Sue and Josie went to the movies on Saturday afternoon. Josie’s mom drove them the 5 kilometers to the show. The ride took 10 minutes.

The movie, The Lizard Queen, lasted 1 hour and 20 minutes. The girls then jogged home. It took them 40 minutes.

<table>
<thead>
<tr>
<th>Leg</th>
<th>time interval during leg (t) (min)</th>
<th>displacement during leg (\Delta x) (km)</th>
<th>position at end of leg (x) (km)</th>
<th>total time elapsed (t) (min)</th>
<th>total distance traveled (d) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Make a position graph that represents the girls’ outing.

title: ____________________________
Complex Motion
Show Time (B)

b. Make a distance graph that represents the girls' outing.

title:____________________

<table>
<thead>
<tr>
<th>time t (min.)</th>
<th>distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

c. What was the average speed for leg 1 of the trip? Show your math.

Formula: \(v = \frac{d}{t} \)
Plug:
Solve:

d. What was the average speed for leg 2 of the trip? Show your math.

Formula: \(v = \frac{d}{t} \)
Plug:
Solve:

e. What was the average speed for the entire trip? Show your math.

Formula: \(v = \frac{d}{t} \)
Plug:
Solve:
It took Bob 10 minutes to ride his skateboard 2 kilometers down the hill to Richie’s house.

They played Minecraft for 20 minutes.

It took Bob 20 minutes to walk back home up the hill.

Make a data table and two graphs to show Bob’s movement.

<table>
<thead>
<tr>
<th>Leg</th>
<th>time interval during leg (t) (min)</th>
<th>displacement during leg (\Delta x) (km)</th>
<th>position at end of leg (x) (km)</th>
<th>total time elapsed (t) (min)</th>
<th>total distance traveled (d) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distance Graph

Position Graph
Bob’s Afternoon (B)

Answer the following questions. Show all work!

1. What was Bob’s speed going to Richie’s house?
 \[v = \underline{\quad} \quad d = \underline{\quad} \quad t = \underline{\quad} \]
 Formula:
 Plug:
 Solve:

2. What was Bob’s speed coming home from Richie’s house?
 \[v = \underline{\quad} \quad d = \underline{\quad} \quad t = \underline{\quad} \]
 Formula:
 Plug:
 Solve:

3. What was Bob’s average speed for the whole outing?
 \[v = \underline{\quad} \quad d = \underline{\quad} \quad t = \underline{\quad} \]
 Formula:
 Plug:
 Solve:

4. What was Bob’s average speed while he was on the move?
 \[v = \underline{\quad} \quad d = \underline{\quad} \quad t = \underline{\quad} \]
 Formula:
 Plug:
 Solve: