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Abstract Mathematical models are the means to characterize variables quantitatively in many groundwater
problems. Recent advances in applied mathematics have perfected what is now called Adomian’s decomposition
method (ADM), a simple modelling procedure for practical applications. Decomposition exhibits the benefits of
analytical solutions (i.e. stability, analytic derivation of heads, gradients, fluxes and simple programming). It also
offers the advantages of traditional numerical methods (i.e. consideration of heterogeneity, irregular domain shapes
and multiple dimensions). In addition, decomposition is one of the few systematic procedures for solving nonlinear
equations. By far its greatest advantage is its simplicity of application. It may produce simple results for prelimi-
nary simulations, or in cases with scarce information. The method is described with simple applications to regional
groundwater flow. Many applications in groundwater flow and contaminant transport are available in the literature.
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Une approche simple de modélisation des eaux souterraines par décomposition
Résumé Les modèles mathématiques sont un moyen de caractériser quantitativement les variables dans de
nombreux problèmes d’eaux souterraines. Les avancées récentes en mathématiques appliquées ont mis au point
ce qu’on appelle aujourd’hui la méthode de décomposition d’Adomian, une procédure simple de modélisation
pour des applications pratiques. Cette décomposition présente les avantages des solutions analytiques (stabilité,
expression analytique des charges, gradients et flux, et programmation simple). Elle offre également les avantages
des méthodes numériques traditionnelles (prise en compte de l’hétérogénéité, formes irrégulières de domaines, et
dimensions multiples). En outre, la décomposition est l’une des quelques procédures systématiques permettant de
résoudre des équations non linéaires. Son plus grand avantage est de loin sa simplicité d’application. Elle peut
produire des résultats simples pour les simulations préliminaires, ou en cas d’informations rares. La méthode est
décrite avec des applications simples à l’écoulement régional des eaux souterraines. De nombreuses applications
aux écoulements souterrains et au transport de polluants sont disponibles dans la littérature.

Mots clefs modélisation mathématique; méthode de décomposition d’Adomian

INTRODUCTION

Many problems in groundwater require a quanti-
tative characterization and forecasting of variables,
such as hydraulic heads, hydraulic gradients, fluxes
and pore velocities. The characterization of aquifer
variables is usually accomplished via the solu-
tion of a differential equation subject to a set of
boundary conditions. Traditional methods of solu-
tion are broadly divided into numerical and analytical
solutions. Traditional numerical solutions involve a

discretization of the spatio-temporal aquifer domain
and the solution of the resulting matrix equations.
Discretization schemes permit a simplification of the
model equations and the consideration of irregular
domain shapes. However, they may generate insta-
bility, they constitute a numerical linearization of
nonlinear problems, and the programming and com-
puting execution times may be significant. On the
other hand, traditional analytical solutions are con-
tinuous in space and time, and render a more stable
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solution, but they are usually applicable to linear
problems and require regular domain shapes.

