurate scheme for most practical 
applications (Serrano and Unny, 1987). 

Substituting Eqs. (6) and (7) into Eq. (5) and differentiating with respect to x one 
obtains the hydraulic gradient in the direction of the regional groundwater flow 

Applying Leibnitz rule for differentiation under integrals and solving 

0 

(10) 

The large-scale component of the pore velocity, uX, averaged over the vertical, may be 
estimated as 

On using Eq. (10) 

(11) 

We remark that this is the large-scale component of the pore velocity, that is the one 
controlled by the random variability in the transmissivity at the large scale. Taking 
expectations on both sides of Eq. (11) we obtain the mean pore velocity, U, 

U, = E[u,(x)] = - $ 
i 

T - $ [l - exp(-px)] 1 
I 
> (12) 

This is the same expression obtained by Serrano (1993) when the recharge rate is set to 
zero. It was noted there that the relative magnitude of the second term in the right- 
hand side of Eq. (12) is small compared with that of the first. In other words the effect 
of the correlation decay parameter of the transmissivity on the average pore velocity 
is small compared with that of the aquifer regional hydraulic gradient in the absence 
of recharge. With this approximation 

h;T 
U,Y--- 

nho 
(13) 
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Similarly, from Eq. (11) the random component of the pore velocity is 

(14) 

The right-hand side of this equation illustrates the concept of two scales of motion: 
one small scale operating at short distances, and one of increasing importance as the 
distance from the source increases (the integral term). From Eq. (14) the two point 
correlation function of the pore velocity, R,,, at locations xl and x2 may be derived. 
Substituting for the assumed exponentially decaying form of the transmissivity 
correlation function, differentiating under the integrals, calculating the correlation 
of the derivatives and solving, one obtains 

= *{exp(-px2) + 2pxi - 2exp[-p(x2 - xi)] + 2}, 

x XI 6X2 

Finally, set xl = x2 = x to obtain the variance of the pore velocity, a:, as 

(15) 

ai = r[2px + exp(-px)], Y = $ 
( 1 0 

2 

(16) 

This equation indicates that the variance of the pore velocity increases with distance. 
For large values of p the increase is linear with distance, whereas for small values of p 
the increase is non-linear with distance. Eq. (16) further illustrates the concept of two 
scales of motion: a small scale controlled by the exponential term, and a large scale 
which grows with distance. 

3. Solute dispersion in a heterogeneous aquifer 

In this section we study the form of the dispersion equation in a two-dimensional 
unconfined aquifer with Dupuit assumptions subject to a random transmissivity. In 
the previous section we investigated the statistical properties of the pore velocity 
in such an aquifer and now the parameters of the dispersion equation are derived in 
terms of those properties. The solute mass continuity equation is (Bear, 1979) 

dC a(%C) + a(u,c) = O 
at+-- dX ev 

(17) 

where C represents solute concentration (mg 1-l); t is the time coordinate (months); 
u,, uY are the x, y components of the pore velocity vector, respectively; and the rest of 
the terms are as before. 

From the observation that the dispersion parameters are functions of distance, and 
after the results in Section 2, particularly Eqs. (1 l), (12) and (14), it is assumed in the 
present work that two mechanisms of dispersion are present: one primarily operating 
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at the small scale where the dispersion is controlled by the variability in the pore size 
and the pore velocity at this scale; and one operating at large scale where the 
dispersion in controlled by the aquifer heterogeneity in the transmissivity at this 
scale. At the small-scale level the effect of the second mechanism would be negligi- 
ble, because of the small distances involved, while at the large-scale level both 
mechanisms are present but the second is the dominant one, because of the large 
distances involved. Thus we define the large-scale pore velocity in the x direction as 
u,(x) = ti, + z& + ~4, where z&_ represents the random component of the small-scale 
pore velocity, and u: represents the random component of the large-scale pore 
velocity as before. 

With the x coordinate coinciding with the (mean) regional groundwater pore 
velocity, the mean y component, i&, of the pore velocity is zero. Thus the y 
(transverse) component of the pore velocity is defined as uY = z& + IL;., where z& 
represents the random component in the y direction of the pore scale velocity, and 
u_; represents the random component of the large-scale pore velocity in they direction. 
For an infinite aquifer and an instantaneous point source (a spill) at the origin, Eq. 
(17) becomes 

(18) 

subject to 

-o3<x<co, -cc <y< 00, 0 < t, 

C(f@J, y, t) = C(X,fa3) t) = 0, C(x, y, 0) = cg(x)S(y) (19) 

where Ci is the magnitude of the initial concentration; and S( ) is Dirac’s delta 
function. 

Adopting the Fickian approximation at the small scale 

u’ Ce_D dc 
PX x dx 

and 

u’ C=_D dc 
PY I’ ay 

where D, and D, are the small-scale dispersion coefficients in x and y, respectively, 
defined as the product of a small (laboratory) scale dispersivity times the mean 
longitudinal pore velocity. The large-scale concentration may be written as 

C(X, Y, t, = CixCx7 t) Y(Y, t> 

where X(x, t) satisfies 

(20) 

ax d2X a(u:x) z+“‘g=DxG- -z-’ x(+00) t) = 0, X(x, 0) = 6(x), 

-cm<x<co, O<t (21) 
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and satisfies 

dY 
__=D @l.Y) a2y 
dt y f3y2 8Y ’ Y(f(xJ, 4 = 0, Y(Y, 0) = b(Y), 

-cc <y< co, O<t (22) 
The solution to Eq. (21) may be expressed as the Neumann series (Serrano, 1992a) 
X=X,+X,+X,+..., where the first term, X0, satisfies 

8x0 a(Gxo) D @x0 
dt+--= - i3X --c ax2 ’ 

X()(&m, t) = 0, J&(x, 0) = S(x), 

-cc <x-c co, O<t (23) 

which indicates that the first approximation to a scale-dependent solute dispersion is a 
convection dispersion equation with a constant small-scale dispersion coefficient. Its 
solution is (Serrano, 1992a) 

exp _ (x - u2 
X0(x, 9 = [ 1 4D.d 

yw (24) 

Any subsequent term, Xi, in the Neumann expansion of Eq. (21) satisfies 

8Xi aXi 
dt+U,“ax= _@p 

)  Xi(fO2) t) = 0, Xi(X, 0) = 0, 

-m<x<co, O<t, i21 (25) 

In view of Eqs. (23) and (25) Eq. (21) for the first two terms in the series could be 
written as 

(26) 

More terms in the series solution could be included. However the expectation of such 
terms would require information on the moments of order greater than two and, as 
stated before, this information is not usually available in most applications. Taking 
expectations on Eq. (26) using Eq. (16), and approximating 

a2x 
~+ti.+~P=2~~x~ 

dX2 ’ 
X(x, 0) = S(x) (27) 

where X = E(X). The solution to this equation has the shape of a Gaussian 
distribution with a time-dependent plume variance. The plume variance may be 
obtained easily after multiplying Eq. (27) by (x - i&t) and integrating with respect 
to x. Thus the longitudinal component of the mean concentration variance is 
4, = 2D,t + 2rpiixt2, which would produce a time-dependent dispersion coefficient, 
D,, given by 

o,(t) = D, + 2rpEi,t (28) 
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A similar analysis may be performed on Eq. (22) to obtain an expression for the 
time-dependent dispersion coefficient in the y direction 

An analysis of convergence on the above Neumann series solution to 
indicates that solution is strictly valid for t < t, (Serrano, 1992a), where 
maximum simulation time given by 

(29) 

Eq. (21) 
t, is the 

1 
t, = - 

P%lY 

where x, is the maximum longitudinal scale in the simulations. Using the shifting 
properties of Gaussian curves, the longitudinal plume variance is calculated as 

