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Abstract 

A new analytical solution of the non-linear transient groundwater flow equation subject to time variable river boundaries 
was used to simulate stream/aquifer interactions in an alluvial valley aquifer. The differential equations were solved using the 
method of decomposition, The mathematical model required relatively few parameters to simulate groundwater elevations: 
hydraulic conductivity, specific yield, and recharge. The model was physically based and could simulate the process of a flood 
wave propagation into an unconfined aquifer. The model was tested using observed water table elevations at three locations 
across a 2 km wide alluvial valley aquifer. The average daily deviation between observed and simulated water table elevations 
was approximately 0.09 m. The transient redistribution of water in the aquifer was simulated well with the model. The non- 
linear form of the Boussinesq equation was shown to better simulate cases when the transmissivity of the aquifer could not be 
assumed to be a constant. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

An important problem in the study of  alluvial 
aquifers is the quantification of  stream/aquifer 
hydraulics.  Groundwater  levels in alluvial valley 
aquifers fluctuate with changes in stage levels in the 
associated surface streams. If  the river stage is 
increased or decreased over a short time period, a 
flow reversal occurs in the aquifer as a result of the 
change in gradient between the stream and the aquifer. 
The distance of influence of  the flood wave is dependent 
on the transmissivity and the porosity of  the aquifer, the 
change in stream stage, and the length of time that 
conditions for a flow reversal exist. The propagation 
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of  a flood wave into the aquifer raises other important 
questions when the water quality of the river is different 
from that of the aquifer. The spread of contaminants 
from the river into the aquifer, or from the aquifer 
into the river, is a problem intimately related to the 
hydraulics of the stream-aquifer  system. 

The hydraulics of  the s t ream-aqui fe r  system could 
be studied via the solution of the Laplace equation 
subject to a non-linear free-surface boundary condi- 
tion, and t ime-dependent river boundary conditions. 
Most practical applications of  this alternative use 
simplifying assumptions, such as linearization of the 
free-surface boundary conditions followed by an ana- 
lytical or numerical  solution of  the resulting equations 
(Kirkham, 1966; Polubarinova-Kochina,  1962; Van 
de Giesen et al., 1994). 
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When Dupuit assumptions of zero resistance to ver- 
tical flow are valid (Strack, 1984), the non-linear 
Boussinesq equation appears to be a viable alternative 
to the use of Laplace's equation. With the Boussinesq 
equation, the vertical coordinate does not exist, and 
the free-surface boundary condition is not needed. 
The result is a simplified model where the effect of 
time-dependent river boundary conditions can easily 
be incorporated into the analysis. However, the Bous- 
sinesq equation is a non-linear partial differential 
equation. Until recently, most practical implementa- 
tions of the Boussinesq equation have used some form 
of linearization prior to an analytical or numerical 
solution. Workman et al. (1997) derived a particular 
solution of the linearized Boussinesq equation using 
the concepts of analytic semigroups. Verification with 
observed well hydrographs in an alluvial aquifer 
showed that the linearized solution of the Boussinesq 
equation reproduced observed well hydrographs 
caused by fluctuating river boundaries. This is in 
agreement with similar results elsewhere that confirm 
the value of the linearized Boussinesq equation in 
regions of mild hydraulic gradients. Yet the question 
remains as to the effectiveness of the linearized Bous- 
sinesq equation to simulate cases of large changes in the 
aquifer transmissivity resulting from high fluctuations 
in river stage. In such cases, the transmissivity may be a 
strong function of the hydraulic head and the solution of 
the linearized equation may not be an accurate model. 

The desired model is one based on a solution to the 
non-linear Boussinesq equation. Until recently, analyti- 
cal solutions of non-linear partial differential equations 
were rare, due to the lack of systematic solution meth- 
ods. With the refinement of decomposition methods 
(Adomian, 1994), solutions to many non-linear pro- 
blems in science and engineering are now possible. 
The method of decomposition generates a series, 
much like the Fourier series, where the solution of an 
equation may be approximated to the true non-linear 
solution. Furthermore, in most dissipative systems the 
convergence rate is so high that only a few terms in the 
series are needed to obtain an accurate solution consis- 
tent with the resolution of field measurement devices. 