Recent advances in applied mathematics
have perfected what is now called Adomian’s
Decomposition Method (Adomian 1994, Wazwaz
2000, Rach 2008, Duan and Rach 2011). It consists
of deriving an infinite series that, in many cases, con-
verges to an exact solution. For a simple introduction
to the method with applications in groundwater, engi-
neering analysis and stochastic methods, the reader
is referred to Serrano (2010, 2011). For nonlinear
equations in particular, decomposition is one of the
few systematic solution procedures available. For
instance, Serrano and Workman (1998) and Serrano
et al. (2007) presented new solutions of the nonlinear
Boussinesq equation. Moutsopoulos (2007, 2009)
used decomposition to derive the most characteristic
case of nonlinear, non-Darcian, unconfined flows in
groundwater. With the concepts of partial decompo-
sition and of double decomposition, the process of
obtaining an approximate solution in several dimen-
sions is simplified. As long as the initial term in a
decomposition series (e.g. the forcing function or the
initial/boundary conditions) is described in analytic
form, a partial decomposition procedure may offer a
simplified approximate solution to many modelling
problems. If the shape of domain boundaries can be
specified in analytic form (e.g. fitting a curve to a few
surveyed points), decomposition yields a solution to
problems in aquifers with irregular shapes. If aquifer
parameters such as transmissivity can be specified in
analytic form (e.g. by fitting a smooth surface to point
observations), the method can consider heterogeneity.
Pumping wells and transient solutions for various
governing equations may be easily derived. The prop-
agation of contaminants subject to nonlinear reactions
or nonlinear decay (Serrano 2003) are among the
examples of application of decomposition. The main
feature of the method is simplicity; it is a useful tool
for preliminary simulations or in cases with little
data. For certain nonlinear problems, the calculation
of the Adomian polynomials may require some effort.
Many authors have applied the variational iteration
method (Abdou and Soliman 2005, He and Wu 2006)
to overcome the difficulty arising in calculating
Adomian polynomials. Another approach to solving
nonlinear equations is the homotopy perturbation
method (He 2000, 2006, Liao 2004), which does
not require the assumption of “smallness” in the
random parameters, and therefore it overcomes the
shortcomings of the classical perturbation method.

In this article decomposition is illustrated with
a simple example involving regional groundwater

flow subject to mixed boundary conditions. Then,
an application of the concept of partial decomposi-
tion to a practical scenario under irregular bound-
aries is shown. Since the boundary conditions are
specified for an axis only, a creative combination of
partial solutions may be useful in obtaining simple
approximations.

ADOMIAN’S DECOMPOSITION METHOD

The method is described with a simple example of
regional groundwater flow in an unconfined aquifer
with mixed boundary conditions (Fig. 1). The aquifer
is limited by the main stream on one side, two
tributaries on two sides, and a consolidated geological
unit on one side. Assume that the planar dimensions
of the aquifer are approximately rectangular in shape;
locate the origin of the coordinates system at the con-
fluence between one tributary and the main river;
the heads along the tributaries and the main stream
are given according to previously surveyed func-
tions. Assuming that Dupuit assumptions are valid
and that the aquifer is homogeneous and isotropic, the
governing flow equation is given by:

∂2h

∂x2
+ ∂2h

∂y2
= Rg

T

0 ≤ x ≤ lx, 0 ≤ x ≤ ly

(1)

where h(x,y) is the hydraulic head function of x and y;
lx = 860 m; ly = 2000 m; the aquifer transmis-
sivity, T = 700 m2/month; and the mean recharge
from rainfall, Rg = 10 mm/month. For boundary
conditions, we have a specified head at the rivers,

Fig. 1 Regional groundwater flow with mixed boundary
conditions.
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and a no-flow boundary condition at the intersection
of the aquifer with the Tertiary formation. Thus the
boundary conditions imposed on (1) are:

h(0, y) = f1(y)

∂h

∂x
(lx, y) = 0

h(x, 0) = f2(x)

h(x, ly) = f3(x)

(2)

Assume that the head at the main river and its
tributaries has been obtained from field measurements
of river stage and fitted to the following functions:
f 1(y) = 241 – 0.001y, f 2(x) = Cx2 + Ax + f 1(0),
f 3(x) = Ex2 +Bx + f 1(ly), where C = –Rg/(2T),
A = −2Clx, B = –2Elx and E = –Rg/T .