W,(t,), k = + 
m 

This restriction does not affect the transverse component. 
In summary, the mean concentration distribution for a point source initial 

condition is given by 

C(X) ,V, t) = CiX(X, t)Y(y, t), X(X, t) = 

ew [ - 4;,r~~tJ 
~47rkb,(t,)tm ’ 

Y(Y, t) = 

1 k+, t,=- 
m P-&r 

(30) 

(31) 

and b,(t,), fiy(t,,,) are the dispersion coefficients evaluated at t, from Eqs. (28) and 
(29) respectively. The form of Eq. (30) suggests that the scale-dependent mean 
concentration, C, owing to a point source in an aquifer satisfies an equation of the 
form of (37) when the forcing function is zero. Thus Eq. (30) is actually the 
(approximate) Green’s function, of Eq. (37). Knowledge of the form of the Green’s 
function is essential for more complex applications such as groundwater pollution 
forecasting owing to non-point sources. 

4. Applications to spills originated in the unsaturated zone 

Most simulation models of groundwater pollution limit their attention to the 
solution of contaminant transport problems at either the unsaturated zone or the 
saturated zone. This is due in part to the conceptual difficulties in representing mass 
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transfer at the interface between the saturated zone and the saturated zone, and the 
mathematics of subsequent propagation in the saturated zone subject to a non-point 
source at the interface. Yet an accidental chemical spill at the ground surface, which 
becomes a point source of contaminants in the unsaturated zone which eventually 
penetrate and propagate within the saturated zone, constitutes a frequent problem of 
practical importance. 

In this section we attempt to extend the scale-dependent fundamental solution of a 
point source problem in saturated media to the case of a distributed source coming 
from the unsaturated zone. First, a description of contaminant propagation in the 
unsaturated zone is needed in order to define the functional variability of the source 
concentration at the interface. For that purpose we focus our attention on the case of 
a shallow aquifer, that is one whose unsaturated zone depth is small compared with 
the horizontal dimensions of the aquifer. In such a case the large scale dependency of 
the dispersion parameters is controlled by the aquifer dimensions, rather than the 
unsaturated zone dimensions. 

We assume that the source at the ground surface is instantaneous and punctual; the 
unsaturated soil is homogeneous and anisotropic in the dispersion coefficient; 
the contaminant loss through evapotranspiration is negligible; the concentration at 
the water table does not affect that of the unsaturated zone; the center of mass of 
contaminant plume moves as a result of mean percolation (recharge) rate from rain- 
fall; and the dispersion in the horizontal direction is greater than that in the vertical 
direction. 

The governing differential equation is (Serrano, 1992~) 

ix’ -_ -_ __ _ 
at 

Dr@c’ D,@c’ 
x 8x2 x ay2 

D,@c’+ii gxo 
z 69 z az (32) 

-cm <x-c co; -ca<y<m, -cc <z< zoo; O<t (33) 

subject to 

C’(& oc ) *(Xl, *CO, t) = 0; C'(X, y, Zy 0) = CiG(X)S(_V)S(Z) (34) 

where C’ is the solute concentration (mg kg-‘); X, y are the spatial horizontal co- 
ordinate axis (m), with x parallel to the regional saturated groundwater flow direc- 
tion; z is the vertical spatial coordinate (m), positive downwards; t is the temporal 
coordinate (months); 0: is the horizontal dispersion coefficient (m2 month-‘); Di is 
the vertical dispersion coefficient (m2 month-‘) 

is the mean seepage velocity (m month-‘), where Z is the mean monthly recharge rate 
from rainfall (m month-‘), and n is the soil porosity; and Ci is the initial solute 
concentration at the time of the spill (mg kg-‘). 

It is easy to show the solution to Eq. (32) (Serrano, 1988a) 

C’(X, y, z, t) = CjX’(X, t)Y’(y, t)Z’(z, t) (35) 
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(36) 

Eq. (35), with the appropriate change in units and with z = W, where w is the water 
table depth from the ground surface (m), represents the space-time evolution of the 
contaminant concentration at the interface between the unsaturated and the saturated 
zone. If we interpret the transport problem of the saturated zone as one of a 
contaminant evolution owing to a non-point source entering the water table, and 
using the results of the previous section, then the scale-dependent differential 
equation governing solute dispersion in the saturated zone could be written as 
(Serrano, 1988a) 

ac a2c 
--&~+~.x~-ay&-yg(x, y, t) at (37) 

-co<x<co, -cc <y< co, 0 < t, 

q*co,, *co, t)=O=C(x, y, 0) (38) 

where g(x, y, t) is the distributed source at the interface given by Eq. (36) as 

dx, Y, 4 =s Je, V'(Y, W(w, 4 (39) 

andf is a units conversion factor accounting for the change in concentration units 
(from mg kg-’ in the unsaturated zone to mg 1-l in the saturated zone) 

f=Y” 
1 OOOn 

where 7s is the soil dry bulk density. 
The solution to Eq. (37) may be written as (Serrano, 1988a) 

ICC w 

C(x, Y, t) = 
.IJ .I 

G(x - x’, y - y’, t - t')g(x', y', t’)dx’dy’dt’ (41) 
O-Co-00 

Interpreting the Green’s function, G, as given by Eq. (30), using Eq. (39), and 
applying the shifting properties of integrals of Gaussian curves, one may eliminate 



S.E. Serrano /Journal of Hydrology 169 (1995) 151-169 163 

the spatial integrals 

f exp 
i 

[x - iqt - t’)12 
- 

C(x, Y, l) = cif .r 4[D,(t - t’)(t - t’) + D$‘] 
I 

0 
~47r[D,(t - t’)(t - t’) + DLt’] 

exp - 
i 

y2 
4[D,(t - t’)(t - t’) + Z$t’] 

X 

} exp [- (“;dl;:)‘] dt, 

* 47r[D,,(t - t’)(t - r’) + ZQ’] $S@? 

An algorithm for a Gaussian quadrature 
approximation of Eq. (42). 

As an illustration, let us imagine that a 

(42) 

may be easily constructed for the 

small spill of a certain contaminant 
accidentally occurred at the ground surface and that we wish to forecast the 
contaminant concentration in the unsaturated zone and the saturated zone. The 
following parameters were measured: Ci = 70 mg kg-‘; 0: = 0.03 m* month-‘; 
0; = 0.009 m2 month-‘; n = 0.33; Z = 0.01 m month-‘; w = 1.0 m; 7S = 
1600.0 kg m-3; hh = -0.0056 m m-l; Z? = 185.4 m month-‘; D, = 0.03 m2 month-‘; 
D, = 0.009 m2 month-‘; ak = 96.6 m month-’ and p = 0.36. From Eq. (35) we 
predict the space-time evolution of the contaminant in the unsaturated zone. 

-2.0 

Water Table 1 I I 1 1 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

Horizontal Distance, X, in tleters -> 

Fig. 1. Unsaturated zone profile concentration contours for the case of a soil spill. Contours in milligrams 
per kilogram; time, 6 months; plume center, 2 = 0.2 m. 
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Fig. 2. Unsaturated zone profile concentration contours for the case of a soil spill. Contours in milligrams 
per kilogram; time, 12 months; plume center, Z = 0.4 m. 
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Fig. 3. Saturated zone plan concentration contours for the case of a soil spill. Contours in milligrams per 
liter; time, 12 months; maximum C = 29.6 mg 1-l at X = 0.9 m. 
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Figs. 1 and 2 show the unsaturated zone concentration contours 6 and 12 months 
after the spill, respectively. Using Eq. (42) we predict the saturated zone concen- 
tration distribution. Figs. 3 and 4 show the saturated zone concentration contours 
12 and 36 months after the spill, respectively. Note that owing to the slow penetration 
of the source from the unsaturated zone, the saturated zone plume is not symmetrical 
with respect to the peak in the longitudinal direction. It is also interesting to observe 
that the maximum concentration remains somewhat close to origin, and that only 
after prolonged time, when most of the contaminant from the unsaturated zone has 
entered the saturated zone, the plume will tend to become symmetric. Finally, if one 
attempts to model this problem with constant, rather than scale-dependent, 
dispersion parameters, the calculated concentration values become unrealistic. 