Serrano (1995) derived new analytical solutions of 
the Laplace equation subject to a steady non-linear free- 
surface boundary condition and of the steady non-linear 
Boussinesq equation. In the present paper, we extend 
the analysis to the transient non-linear equation subject 

to time-varying river boundary conditions. A new ana- 
lytical solution of the non-linear Boussinesq equation is 
derived (Section 2). The solution is applied to the simu- 
lation of a flood wave propagation into an unconfined 
aquifer (Section 3). The verification tests consist of 
comparisons between observed water table elevations 
at three locations across a 2 km wide alluvial aquifer 
and simulated levels at corresponding locations using 
the non-linear Boussinesq equation and the linearized 
Boussinesq equation. Results and discussion are pre- 
sented in Section 4. 

2. Solution of the transient groundwater flow 
equation with Dupuit assumptions 

Consider a nearly horizontal homogeneous uncon- 
fined aquifer of length lx, bounded by two time-depen- 
dent boundary conditions, Hi(t) and H2(t), 
respectively. Locating the origin, x = 0, at the left 
boundary, and the datum at the bottom of the aquifer, 
the governing groundwater flow equation with Dupuit 
assumptions is: 

Oh 1 0 ( Kh Oh "] l 
ot S g x \  7 x l = - g  ' 0 - < x _ < / x , 0 < t  (1) 

h(0, t) = HI (t), h(lx, t) = H2(t), h(x, O) = Ho(X) 

where h(x,t) is the hydraulic head (m); K is the aqui- 
fer hydraulic conductivity (m/day); I is the mean 
daily recharge from rainfall (m/day); S is the aquifer 
specific yield; Hi(t) and H2(t) are the time fluctuating 
heads at the left and right boundaries, respectively; x 
is the spatial coordinate (m); t is the time coordinate 
(day); and Ho(x) is the initial head across the aquifer 
(m). 

Among the several decomposition schemes possi- 
ble, we begin with the t-decomposition solution. Let 
us write Eq. (1) as: 

Oh I KhO2h K / O h \  2 
- ~ - / - - |  ( 2 )  

at s T o - 7  + S \ a x ]  

Defining the operator L, =o/at and pre-multiplying 
Eq. (2) by the inverse operator L[  l (i.e. the indefinite 
t-integration), one obtains: 

h = H o +  ~ + L t l N ( h )  (3) 
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where the non-linear operator is given by: 

N(h)= S ~. Ox 2 ( OxJ J (4) 

As usual in the decomposition method (Adomian, 
1986; Adomian, 1991; Adomian, 1994), for non-linear 
equations, we define the series solution for Eq. (2) as: 

h= ~ h n (5) 
n=0 

where the first term satisfies the first term in the right 
side of Eq. (2) and the initial condition, that is: 

It 
h 0 =Ho(x ) + ~ (6) 

Subsequent terms in the series are given as: 

h I =Lf IA o (7) 

h2--L~-lA1 

h,+l =LflAn 

and the series expansion, An for the non-linear term, 
N, in Eq. (3) is defined as: 

A 0 =N(h0) (8) 

dN(ho) 
A l = h  I - -  

dh0 

h~ d2N(h0) 
A2=h2 0 ~ 2! dh0 z 

A3 = h3 dN(h°) + hn h2 d2N(h°) + h~ d3N(ho) 
L dho ~ 3i dh 3 

The polynomials An are generated for each non-line- 
arity so that A0 depends only on h0, A I depends only 
on h0 and h 1, A2 depends only on h0, hi, h2, etc. All of 
the hn components are calculable. It is now estab- 
lished that the series Z~= 0 A n for N(h) is equal to a 
generalized Taylor series for N(ho), that ~=0  hn is a 
generalized Taylor series about the function h0, and 
that the series terms approach zero as 1/(mn)!, if m is 
the order of the highest linear differential operator. 

Since the series converges and does so very rapidly, 
n - 1  the n-term partial sum cb n =I]i= o hi usually serves as 

an accurate enough and practical solution. Thus, from 
Eqs. (7) and (8), the second term in the series is: 

} t x Ox J (9) 

K l 

(10) 

Higher terms in the series are similarly derived. The 
third term would require information on the third- 
order spatial derivative of the initial condition. 
Clearly, Ho(x) must be sufficiently smooth for the 
calculation of its first- and second-order spatial 
derivative. In practical applications, a smooth surface 
should be fitted through the heads measured at 
individual wells. The spatial derivatives are then 
calculated analytically or numerically. In most 
applications, the first two or three terms in the 
decomposition series constitute an accurate solution 
(for comparisons between decomposition and exact 
solutions see Serrano, 1992; Serrano and Adomian, 
1996; Serrano and Unny, 1987). Thus the two-term 
approximant, ~b[h]2, of the solution to Eq. (2) is: 

q~[h]2 ~ h =h 0 +h I (11) 

where h0 is given by Eq. (6) and h l is given by Eq. 
(10). An interesting feature is that this solution makes 
use of the initial condition. 