Now define the operators Lx = ∂2/∂x2 and Ly

= ∂2/∂y2. The inverse operators Ly
-1 and Lx

-1 are
the corresponding two-fold indefinite integrals with
respect to x and y, respectively. Equation (1) becomes:

Lxh + Lyh = −Rg

T
(3)

There are two partial decomposition expansions to
equation (3): the x-partial solution and the y-partial
solution. The x-partial solution, hx, results from oper-
ating with Lx

-1 in equation (3) and re-arranging. Thus
equation (3) becomes:

hx = −L−1
x

Rg

T
− L−1

x Lyhx (4)

Expanding hx on the right-hand side as an infinite
series hx = hx0 + hx1 + hx2 + . . . , equation (4)
becomes:

hx = −L−1
x

Rg

T
− L−1

x Ly (hx0 + hx1 + hx2 + . . .) (5)

The choice of hx0 often determines the level of diffi-
culty in calculating subsequent decomposition terms
and the rate of convergence (Adomian 1994, Wazwaz
2000). A simple choice is to set hx0 as equal to the
first three terms on the right-hand side of equation (5).
Thus, the first approximation to the solutions is:

hx0 = k1(y) + k2(y)x − L−1
x

Rg

T

= k1(y) + k2(y)x − Rgx2

2T

(6)

where the integration “constants” k1 and k2 must be
found from the x boundary conditions in equation (2):

h(0, y) = f1(y) = hx0(y) = k1(y)

∂h

∂x
(lx, y) = 0

= ∂hx0

∂x
(lx, y) = k2(y) − Rglx

T

⇒ k2(y) = Rglx
T

Equation (6) becomes:

hx0 = f1(y) + Rglxx

T
− Rgx2

2T
(7)

Equation (7) satisfies the governing equation (1) and
the x boundary conditions in equation (2), but not nec-
essarily those in the y direction. Now, to obtain the
y-partial solution to equation (1), hy, operate with Ly

-1

on equation (1) and rearrange:

hy = −L−1
y

Rg

T
− L−1

y Lxhy (8)

Expanding hy on the right-hand side as an infinite
series hy = hy0 + hy1 + hy2 + . . . , equation (8)
becomes:

hy = −L−1
y

Rg

T
− L−1

y Lx
(
hy0 + hy1 + hy2 + ...

)
(9)

Again, if we take hy0 as the first three terms on the
right-hand side of equation (9), we obtain the first
approximation, that is:

hy0 = k3(x) + k4(x)y − L−1
y

Rg

T

= k3(x) + k4(x)y − Rgy2

2T

(10)

where the integration “constants” k3 and k4 are found
from the y boundary conditions (equation (2)):

hy0 = f2(x) +
(

f3(x) − f2(x)

ly
+ Rgly

2T

)
y − Rgy2

2T
(11)

The y-partial solution satisfies the differential
equation (1) and the y boundary conditions in (2),
but not necessarily those in the x direction. We now
have two partial solutions to equation (1): the x-partial
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solution (equation (7)) and the y-partial solution
(equation (11)). Since both are solutions to h, an
algebraic reduction of the two partial solutions yields:

h0(x, y) =
(

hx0(x, y) + hy0(x, y)

2

)
(12)

To obtain the second term in the combined series, h1,
we need to re-derive a new x-partial solution, a new
y-partial solution and combine them as above. Thus,
the second term in the x-partial solution, hx1, may be
derived from the x-partial solution expansion (5):

hx1 = k5(y) + k6(y)x − L−1
x Lyh0

where h0 is given by equation (12) and k5 and k6

are such that equation (13) satisfies homogeneous
(i.e. zero) x boundary conditions in equations (12).
Hence:

hx1 = − Rg

2T

(
lxx − x2

2

)
(13)

Similarly, the second term in the y-partial solu-
tion, hy1, may be derived from y-partial solution
expansion (9):

hy1 = k7(x) + k8(x)y − L−1
y Lxh0

where h0 is given by equation (12), and k7 and k8

are such that equation (14) satisfies homogeneous
(i.e. zero) y boundary conditions in (2). Hence:

hy1 = − Rg

2T

(
7lyy

6
− y2 − y3

6ly

)
(14)

Subsequently, h1 is obtained by combining equations
(13) and (14):

h1(x, y) =
(

hx1(x, y) + hy1(x, y)

2

)
(15)