5. Field verification 

Verification between the scale-dependent dispersion equations described in the 
above sections and existing dispersion models reveals the obvious features of the 
present theory. A comparison between the classical convection dispersion equation 
and the variable dispersion equation (VDE) for the case of an instantaneous spill, Eq. 
(3 l), indicates that the CDE overestimates the maximum concentration, the peak of 
the plume, and underestimates the spread of the contaminant, that is the plume 
variance. Now the main difference between the existing scale-dependent models, 
such as the widely used Dagan (1984, 1986) model, and the present theory lies in 
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Fig. 4. Saturated zone plan concentration contours for the case of a soil spill. Contours in milligrams per 
liter; time, 36 months; maximum C = 33.6 mg 1-l at X = 1.7 m. 
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the functional definition of the time-dependent dispersion coefficient. A comparison 
between Eqs. (28) and (29) and the corresponding longitudinal and transverse 
dispersion coefficient equations in the Dagan model shows that the VDE generates 
a continuously increasing with time dispersion coefficient, in contrast to the Dagan 
model in which the dispersion coefficient exhibits an asymptotic value. The contrast 
between the two theories may lie in the different assumptions adopted in each one. 
The absence of an asymptotic value in the dispersion coefficient may be reinforced 
physically by recent studies that emphasize the partial effect of recharge on the 
dispersion parameters. Serrano (1992b, 1993) concluded that, in the presence of 
recharge, the dispersion coefficient does not appear to have an asymptotic value 
either, and its value would only be limited by the end of the recharge zone or the 
presence of a physical aquifer boundary. An independent confirmation of the non- 
existence of an asymptotic value of the dispersion coefficient was given by Paredes and 
Elorza (1992). They developed a dispersion model determined by non-stationary 
random walk techniques, and the concept of Fractal Geometry. 

Field verification of groundwater pollution models of chemical spills is a more 
difficult problem owing to the relative lack of reliable field data bases documenting 
environmental accidents, the subjective account of certain parameters, particularly 
the initial concentration and mass, and the inherent inaccuracies of certain measure- 
ment strategies. Most field data banks possess a degree of uncertainty comparable 
with that of the mathematical model after the adoption of many assumptions and 
approximations. Another problem relates to the verification of the moments of a 
stochastic model (i.e. the mean concentration, C) with what appears to be a single 
realization (a sample function) of the concentration, C, taken in the field. Aware of 
these obstacles, an attempt at verification may be approached by comparing the 
simulation results with a controlled tracer experiment. Our objective would then be 
to observe if the mathematical model reproduces the enhanced dispersion observed in 
the field, and the general characteristics of the plume. 

One of the most widely available tracer experiments is the one performed at the 
Borden site, Ontario, Canada. The results of the Borden site experiment have been 
extensively documented in the literature (Mackay et al., 1986). We focus our attention 
on the implementation of the two-dimensional Dagan’s model to vertically averaged 
bromide and chloride concentrations at the Borden site reported by Barry et al. 
(1988). The parameter values for the aquifer are the same we adopted for the 
saturated zone in the examples of the previous section, except that the initial 
bromide concentration Ci = 324 mg 1-l. The initial mass amount and the way 
in which the tracers were initially injected (via a collection of wells) may not 
resemble a point source, and therefore the following comparison is only 
approximate. 