Normally, the rate of convergence of decomposi- 
tion series is so high that two- or three-term approx- 
imants usually represent a good approximation to the 
exact solution. Several works in the past have been 
devoted to the assessment of the above conclusion. 
Serrano (1995) showed that two terms in the decom- 
position solution are sufficient to obtain an accurate 
solution of the steady state Boussinesq equation. 
Exceptions to this rule are in situations where the 
hydraulic conductivity was less than I00 m/month, 
or when the recharge rate was abnormally high (i.e. 
I > 0.01 m/month). Other works showing the uniform 
convergence of groundwater decomposition series 
and the accuracy of two- and three-term approximants 
as compared with the exact solution include Serrano 
and Adomian (1996) and Serrano (1992). It is also 
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important to consider the rigorous mathematical fra- 
mework for the convergence of decomposition series 
developed by Gabet (1992); Gabet (1993); Gabet 
(1994); Abbaoui and Cherruault (1994); Cherruault 
(1989); and Cherruault et al. (1992). 

Other decomposition solutions to the non-linear 
Boussinesq solutions are possible (see Appendix A). 
The selection of the most appropriate solution for a 
particular model depends on computational consid- 
erations or the availability of field data. 

3. Application of the model 

As an application of the above development, the t- 
partial solution [Eqs. (6), (10) and (11)] was chosen 
over the x-partial solution (see Appendix A) due to its 
simplicity of implementation. The mathematical 
model was evaluated for use in two lateral flow pro- 
blems. In the first case, the model was compared to 
solutions of the linearized Boussinesq equation and to 
observed data from a stream/aquifer interaction study. 
In the second case, the model was applied to a 
hypothetical problem of drainage of a shallow 
perched aquifer by a drainage canal. 

An extensive data set of daily groundwater levels 
and river elevations was collected at the Ohio Man- 
agement Systems Evaluation Area (OMSEA) 
(Jagucki et al., 1995; Ward et al., 1994; Workman et 
al., 1991) over the period of August 1991 to December 
1995. A portion of the data, October 1991 to Septem- 
ber 1992, was discussed in a report by Jagucki et al. 
(1995) and used to test an analytical solution to the 
linearized Boussinesq equation (Workman et al., 
1997). The OMSEA data showed rapid movement in 
the unconfined aquifer coincident with changes in 
stage of the Scioto River. 

The hydrogeology of the OMSEA site and the areas 
adjacent to the site have been studied extensively 
(Jagucki et al., 1995; Norris, 1983a; Norris, 1983b; 
Norris and Fidler, 1969; Nortz et al., 1994). These 
studies found the lateral hydraulic conductivity of 
the aquifer to range from 122 to 152 m/day with a 
mean value of 142 m/day. The specific yield of the 
site was estimated to be 0.18 to 0.22 with a mean of 
0.2. At the OMSEA site, the unconfined aquifer was 
18-20 m thick and extended across the width of the 
valley (approximately 2 km; see Fig. 1). Note that the 
vertical scale of Fig. 1 was greatly exaggerated to 
depict the cross-section of the aquifer. The actual ver- 
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Fig. 1. Cross-section of the Scioto River alluvial valley aquifer. The average hydraulic conductivity of the aquifer materials was 142 m/day. 
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Fig. 2. Daily elevation of the Scioto River located at the right boundary of the OMSEA and well RI located at the left boundary of the 
OMSEA from October 1991 to September 1992. 

tical dimension would be approximately twice the 
thickness of the x-axis line. 

The left boundary of the problem was taken to be 
the daily recorded elevation of the Scioto River. The 
transient nature of flow in the river can be seen in Fig. 
2. The Scioto River drains much of central Ohio and 
forms the western boundary of the OMSEA site. A 
stream gage at Higby, Ohio (approximately 21 km 
upstream from the OMSEA) has monitored flow in 
the 13,290 km 2 watershed for 60 years (Nortz et al., 
1994). Over the 60-year period, the mean flow rate 

was 130 m3/s with a minimum of 6.9 m3/s and a max- 
imum flow of 5012 m3/s. The change in river stage 
between maximum and minimum flows was 7.4 m. 
The National Weather Service (NWS) operates a 
wire-weight gage at Piketon, Ohio. Scioto River ele- 
vations adjacent to the OMSEA site were used to 
develop a gradient correction factor of 1.52 m 
between the NWS gage site and the OMSEA site 
(Jagucki et al., 1995). The total change in stage 
recorded during the period of October 1991 to Sep- 
tember 1992 was approximately 4.9 m (Fig. 2). 