Higher-order terms are derived similarly. The ith-
order terms in the x-partial solution, hxi, may be
derived from equation (5):

hxi = k4i+1(y) + k4i+2(y)x − L−1
x Lyhi−1

where hi−1 is the previous combined term in the
decomposition series, and k4i+1 and k4i+2 are such
that homogeneous (i.e. zero) x boundary conditions
in (2) are satisfied. Similarly, the ith-order term

in the y-partial solution, hyi, may be derived from
equation (9):

hyi = k4i+3(x) + k4i+4(x)y − L−1
y Lxhi−1

where hi-1 is the previous combined term in the
decomposition series, and k4i+3 and k4i+4 are such
that homogeneous (i.e. zero) y boundary conditions
in (2) are satisfied. Similarly to (15), the ith combined
term is given by:

hi(x, y) =
(

hxi(x, y) + hyi(x, y)

2

)
(16)

Lastly, we approximate the final solution with
N terms, h ≈ h0 + h1 + . . . + hN, where each term
in the series is a combination of two partial solu-
tions, one in x and one in y. Due to the high rate of
convergence of decomposition solutions, the hydrol-
ogist often finds that one or two terms in the above
iteration might be reasonably accurate in many prac-
tical applications. In general, for higher-dimensional
problems, a simple partial decomposition may be
constructed for each coordinate. This facilitates the
building of a multi-dimensional problem with simpler
mathematical derivations than traditional analytical
methods, and simpler computer programming than
traditional numerical methods. Recent improvements
in standard mathematics software, such as Maple,
require minimal efforts in the mathematical deriva-
tions, the calculations of head gradients and fluxes,
and the graphing of the regional water table and direc-
tional flux vector. In many practical situations, simple
groundwater models may be constructed without spe-
cialized groundwater software. Figure 2 shows the
distribution of the regional water table for the current
example with four decomposition terms.

Fig. 2 Regional water table distribution.
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Fig. 3 Comparison between decomposition and finite
difference, y = 200 m.

Figure 3 illustrates a comparison of groundwater
heads versus x at y = 200, according to decompo-
sition and a finite-difference solution obtained via a
Gauss-Seidel iteration in conjunction with successive
over-relaxation. Figure 4 illustrates a comparison of
groundwater heads versus x at y = 1000, according

Fig. 4 Comparison between decomposition and finite
difference, y = 1000 m.

to decomposition and a finite-difference solution.
A maximum relative difference between the two
methods of about 0.32% occurs in the middle of
the no-flow boundary, that is on x = lx, y = ly/2.
To observe the convergence rate, we compare a
decomposition approximation with respect to the
exact head at the southeast boundary, f 2(lx). Figure 5
shows the relative error after approximating head
with n terms, h(lx,0) ≈ hn(lx,0), where n changes
from 1 to 9. The convergence is fast for the first
four terms, after which it stabilizes. For this problem,
a minimum error is obtained with four decomposi-
tion terms, but reasonable accuracy is obtained with
only one or two terms. An exact solution of (1) is
also possible by traditional analytical methods, in
particular via a combination of separation of vari-
ables and Fourier series (Powers 1979). Among the
advantages of traditional analytical solutions are sta-
bility, analytic derivation of heads, gradients, fluxes
and simple computer programming. However, tradi-
tional analytical methods restrict their application to
homogeneous aquifers, regular domain shapes and
linear equations. Problems in multiple dimensions
are also difficult with traditional analytical methods.
In contrast, traditional numerical methods, such as
finite differences, permit the consideration of hetero-
geneity, irregular domains and nonlinear equations.
However, numerical methods restrict the solution
to discrete locations or nodes. Numerical solutions
increase the complexity of computer programming,

Fig. 5 Head relative error with respect to the number of
ADM terms used at (lx, 0).
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computer execution time, numerical round-off errors
and numerical instability. Decomposition seems to
offer an alternative that exhibits the benefits of tradi-
tional analytical methods as well as those of classical
numerical methods.