Figs. 5 and 6 illustrate the saturated zone surface contours of mean bromide 
concentration at the Borden aquifer, as simulated by Eq. (30), 9 and 15 months 
after injection, respectively. A comparison with the field analyses on the Borden 
aquifer reported by Barry et al. (1988) suggests that the VDE reproduce the main 
features of the measured plume: peak concentration magnitude, peak location and 
continuously increasing dispersion coefficients. The longitudinal contaminant spread 



S.E. Serrano / Journal of Hydrology 169 (1995) 151-169 167 

I I I I I 

c ._ 

; St 
0 
d I __-__ 
9 
7 

0 

(;’ 

0 . I I I I I 
35.0 26.0 27.0 28.0 28.0 30.0 31.0 

Horizontal Distance, X, in Meters -> 

Fig. 5. Simulated saturated zone plan bromide concentration at the Borden aquifer. Contours in milligrams 
per liter; time, 9 months; maximum C = 47.986445 at X = 28.3 m. 
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Fig. 6. Simulated saturated zone plan bromide concentration at the Borden aquifer. Contours in milligrams 
per liter; time, 15 months; maximum C = 22.165803 at X = 48.5 m. 
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is somewhat underestimated by the VDE, most probably because the VDE has less 
mass at the initial injection (instantaneous injection) than that reported in the field 
test. A simulation with a more realistic step function as initial condition to the VDE 
was not attempted at this time. 

6. Summary and conclusions 

Mathematical models designed to predict scale-dependent solute concentration 
after accidental spills in heterogeneous aquifers were developed and tested. The 
methodology used does not require the usual restrictive assumptions of small 
perturbations, logarithmic transformations, specific probability laws in the random 
quantities, or a disregard for the aquifer hydrology. Two main applications were 
considered: (1) the case of a well injection directly in the saturated zone; (2) the 
case of a spill at the ground surface, which considers the contaminant dispersion in 
the unsaturated zone, and its subsequent dispersion in the saturated zone. The latter 
involved the solution of a scale-dependent dispersion equation in the saturated zone 
subject to a non-point source from the unsaturated zone. Two scales of dispersion 
were assumed: a small scale of the order of less than 10 m, where the dispersion is 
controlled by the variability in the pore size and the pore velocity at this scale; and one 
large scale of the order of tens of meters, where the dispersion is controlled by 
the aquifer heterogeneity in the transmissivity. At the small-scale level the effect of the 
second mechanism is negligible, because of the small distances involved, while at 
the large-scale level both mechanisms are present but the second is the dominant one, 
because of the large distances involved. 

Several new features are included in the models: the ability to consider normal, and 
sometimes large, variability in the aquifer parameters, particularly in the aquifer 
transmissivity; the inclusion of a specific measure to assure convergence of the series 
solution. The aquifer statistical parameters are given in linear dimensions rather than 
in the form of a logarithmic transformation. Assumptions on the underlying 
probability distribution of the transmissivity are not needed and only a knowledge 
of the mean and correlation structure is necessary (information more easily available 
in practical applications). The model’s output is the expected concentration as a 
function of space and time. Aquifer parameters such as mean pore velocity are 
directly related to the underlying groundwater flow problem, and are expressed in 
terms of field measurable aquifer hydrogeologic properties such as mean 
transmissivity, mean hydraulic gradient, mean porosity and aquifer thickness. 

Comparison with theoretical models, such as the Dagan’s model and the classical 
convection dispersion equation, and field verification with the tests at the Borden 
aquifer indicated that the proposed model reproduced the enhanced longitudinal 
dispersion reported in the literature. The effective dispersion coefficient of the 
proposed model grows continuously with time and does not exhibit an asymptotic 
value. The absence of an asymptotic dispersion coefficient has been reported in cases 
where recharge to the aquifer from rainfall is present. 

It is believed that the model could be easily implemented in practical applications of 
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groundwater pollution forecasting, since the required parameter information is 
directly related to standard hydrogeologic field measures, and its output is the 
mean concentration as a function of space and time. 
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