hi(t) 

! 
L× 

h2 

Fig. 3. Sketch of a drainage canal that penetrates the saturated thickness of a perched aquifer. 
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A well (R1) located at the right boundary of the 
flow domain shows a gradual rise in elevation over 
the water year (Fig. 2). Big Beaver Creek, located near 
well R1, drains an area composed predominantly of 
the poorly permeable bedrock uplands from which 
runoff was rapid and bank storage was minimal 

(Jagucki et al., 1995). The conditions produced 
rapid stage fluctuations in the creek during storm 
events but only intermittent flow during the dry sum- 
mer months. 

Eleven wells were constructed over a 260 ha area 
surrounding the OMSEA site to monitor fluctuations 

165 

--~" 164 
O9 

E 

E 
c 163 
O 

='~ 162 

161 

Oct 

- -  Observed R5 
. . . . . .  Linearized R5 
- - - -  Non-linear R5 

(z = 0.09 m 

i i i , i r i i i 

Nov Dec Jan Feb Mar Apr May Jun Jul 

(a) i 

= i 

Aug Sep 

165 

"~ 164 
E 

E 
c 163 
O 

• ~ 162 w 

- -  Observed R4 (b)~ 
I . . . . . .  Unearized R4 

- - - -  Non-linear R4 

o~=0.08 m , ~  

161 , , , , , , , , , , , 

Oct NOV Dec Jan Feb Mar Apt May Jun Jul Aug Sep 

165 

-~ 164 
E 

g 
c 163 
O 

O }  
162 

161 

Observed $10 
. . . . . .  Unearized $10 
- - - -  Non-linear $10 

( z = 0 . 0 9  m 

(c)i 

, i i i i i i i i i i 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Date 

Fig. 4. Observed and simulated water table elevations at locations of 215 (a), 975 (b), and 1525 m (c) from the Scioto River. 
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in the alluvial valley aquifer. The wells were con- 
structed with 152mm diameter PVC casing. A 
6.1 m long, 2.54 mm slotted, PVC screen was posi- 
tioned to bracket the highest and lowest expected 
water table elevations in each well (Jagucki et al., 
1995). All the water table wells were instrumented 
with shaft encoders and electronic dataloggers that 
recorded hourly water levels. The three wells (R5, 
R4, and S10) shown in Fig. 1 lie on a flow path 
from the eastern edge of the OMSEA site to the Scioto 
River (Jagucki et al., 1995). These wells are located 
215, 975, and 1525m from the Scioto River, 
respectively. 

The aquifer underlying the OMSEA site exhibited 
many characteristics that made it appropriate for 
application to the Boussinesq equation; the regional 
groundwater flow in the Scioto River alluvial valley 
aquifer was predominantly in the horizontal direction; 
the aquifer mean thickness was small compared to its 
horizontal dimension; the water table exhibited mild 
slopes; the seasonal fluctuation in the water level of 
the Scioto River was important and appeared to 
directly affect the groundwater levels in areas near 
the river (Fig. 2); and except for the top-soil 
sediments, the aquifer was composed of various 
types of sand and gravel with high transmissivity 
values. 

For purposes of testing the model, measured values 
from the previous characterization of the aquifer were 
used for each of the parameters in the mathematical 
model. The hydraulic conductivity was 142 m/day, 
the base of the aquifer was located 143 m above 
mean sea level (amsl), the average thickness of the 
aquifer was 18.3 m, and the specific yield was 0.2. 
The propagation of a flood wave through the Scioto 
River creates an important variability in the river 
stage. The effect of temporal fluctuations in the river 
boundary on aquifer heads seems more important than 
that of recharge. For this reason, recharge was 
neglected in the simulations. Comparison of simu- 
lated heads with measured well hydrographs 
confirmed the hypothesis that, in this particular case, 
temporal variability in the boundary explains to a 
large extent aquifer head variability. In aquifer with 
steady boundary conditions, the role of recharge is 
more important. 

An estimate of the ability of the model to simulate 
the observed water levels was determined by comput- 

ing an average absolute deviation (a): 

[ e i - o i  [ 
i=1 c~ = (12) 

n 

where P is the predicted water elevation, O is the 
observed water elevation, and n is the number of 
days simulated. 

A primary assumption for using a linearized form 
of the Boussinesq equation is a constant transmissivity 
value. At the OMSEA site, the aquifer thickness was 
large compared to the change in river elevation and a 
solution to the linearized equation worked well 
(Workman et al., 1997). There are important problems 
in the study of lateral saturated flow of water where 
the saturated thickness is not large compared to the 
change in boundary conditions. One such problem is 
the prediction of water table heights adjacent to canals 
used to drain shallow perched aquifers similar to the 
sketch in Fig. 3. A simulation was conducted to show 
the difference between water table elevations pre- 
dicted with the linearized Boussinesq equation and 
elevations predicted with the non-linear Boussinesq 
equation. A soil with a saturated thickness of 2 m, 
hydraulic conductivity of 2 m/h, and porosity of 0.2 
was simulated to have a constant right boundary ele- 
vation of 2 m. The left boundary was simulated to fall 
from a height of 2 m to the base of the canal (0 m) 
over a four day period. The left boundary was held 
constant at the base of the canal for 48 days before 
allowing it to rise to the 2 m starting elevation. The 
right boundary was assumed to be 400 m from the 
canal. 

4. Results and discussion 

The performance of the non-linear model in pre- 
dicting the stream/aquifer interaction at the OMSEA 
was very similar to the results obtained with the lin- 
earized model. The simulated results from both mod- 
els are shown along with the observed water levels in 
three wells located 215, 975, and 1525 m from the 
Scioto River for the water year from October 1991 
to September 1992 in Fig. 4(a-c). The average abso- 
lute deviation between simulated and observed values 
ranged from 0.08 to 0.09 m for the non-linear model. 

The summer of 1991 was one of the driest on record 
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in south-central Ohio. The Scioto River was under 
base-flow conditions with very little deviation in the 
hydrograph at the beginning of the study (Fig. 2). 
Rainfall events in the Scioto River watershed 
upstream of the OMSEA site from March to August 
1992 caused fluctuations in the hydrograph of the 
fiver at the OMSEA site that were simulated well 
with both models. The water level in the Scioto 
River never exceeded the carrying capacity of the 
channel and overbank flow did not occur. 

A large flow event occurring at the end of July 1992 
was modeled well for locations near the river with 
both models. The non-linear model was able to better 
predict the rise in the aquifer during the flow event at 
both the R4 and S10 well locations [Fig. 4(b,c)]. The 
saturated thickness of the aquifer was assumed to be 
18.3 m in the linearized model, however, during this 
particular flow event the saturated thickness became 
approximately 20 m thick. The non-linear model was 
able to simulate the change in transmissivity caused 
by the increase in saturated thickness of the aquifer. 
Although the non-linear model predicted a faster 
response of the aquifer to the flow event than the 
linearized model, neither model predicted the 
response to be as large or as quick as the observed 
response. 

The non-linear model does not have the limitation 
of a constant transmissivity. The limitation was only 
evident for a few days during the simulation of 

stream/aquifer response at the OMSEA. For condi- 
tions when there are large changes in transmissivity, 
the non-linear model should be expected to better 
simulate the dynamic response of water table eleva- 
tions. Spatial variability in the hydraulic conductivity 
or large variability in heads, especially near the 
boundaries, accentuate the importance of non-linear- 
ity in the differential equation. Fig. 5 shows the simu- 
lated water table response 100 m from a drainage 
canal. For the first few days after drainage was 
initiated, the simulated water table response was simi- 
lar between the two models because the assumed con- 
stant transmissivity and the transmissivity computed 
by the non-linear model were nearly equal. Once the 
profile began to drain, the actual transmissivity 
became less than the assumed constant value, causing 
the linearized model to overpredict the drop in water 
table elevation. After 48 days of drainage, the two 
solutions approached steady state values. The steady 
state solution for the linearized solution was quite 
different from the steady state solution of the non- 
linear solution because the former was a function of 
h whereas the latter was a function of h 2. The 
steady state solution for the problem in Fig. 5 was 
0.5 m for the linearized model and 1.0 m for the 
non-linear model. Upon filling of the canal, the line- 
arized model predicted a faster response of the water 
table because of the higher assumed transmissivity 
value. 
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Fig. 5. Simulated response of the  watertablelocated a distance of l 0 0 m f r o m a  drainage canal tha t i s  allowed to drain and then fill over a 48 
day period. 
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5. Summary and conclusions 

A mathematical model has been developed to simu- 
late stream/aquifer interactions in an alluvial valley 
aquifer subject to the assumptions of the non-linear 
form of the Boussinesq equation. The model imple- 
mented a new analytical solution of the transient non- 
linear Boussinesq equation subject to time-dependent 
boundary conditions. The differential equations were 
solved using the method of decomposition. The math- 
ematical model required relatively few parameters to 
simulate groundwater elevations: hydraulic conduc- 
tivity, specific yield, and recharge. The model was 
physically based and could simulate the process of a 
flood wave propagation into an unconfined aquifer. 

The model was tested using observed water table 
elevations at three locations across a 2 km wide alluvial 
valley aquifer. The average daily deviation between 
observed and simulated water table elevations was 
approximately 0.09 m. The transient redistribution of 
water in the aquifer was simulated well with the model. 

The non-linear form of the Boussinesq equation 
was shown to better simulate cases when the trans- 
missivity of the aquifer could not be assumed to be a 
constant. For cases when the change in aquifer thick- 
ness is large, the steady state solutions for the linear- 
ized and non-linear forms of the Boussinesq equation 
are not equal. 

Appendix A Other decomposition solutions to the 
non-linear Boussinesq equation 

Other decomposition solutions to the non-linear 
Boussinesq equation are possible. The x-partial solu- 
tions result from writing Eq. (1) as: 

02h I 1 / Oh"x 2 S Oh 
Ox2- Kh h \ Ox /I--I + - ~  O--~ (A1) 

Defining the operator L x = 0 2/Ox 2 and pre-multiplying 
Eq. (A1) by the inverse operator Lx I (i.e. the indefi- 
nite double x-integration), one obtains: 

h = c l kl (t) + c2k2 ( t)x-  Lx IN(h )  (A2) 

where the constants ca and c2 and the functions kl(t) 
and k2(t) must satisfy the boundary conditions, and 
the non-linear operator is given by: 

N ( h ) = l { l + ( O h ) 2  SOh~ 
K -~x - K a t J  (A3) 

As before, we define the series solution of Eq. (A1) 
as: 

~ c  

h = ~ h. = h0-  Lx 1 E An (A4) 
n=0 n=0 

where the first term satisfies the homogeneous ver- 
sion of Eq. (A1), that is: 

ho = c lkl (t) + c2k 2(t)x (A5) 
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Using  Eq. (A6) this becomes :  

h , = _ L x l [ l { l + a 2 ( t )  Sx 
H 1 (t) + a(t)x Klx 

×(OH2(t) OH,(t)) SOH,(t)~] (A9) 
\ Ot Ot J K Ot J J  

Solving,  the second  te rm in the series solut ion is 

g iven  by: 

h I =F(t)h I (x, t) +A(t)x 2 +B(t)x+ C(t) (A10) 

where 

S { I  ( Hl(t)~OHl(t) 
F ( t ) = l + ~  -~- 1+ lxa J Ot 

Hi( t )  OHe(t)~ (A1 1) 

+ lxa Ot J 

hi (x, t)= ho(x, t) ln[h0(x, t)] - h o ( x ,  t) (A12) 

F(t)/~ 1 (1 x, t) + a(t)l  2 + C( t) 
B= - (A13) 

lx 

C(t) = - F(t)hl(O, t) (A 14) 

The third term in the series of Eq. ((A4)) may be 
obtained in a similar manner. However, this term 
contains second derivatives with respect to time of 
the boundary conditions, OHl(t)/Ot and OHz(t)/Ot. 
From the applied standpoint, the hydrologist usually 
has discrete stage values of the river heads at given 
intervals of time, At. While the calculation of the first 
time derivative of the boundary conditions in Eq. 
(AI 1) is plausible, an estimation of second time deri- 
vatives may prove unstable, especially when the river 
hydrographs are noisy. Thus the two-term approxi- 
mant of the solution to Eq. (A1) is given by Eq. 
(11), where h0 is given by Eq. (A6), hi is given by 
Eq. (A10). 

An alternative procedure to write Eq. (1) in terms 
of discharge potentials (Strack, 1989) yields: 

02¢I , S 0¢I, 
= - I +  - - - -  (A15) Ox 2 Kh Ot 

where the discharge potential is defined as: 

1 2 ¢b = -~Kh (A 16) 

The advantage of Eq. (A15) with Eq. (A16) is that 

when Eq. (A15) is linearized by replacing h on the 
right side of Eq. (A15) by some average head h0, the 
steady state solution remains non-linear. Eq. (A15) 
may be solved by decomposition. Under some 
circumstances the differences between the linear 
and non-linear solutions will be significant and the 
non-linear solution becomes important. 
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