APPLICATIONS TO MODELLING
GROUNDWATER FLOW IN IRREGULAR
DOMAINS

We now illustrate the use of partial decomposition
solutions to the simulation of groundwater flow in
practical scenarios with mixed boundaries. Since the
first few terms in a partial decomposition expansion
contain most of the information in a decomposition
series, and since a partial solution is a weak mathe-
matical solution with specified boundaries in one axis
and unspecified in the other ones, a creative combi-
nation of partial solutions often yields simple models
in practical situations. Figure 6 (not drawn to scale)
shows a plan view of an aquifer bounded by rivers
with a deep excavation inside where the head is main-
tained at h = H0 = 50 m, a ≤ x ≤ b, c ≤ y ≤ d.
Assuming (1) is valid, the boundary conditions are
now:

h(0, y) = f1(y), h(lx, y) = f2(y),

h(x, 0) = f3(x), h(x, ly) = f4(x)
(17)

where lx = 600 m, ly = 2000 m, T = 500 m2/month,
Rg = 10 mm/month, f 1(y) = 100 – 0.0005y, f 2(y) =

Fig. 6 Investigating the effect of a deep excavation on
regional groundwater.

Fig. 7 Division of the aquifer into eight partial decompo-
sition solutions.

103 – 0.001y, f 3(x) = 100 + 0.008x – 0.000005x,
f 4(x) = 99 + 0.009333x – 0.0000x2, H0 = 50 m, a =
3000 m, b = 400 m, c = 800 m and d = 1200 m.

We now subdivide the aquifer into eight regions
surrounding the excavation, h1 to h8, such that
each constitutes a partial decomposition solution
with clearly-defined boundary conditions in one axis
(Fig. 7). For Region 1 west of the excavation, the first
term in the x-partial solution, h1x, is given by equation
(6) as:

h1x = k1x(y) + m1x(y)x − L−1
x Rg/T

h1x(0, y) = f1(y)

h1x(a, y) = H0

0 ≤ x ≤ a, c ≤ y ≤ d

(18)

where k1x and m1x are found from the x boundary
conditions at x = 0 and x = a, respectively. For
Region 2 east of the excavation, the first term in the
x-partial solution, h2x, is given by equation (6) as:

h2x = k2x(y) + m2x(y)x − L−1
x Rg/T

h2x(b, y) = H0

h2x(lx, y) = f2(y)

b ≤ x ≤ lx, c ≤ y ≤ d

(19)

where k2x and m2x are found from the x boundary
conditions at x = b and x = lx, respectively. For
Region 3 south of the excavation, the first term in the
y-partial solution, h3y, is given by equation (10) as:
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h3y = k3y(x) + m3y(x)y − L−1
y Rg/T

h3y(x, 0) = f3(x)

h3y(x, c) = H0

a ≤ x ≤ b, 0 ≤ y ≤ c

(20)

where k3y and m3y are found from the y boundary
conditions at y = 0 and y = c, respectively. For
Region 4 north of the excavation, the first term in the
y-partial solution, h4y, is given by equation (10) as:

h4y = k4y(x) + m4y(x)y − L−1
y Rg/T

h4y(x, d) = H0

h4y(x, ly) = f4(x)

a ≤ x ≤ b, d ≤ y ≤ ly

(21)

where k4y and m4y are found from the y boundary
conditions at y = d and y = ly, respectively. For
Region 5 southwest of the excavation, the first term
in the x-partial solution, h5x, is given by equation (6)
as:

h5x = k5x(y) + m5x(y)x − L−1
x Rg/T

h5x(0, y) = f1(y)

h5x(a, y) = h3y(a, y)

0 ≤ x ≤ a, 0 ≤ y ≤ c

(22)

where k5x and m5x are found from the x boundary
conditions at x = 0 and x = a, respectively. Notice
that at x = a we use h3y(a,y) from equation (20). For
Region 6 southeast of the excavation, the first term in
the x-partial solution, h6x, is given by equation (6) as:

h6x = k6x(y) + m6x(y)x − L−1
x Rg/T

h6x(b, y) = h3y(b, y)

h6x(lx, y) = f2(y)

b ≤ x ≤ lx, 0 ≤ y ≤ c

(23)

where k6x and m6x are found from the x boundary con-
ditions at x = b and x = lx, respectively. At x = b we
use h3y(b,y) from equation (20). For Region 7 north-
west of the excavation, the first term in the x-partial
solution, h7x, is given by equation (6) as:

h7x = k7x(y) + m7x(y)x − L−1
x Rg/T

h7x(0, y) = f1(y)

h7x(a, y) = h4y(a, y)

0 ≤ x ≤ a, d ≤ y ≤ ly

(24)

where k7x and m7x are found from the x boundary
conditions at x = 0 and x = a, respectively. At x =
a we use h4y(a,y) from equation (21). Lastly, for
Region 8 northeast of the excavation, the first term in
the x-partial solution, h8x, is given by equation (6) as:

h8x = k8x(y) + m8x(y)x − L−1
x Rg/T

h8x(b, y) = h4y(b, y)

h8x(lx, y) = f2(y)

b ≤ x ≤ lx, d ≤ y ≤ ly

(25)

where k8x and m8x are found from the x boundary con-
ditions at x = b and x = lx, respectively. At x = b
we use h4y(b,y) from equation (21). Hence, the first
solution to equation (1) subject to the boundary condi-
tions specified in equation (17) is built by a piecewise
contribution from each region:

h(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1x(x, y), 0 ≤ x ≤ a, c ≤ y ≤ d
h2x(x, y), b ≤ x ≤ lx, c ≤ y ≤ d
h3x(x, y), a ≤ x ≤ b, 0 ≤ y ≤ c
h4x(x, y), a ≤ x ≤ b, d ≤ y ≤ ly
h5x(x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ c
h6x(x, y), b ≤ x ≤ lx, 0 ≤ y ≤ c
h7x(x, y), 0 ≤ x ≤ a, d ≤ y ≤ ly
h8x(x, y), c ≤ x ≤ lx, d ≤ y ≤ ly

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

The calculation of equation (26) is easily done with
the function piecewise( ) available in most standard

Fig. 8 Groundwater head contours according to equa-
tion (26) (m).
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Fig. 9 Head comparison, h(400,y), between decomposition and finite differences.

mathematics software. Notice that equations (18)–
(25) constitute simple equations requiring integral
calculus only. Thus, a few lines of computer code
will suffice in the calculation of heads, gradients
and fluxes, and in the production of contour plots
and directional flow vectors. Figure 8 shows the
groundwater head contour distribution according to
equation (26). The simplicity of the calculation
is remarkable. Smoothness and accuracy may be
improved by calculating additional decomposition
terms from the x-partial expansion (equation (5)) or
the y-partial expansion (equation (9)). Having an ana-
lytical solution permits the calculation of gradients
and fluxes analytically by using the diff ( ) func-
tion in mathematics software in conjunction with
Darcy’s law. This obviates the need of a numerical
approximation of gradients at nodes. Figure 9 illus-
trates a comparison of groundwater heads against y
at x = 400 according to decomposition and a finite-
difference solution obtained via a Gauss-Seidel iter-
ation in conjunction with successive over-relaxation.
The programming of the numerical solution was con-
siderably more involved and the execution time was
significantly greater than those of the decomposition
solution.

SUMMARY AND CONCLUSION

Adomian’s (1994) method of decomposition has
been presented as a simplified mathematical mod-
elling technique for groundwater characterization,
forecasting and resource evaluation purposes. The

method exhibits many of the advantages of classical
analytical methods, as well as the advantages of tra-
ditional numerical procedures. The most important
advantage is its simplicity of implementation. It could
prove useful when insufficient information is avail-
able, or for approximate preliminary calculations.
The method was illustrated with two simple appli-
cations to regional groundwater flow modelling and
compared with traditional finite differences.
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